JP4120354B2 - Nonmagnetic stainless steel and method of manufacturing the same - Google Patents

Nonmagnetic stainless steel and method of manufacturing the same Download PDF

Info

Publication number
JP4120354B2
JP4120354B2 JP2002321475A JP2002321475A JP4120354B2 JP 4120354 B2 JP4120354 B2 JP 4120354B2 JP 2002321475 A JP2002321475 A JP 2002321475A JP 2002321475 A JP2002321475 A JP 2002321475A JP 4120354 B2 JP4120354 B2 JP 4120354B2
Authority
JP
Japan
Prior art keywords
steel
less
stainless steel
present
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002321475A
Other languages
Japanese (ja)
Other versions
JP2004156086A (en
Inventor
哲也 清水
俊治 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2002321475A priority Critical patent/JP4120354B2/en
Publication of JP2004156086A publication Critical patent/JP2004156086A/en
Application granted granted Critical
Publication of JP4120354B2 publication Critical patent/JP4120354B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本発明は、非磁性ステンレス鋼と、その鋼を材料とする部品の製造方法に関する。本発明の鋼は、非磁性を必須の特性とし、あわせて耐食性と強度とが要求される鍛造品、鋼棒、極細線(線径100μm以下)を含む鋼線を素材とした部品の製造に好適である。この材料は、とりわけ、石油井掘削用の非磁性ドリルカラー、それも直径が60mm以上の大径品に適用したとき、意義を発揮する。
【0002】
【従来の技術】
非磁性であって、高い強度と耐食性とを兼ね備えた鋼として、出願人は、下記の合金組成のステンレス鋼が適切であると考えて、すでに開示した(特開2000−87187)。その鋼は、重量%で、C:≦0.06%、Si:≦0.50%、Mn:13〜16%、P: ≦0.040%、S:≦0.030%、Cu:0.35〜1.00%、Ni:2.50〜5.50%、Cr:17.0〜21.0%、Mo+W:0.5〜1.0%、N:0.38〜0.60%、O:≦0.0100%およびsol-Al:0.05%以下を含有し、残部が実質的にFeであり、ただし、86([%Ni]+[%Cu])≧13[%Cr]+19[%Mo]+9[%W]+2[%Mn]の条件を満たす合金組成の鋼である。
【0003】
この非磁性ステンレス鋼が達成した特性を実施例にみると、0.2%耐力に関しては、776〜955MPaのレベルである。この強度レベルにおいて、さきの発明の鋼は、良好な耐食性(塩水噴霧試験の成績A)を有し、非磁性(透磁率1.003以下)であって、製造性もよい。
【0004】
ところが、最近はドリルカラーに対し、0.2%耐力にして960MPa(140,000psi相当)のレベルを超える、きわめて高い強度が要求されるようになった。とくに、「MWDカラー」と呼ばれる、測定機器を埋め込む部材の材料には、高強度が強く求められている。それに対して、上記の非磁性ステンレス鋼は、こたえることができなかった。
【0005】
【発明が解決しようとする課題】
本発明の基本的な目的は、こうした非磁性ステンレス鋼がより高い強度をもつことが要求されているという技術の現状にかんがみて、0.2%耐力が960MPaを超えるレベルにあり、しかも、さきに開示した鋼のもつ、良好な耐食性や製造性は維持した非磁性ステンレス鋼を提供することにある。
【0006】
本発明の付随的な目的は、この非磁性ステンレス鋼を材料とする、高い強度をもった部品の製造方法を提供することにある。その主たる対象は、前述したとおり、石油井掘削用のドリルカラー部品である。
【0007】
【課題を解決するための手段】
上記の基本的な目的を達成する本発明の非磁性ステンレス鋼は、質量%で、C:0.06%以下、Si:0.40%以下、Mn:15.5〜17%、P:0.040%以下、S:0.010%以下、Cu:0.35〜2.00%、Ni:2.50〜4.00%、Cr:17.0〜21.0%、Mo+W:0.5〜1.5%、N:0.48〜0.65%、O:0.01%以下、sol-Al:0.05%以下およびB:0.001〜0.010%を含有し、残部がFeおよび不可避な不純物であり、ただし、86([%Ni]+[%Cu])≧13[%Cr]+19[%Mo]+9[%W]+2[%Mn]の条件を満たす合金組成を有し、0.2%耐力が960MPa以上の高強度を有することを特徴とする。
【0008】
上記した付随的な目的を達成する本発明の非磁性ステンレス鋼部品の製造方法は、請求項1に規定した合金組成の鋼を、被加工材の表面温度が850℃以下である条件下に30%以上の減面率の熱間加工を施すことを特徴とする。
【0009】
【発明の実施形態】
前掲の特開2000−87187に開示した既知の鋼と、本発明の鋼との主要な差異は、本発明においては、1)既知の鋼より高いN含有量を採用したこと、および、2)Bの所定量の添加を必須としたこと、である。以下、この差異がもつ意義を、既知の鋼に関してすでに述べた事項とともに説明する。
【0010】
既知の鋼を開発したときの技術思想は、在来の高マンガン非磁性ステンレス鋼の強度を、Nの増量により向上させることであった。鋼の耐食性を確保するためには、一定量のCrおよびMo(またはMo+W)を添加することが必要であるから、既知の鋼においても、多量のMnに加えて、所定量のCrと、Mo+Wを添加し、Mn,Cr,Moを多量に添加した高N鋼において生じやすくなる、凝固過程における窒素ブローを適量のNiおよびCuの添加により抑制したことにある。
【0011】
本発明においては、従来達成されていなかった高強度を実現するために、既知の鋼で実施しなかった、いっそうの高N含有量を実現するとともに、比較的低い温度における高い加工率の加工がもたらす加工硬化を利用する。その場合に弱点として浮かび上がる、腐食曲げ特性の低下を、特定の、これも既知の鋼では採用しなかった多量のBの添加で防止する、という技術思想が、新しい鋼の基礎をなす技術思想である。
【0012】
以下、本発明の非磁性ステンレス鋼の合金組成を前記のように限定した理由を、既知の鋼のそれと関連させつつ説明する。
【0013】
C:0.06%以下
Cが鋼中に存在すると、Crを含む炭化物が析出し、耐食性など諸特性を劣化させるから、C含有量は低いほうがよい。とくにこの鋼は、高強度を得るため、炭化物が析出する温度域で加工することが避けられないので、C量を極力下げるべきである。さきの発明では0.08%を上限としたが、本発明では0.06%を上限とした。好ましくは、0.04%以下である。
【0014】
Si:0.40%以下
脱酸剤として有用であるが、必要以上に添加すると、Nの溶鋼への溶解度および凝固した鋼への固溶度を低めるほか、金属間化合物の析出を助長するから、多量に存在させることは好ましくない。さきの発明の上限0.50%を、本発明では0.40%に引き下げた。
【0015】
Mn:15.5〜17%
非磁性を確保し、溶鋼中のN溶解度を確保するために、多量のMnを必要とする。さきの発明では13〜16%を選択したが、本発明では、より多量の15.5〜17%の領域を採用した。上限を超える多量の添加は、熱間加工性および耐食性を低下させるうえ、凝固時の窒素ブローを引き起こす。
【0016】
P:0.040%以下
Pは粒界に偏析して鋼の特性を悪くする不純物であるから、その含有量は低ければ低いほど好ましい。製造コストとの兼ね合いもあって、0.040%を許容限界として設けた。
【0017】
S:0.010%以下
Sも、Pと同様に、熱間加工性および耐食性に悪影響を及ぼす不純物であるから、その量は低いことが望ましい。さきの発明の鋼では0.030%を許容限界としたが、本発明では、よりきびしい0.010%の限界を定めた。
【0018】
Cu:0.35〜2.00%、Ni:2.50〜4.00%
CuおよびNiは、さきの発明に関して述べたように、強度の向上に役立つNを安定して添加するために添加する。すなわち、凝固時にNの固溶度が大きいオーステナイト相の比率を高めることによって、窒素ブローを抑制する。CuおよびNiそれ自体でも、耐食性の向上に寄与する。それぞれの添加量下限は、こうした効果が確実に得られる限界である。一方、過剰な添加は溶湯中のN溶解度を低くする上、コストを上昇させ、SCC特性を下げるから、避けなければならない。上限は、この観点から定めた。さきの発明では、Cu:0.35〜1.00%およびNi:2.50〜5.50%の添加量範囲を定めたが、本発明では添加量範囲を変更し、Cuを増量するとともにNiを減量した。
【0019】
Cr:17.0〜21.0%、Mo+W:0.5〜1.5%
前述のように、これらの成分は鋼の耐食性を確保するために必須である。ただし、凝固時の窒素ブローを助ける傾向があり、相安定性を低めるおそれもあるので、あまり多量な添加は好ましくない。さきの発明ではCr:17.0〜19.0%、Mo+W:0.5〜1.0%と規定したが、本発明では、コスト上昇を忍んで、CrおよびMo+Wの両方に、より高い添加量範囲を選択した。
【0020】
N:0.48〜0.65%
再三述べたように、Nは鋼の強度と耐食性を高め、かつ非磁性を確保するうえで、きわめて有効な元素として、本発明では積極的に利用する。窒素ブローを生じる危険があり、健全な製品の取得を確実にするという観点から、従来はあまり多量の添加を行なわなかった。さきの発明では、添加量範囲を0.38〜0.60%と規定したものの、実施例では0.46%を上限としていた。本発明ではこの実際的な限界を打破して、0.48〜0.65%の多量を添加し、所期の高い強度を実現したわけである。
【0021】
O:0.01%以下
Oは鋼の清浄度を低くする成分であり、熱間加工性、耐食性、靭性などにとって有害な成分であるから、少ない方が好ましい。0.01%は許容限度である。
【0022】
sol-Al:0.05%以下、好ましくは0.01%以下
sol-Alもまた鋼の清浄度を低くするし、熱間加工性、耐食性、靭性などを低くする。0.05%の上限は、さきの発明と同じであるが、実施例の鋼は、もっと低い0.001〜0.002%のsol-Al含有量である。
【0023】
B:0.001〜0.010%、好ましくは0.0015〜0.0040%
本発明の鋼は、目的とする高い強度を得るために、比較的低温での強加工を行なって部品を製造することが推奨される。発明者らの経験により、さきに開示の鋼に対して低い温度で加工を施すと、腐食曲げ特性が低下することが判明した。本発明の新規な点は、Bの添加により、低温度強加工を行なっても、腐食曲げ特性を維持したままで高い強度が得られることにある。
【0024】
Bの添加はまた、熱間加工性自体も向上させる。この効果は知られていたので、既知の鋼においても、Ca、Mg、REMなどとともに、熱間加工性向上元素として、選択的に添加することとしていた。しかし、さきの発明においてB:0.0011%を添加した唯一の実施例(No.12)では、N量が低い(0.41%)ため、0.2%耐力は893MPaに止まっていた。Bの過剰な添加は、局部溶融温度を低下させるほか、清浄度も低下させるから、0.010%の上限を設けた。好ましい範囲は、0.0015〜0.0040%である。
【0025】
86([%Ni]+[%Cu])≧13[%Cr]+19[%Mo]+9[%W]+2[%Mn]
すでに開示したように、この成分条件は、鋼が凝固するときに窒素ブローが生じることを抑制するために必要なものである。
【0026】
表面温度が850℃以下で30%以上の加工率の熱間加工
上に説明したように、加工開始温度を850℃以下という比較的低い温度で、30%以上の加工率で加工するのは、加工硬化を利用して、意図する高強度を得るうえで好ましい。高温かつ低い加工率の加工では、強度の確保が困難であるから、この加工条件は、実際上は必須といってもよいものである。
【0027】
【実施例】
AOD炉において表1の合金組成の非磁性ステンレス鋼を溶解し、3.6トンインゴットを製造した。このインゴットを分塊し、1100℃で熱間鍛造して、300mm角のビレットとした。各ビレットを、表2に示す加工開始温度および加工率をもって、種々の直径の丸棒に加工後、衝風冷却した。比較例5は、さきの発明の実施例No.12である。
【0028】
表2において、各欄における表示は、それぞれ下記の意味である。
Cu+Ni:86([%Ni]+[%Cu])
Cr+Mo+W+Mn:13[%Cr]+19[%Mo]+9[%W]+2[%Mn]
成分条件:「Cu+Ni」≧「Cr+Mo+W+Mn」の条件が満たされている場合は○、そうでない場合は×
加工サイズ:加工によって得た丸棒の直径(mm)
加工条件:表面温度850℃以下、加工率30%以上の条件が満たされている場合は○、そうでない場合は×
【0029】
棒材の製造時の製造性を記録し、得られた鍛造品から試験片を採取して、下記の測定法で、耐食性、引張特性、腐食曲げ耐性および透磁率を測定した。その結果を、表3に示す。
製造性:鍛造時、救済不可能なほど大きい割れが生じたときは×、そうでないときは○
塩水噴霧試験(35℃、5%NaCl、96時間)
A:腐食なし B:僅かに腐食あり C:若干腐食あり D:ほぼ全面腐食
引張試験:JIS4号試験片(φ10mm)、JIS Z2241準拠
腐食曲げ試験:硫酸・硫酸銅腐食試験(JIS G0575)
曲げ角度180度 20mm×70mm×5mmt
透磁率:VSM法 外部磁界2000Oe
【0030】

Figure 0004120354
【0031】
表2 試験結果
Figure 0004120354
【0032】
表3 試験結果
Figure 0004120354
【0033】
【発明の効果】
本発明によって、さきに開示した非磁性ステンレス鋼において得られた高い耐食性と製造性を維持したまま、その既知の鋼では達成できなかった、0.2%耐力が960MPaを超える高い強度が実現した。これにより本発明は、ドリルカラーを代表とする非磁性ステンレス鋼の諸用途において、きびしい要求に応えることができる。[0001]
[Industrial application fields]
The present invention relates to a non-magnetic stainless steel and a method for manufacturing a part using the steel as a material. The steel of the present invention is non-magnetic indispensable characteristics, and for the manufacture of parts made of steel wires including forged products, steel bars, and ultrafine wires (wire diameters of 100 μm or less) that require corrosion resistance and strength. Is preferred. This material is particularly useful when applied to non-magnetic drill collars for drilling oil wells and large diameter products with a diameter of 60 mm or more.
[0002]
[Prior art]
The applicant has already disclosed that stainless steel having the following alloy composition is suitable as a steel that is nonmagnetic and has both high strength and corrosion resistance (Japanese Patent Laid-Open No. 2000-87187). The steel, by weight, C: ≦ 0.06%, Si: ≦ 0.50%, Mn: 13-16%, P: ≦ 0.040%, S: ≦ 0.030%, Cu: 0 .35 to 1.00%, Ni: 2.50 to 5.50%, Cr: 17.0 to 21.0%, Mo + W: 0.5 to 1.0%, N: 0.38 to 0.60 %, O: ≦ 0.0100% and sol-Al: 0.05% or less, and the balance is substantially Fe, provided that 86 ([% Ni] + [% Cu]) ≧ 13 [% It is a steel having an alloy composition that satisfies the condition of [Cr] +19 [% Mo] +9 [% W] +2 [% Mn].
[0003]
When the characteristics achieved by this nonmagnetic stainless steel are seen in the examples, the 0.2% proof stress is at a level of 776 to 955 MPa. At this strength level, the steel of the previous invention has good corrosion resistance (result of salt spray test A), is non-magnetic (permeability is 1.003 or less), and has good manufacturability.
[0004]
Recently, however, the drill collar is required to have a very high strength exceeding a level of 960 MPa (equivalent to 140,000 psi) with a 0.2% yield strength. In particular, high strength is strongly demanded for a material of a member for embedding a measuring instrument called “MWD color”. On the other hand, the nonmagnetic stainless steel described above could not be answered.
[0005]
[Problems to be solved by the invention]
In view of the current state of the art that such non-magnetic stainless steel is required to have higher strength, the basic object of the present invention is that the 0.2% proof stress is at a level exceeding 960 MPa. It is an object of the present invention to provide a nonmagnetic stainless steel that maintains the good corrosion resistance and manufacturability of the steel disclosed in (1).
[0006]
An additional object of the present invention is to provide a method of manufacturing a part having high strength made of this nonmagnetic stainless steel. The main target is drill collar parts for oil well drilling as described above.
[0007]
[Means for Solving the Problems]
The non-magnetic stainless steel of the present invention that achieves the above-mentioned basic object is, in mass %, C: 0.06% or less, Si: 0.40% or less, Mn: 15.5 to 17%, P: 0 0.040% or less, S: 0.010% or less, Cu: 0.35 to 2.00%, Ni: 2.50 to 4.00%, Cr: 17.0 to 21.0%, Mo + W: 0.0. 5~1.5%, N: 0.48 ~0.65% , O: 0.01% or less, sol-Al: 0.05% or less and B: containing 0.001 to 0.010 percent, The balance is Fe and inevitable impurities , but an alloy that satisfies the condition of 86 ([% Ni] + [% Cu]) ≧ 13 [% Cr] +19 [% Mo] +9 [% W] +2 [% Mn] It has a composition, and 0.2% proof stress has a high strength of 960 MPa or more.
[0008]
The method for producing a non-magnetic stainless steel part according to the present invention that achieves the above-mentioned incidental object is to produce steel having an alloy composition as defined in claim 1 under the condition that the surface temperature of the workpiece is 850 ° C. or less. It is characterized by performing hot working with a reduction in area of at least%.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The main difference between the known steel disclosed in the aforementioned JP 2000-87187 and the steel of the present invention is that in the present invention, 1) the N content higher than that of the known steel is adopted, and 2) The addition of a predetermined amount of B is essential. In the following, the significance of this difference will be explained together with the matters already described for known steels.
[0010]
The technical idea when developing a known steel was to improve the strength of conventional high manganese non-magnetic stainless steel by increasing the amount of N. In order to ensure the corrosion resistance of steel, it is necessary to add a certain amount of Cr and Mo (or Mo + W). Therefore, even in known steels, in addition to a large amount of Mn, a predetermined amount of Cr and Mo + W The nitrogen blow in the solidification process, which tends to occur in high-N steel added with a large amount of Mn, Cr, and Mo, is suppressed by adding appropriate amounts of Ni and Cu.
[0011]
In the present invention, in order to realize a high strength that has not been achieved in the past, a higher N content, which has not been performed with known steels, is realized, and processing at a high processing rate at a relatively low temperature is achieved. Take advantage of the work hardening that results. In this case, the technical idea of preventing the deterioration of the corrosion bending characteristics that emerges as a weak point by adding a large amount of B, which was not adopted in the known steel, is the technical idea underlying the new steel. It is.
[0012]
The reason why the alloy composition of the nonmagnetic stainless steel of the present invention is limited as described above will be described below in relation to that of known steel.
[0013]
C: 0.06% or less If C is present in the steel, carbides containing Cr are precipitated, and various properties such as corrosion resistance are deteriorated. Therefore, the C content is preferably low. In particular, in order to obtain high strength, it is inevitable that this steel is processed in a temperature range where carbides are precipitated, so the C content should be reduced as much as possible. In the previous invention, the upper limit was 0.08%, but in the present invention, the upper limit was 0.06%. Preferably, it is 0.04% or less.
[0014]
Si: 0.40% or less Useful as a deoxidizing agent, but adding more than necessary lowers the solubility of N in molten steel and the solid solubility of solidified steel, and also promotes precipitation of intermetallic compounds. It is not preferable to make it exist in a large amount. The upper limit of 0.50% of the previous invention was reduced to 0.40% in the present invention.
[0015]
Mn: 15.5-17%
A large amount of Mn is required to ensure non-magnetism and N solubility in molten steel. In the previous invention, 13 to 16% was selected, but in the present invention, a larger amount of 15.5 to 17% was adopted. Addition of a large amount exceeding the upper limit deteriorates hot workability and corrosion resistance, and causes nitrogen blowing during solidification.
[0016]
P: 0.040% or less P is an impurity that segregates at the grain boundaries and deteriorates the properties of the steel. Therefore, the lower the content, the better. In consideration of the manufacturing cost, 0.040% was set as the allowable limit.
[0017]
S: 0.010% or less S, like P, is an impurity that adversely affects hot workability and corrosion resistance, so its amount is desirably low. In the steel of the previous invention, 0.030% was set as the allowable limit, but in the present invention, a more severe limit of 0.010% was set.
[0018]
Cu: 0.35-2.00%, Ni: 2.50-4.00%
Cu and Ni are added in order to stably add N, which is useful for improving the strength, as described in the previous invention. That is, nitrogen blow is suppressed by increasing the ratio of the austenite phase in which the solid solubility of N is large during solidification. Cu and Ni itself contribute to the improvement of corrosion resistance. The lower limit of each addition amount is a limit for reliably obtaining such an effect. On the other hand, excessive addition lowers the solubility of N in the molten metal, raises the cost, and lowers the SCC characteristics, and must be avoided. The upper limit was determined from this viewpoint. In the previous invention, the addition range of Cu: 0.35-1.00% and Ni: 2.50-5.50% was defined. In the present invention, the addition range was changed to increase the amount of Cu. Ni was reduced.
[0019]
Cr: 17.0-21.0%, Mo + W: 0.5-1.5%
As described above, these components are essential for ensuring the corrosion resistance of steel. However, adding too much is not preferable because it tends to help nitrogen blow during solidification and may reduce phase stability. In the previous invention, Cr: 17.0 to 19.0% and Mo + W: 0.5 to 1.0% were specified. However, in the present invention, a higher addition is added to both Cr and Mo + W with an increase in cost. A quantity range was selected.
[0020]
N: 0.48 to 0.65%
As described repeatedly, N is actively used in the present invention as an extremely effective element for enhancing the strength and corrosion resistance of steel and ensuring non-magnetism. There is a danger of causing nitrogen blow, and from the viewpoint of ensuring the acquisition of a sound product, a large amount of addition has not been conventionally performed. In the previous invention, the addition amount range was defined as 0.38 to 0.60%, but in the examples, the upper limit was 0.46%. In the present invention, this practical limit was overcome, and a large amount of 0.48 to 0.65% was added to achieve the desired high strength.
[0021]
O: 0.01% or less O is a component that lowers the cleanliness of the steel, and is a component harmful to hot workability, corrosion resistance, toughness, and the like, so a smaller amount is preferable. 0.01% is an acceptable limit.
[0022]
sol-Al: 0.05% or less, preferably 0.01% or less
sol-Al also lowers the cleanliness of steel and lowers hot workability, corrosion resistance, toughness and the like. The upper limit of 0.05% is the same as the previous invention, but the steels of the examples have a lower sol-Al content of 0.001 to 0.002%.
[0023]
B: 0.001 to 0.010%, preferably 0.0015 to 0.0040%
In order to obtain the desired high strength, it is recommended that the steel of the present invention is subjected to strong processing at a relatively low temperature to produce a part. According to the inventors' experience, it has been found that if the steel disclosed above is processed at a low temperature, the corrosion bending properties are degraded. The novel point of the present invention is that, by adding B, a high strength can be obtained while maintaining the corrosion bending characteristics even when the low temperature strong processing is performed.
[0024]
The addition of B also improves the hot workability itself. Since this effect has been known, even in known steels, it is supposed to be selectively added as a hot workability improving element together with Ca, Mg, REM and the like. However, in the previous example in which B: 0.0011% was added in the previous invention (No. 12), the N content was low (0.41%), so the 0.2% proof stress was only 893 MPa. Excessive addition of B not only lowers the local melting temperature but also reduces the cleanliness, so an upper limit of 0.010% was set. A preferable range is 0.0015 to 0.0040%.
[0025]
86 ([% Ni] + [% Cu]) ≧ 13 [% Cr] +19 [% Mo] +9 [% W] +2 [% Mn]
As already disclosed, this component condition is necessary to suppress the occurrence of nitrogen blow when the steel solidifies.
[0026]
As described above for hot working with a surface temperature of 850 ° C. or lower and a processing rate of 30% or higher, processing at a processing start temperature of 850 ° C. or lower and a processing rate of 30% or higher is as follows. It is preferable for obtaining intended high strength using work hardening. Since it is difficult to ensure strength in processing at a high temperature and a low processing rate, this processing condition may actually be essential.
[0027]
【Example】
A non-magnetic stainless steel having the alloy composition shown in Table 1 was melted in an AOD furnace to produce a 3.6-ton ingot. The ingot was divided and hot forged at 1100 ° C. to form a 300 mm square billet. Each billet was processed into round bars having various diameters at the processing start temperature and processing rate shown in Table 2, and then blast-cooled. Comparative Example 5 is Example No. 12 of the previous invention.
[0028]
In Table 2, the display in each column has the following meaning.
Cu + Ni: 86 ([% Ni] + [% Cu])
Cr + Mo + W + Mn: 13 [% Cr] +19 [% Mo] +9 [% W] +2 [% Mn]
Ingredient conditions: “Cu + Ni” ≧ “Cr + Mo + W + Mn” is satisfied when the condition is satisfied;
Processing size: Diameter of the round bar obtained by processing (mm)
Processing conditions: ○ when the conditions of the surface temperature of 850 ° C. or less and the processing rate of 30% or more are satisfied, and × otherwise
[0029]
The manufacturability at the time of production of the bar was recorded, a test piece was collected from the obtained forged product, and the corrosion resistance, tensile properties, corrosion bending resistance and magnetic permeability were measured by the following measurement methods. The results are shown in Table 3.
Manufacturability: X for when a crack that is too large to be relieved occurs during forging, ○ otherwise
Salt spray test (35 ° C, 5% NaCl, 96 hours)
A: No corrosion B: Some corrosion
Bending angle 180 degrees 20mm x 70mm x 5mmt
Permeability: VSM method External magnetic field 2000Oe
[0030]
Figure 0004120354
[0031]
Table 2 Test results
Figure 0004120354
[0032]
Table 3 Test results
Figure 0004120354
[0033]
【The invention's effect】
According to the present invention, while maintaining the high corrosion resistance and manufacturability obtained in the non-magnetic stainless steel disclosed above, a high strength with a 0.2% proof stress exceeding 960 MPa, which could not be achieved with the known steel, was realized. . Thereby, this invention can respond to a severe request | requirement in various uses of nonmagnetic stainless steel represented by a drill collar.

Claims (3)

質量%で、C:0.06%以下、Si:0.40%以下、Mn:15.5〜17%、P:0.040%以下、S:0.010%以下、Cu:0.35〜2.00%、Ni:2.50〜4.00%、Cr:17.0〜21.0%、Mo+W:0.5〜1.5%、N:0.48〜0.65%、O:0.01%以下、sol-Al:0.05%以下およびB:0.001〜0.010%を含有し、残部がFeおよび不可避な不純物であり、ただし、86([%Ni]+[%Cu])≧13[%Cr]+19[%Mo]+9[%W]+2[%Mn]を満たす合金組成を有し、0.2%耐力が960MPa以上の高強度を有することを特徴とする非磁性ステンレス鋼。 In mass %, C: 0.06% or less, Si: 0.40% or less, Mn: 15.5 to 17%, P: 0.040% or less, S: 0.010% or less, Cu: 0.35 ~2.00%, Ni: 2.50~4.00%, Cr: 17.0~21.0%, Mo + W: 0.5~1.5%, N: 0.48 ~0.65%, O: 0.01% or less, sol-Al: 0.05% or less and B: 0.001 to 0.010%, with the balance being Fe and inevitable impurities , provided that 86 ([% Ni] + [% Cu]) ≧ 13 [% Cr] +19 [% Mo] +9 [% W] +2 [% Mn] The alloy composition satisfies that, 0.2% proof stress has a high strength of 960 MPa or more. Characteristic non-magnetic stainless steel. 請求項1に規定した合金組成の鋼に対し、被加工材の表面温度が850℃以下である条件下に30%以上の減面率の熱間加工を施すことを特徴とする非磁性ステンレス鋼部品の製造方法。A nonmagnetic stainless steel characterized by subjecting steel having an alloy composition as defined in claim 1 to hot working with a reduction in area of 30% or more under the condition that the surface temperature of the workpiece is 850 ° C or lower. Manufacturing method of parts. 請求項2の方法により製造した非磁性ドリルカラー。A nonmagnetic drill collar produced by the method of claim 2.
JP2002321475A 2002-11-05 2002-11-05 Nonmagnetic stainless steel and method of manufacturing the same Expired - Lifetime JP4120354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002321475A JP4120354B2 (en) 2002-11-05 2002-11-05 Nonmagnetic stainless steel and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002321475A JP4120354B2 (en) 2002-11-05 2002-11-05 Nonmagnetic stainless steel and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2004156086A JP2004156086A (en) 2004-06-03
JP4120354B2 true JP4120354B2 (en) 2008-07-16

Family

ID=32802006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002321475A Expired - Lifetime JP4120354B2 (en) 2002-11-05 2002-11-05 Nonmagnetic stainless steel and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP4120354B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5162954B2 (en) 2007-05-06 2013-03-13 大同特殊鋼株式会社 High-strength nonmagnetic stainless steel, high-strength nonmagnetic stainless steel parts, and method for manufacturing the same
JP5057055B2 (en) * 2007-07-30 2012-10-24 大同特殊鋼株式会社 Non-magnetic stainless steel forged product, drill collar using the forged product, and method for producing the forged product
JP5526809B2 (en) 2009-04-27 2014-06-18 大同特殊鋼株式会社 High corrosion resistance, high strength, non-magnetic stainless steel and high corrosion resistance, high strength, non magnetic stainless steel products and methods for producing the same
CN104513933A (en) * 2013-09-29 2015-04-15 宝钢不锈钢有限公司 Inexpensive non-magnetic stainless steel and manufacturing method thereof
CN107190214A (en) * 2017-06-10 2017-09-22 深圳市富鹏达金属材料有限公司 Steel alloy
CN110863143B (en) * 2019-11-27 2021-05-14 东北大学 Manufacturing method of 960MPa grade ultra-high strength steel with excellent low temperature toughness

Also Published As

Publication number Publication date
JP2004156086A (en) 2004-06-03

Similar Documents

Publication Publication Date Title
US8137613B2 (en) Austenitic stainless steel welded joint and austenitic stainless steel welding material
JP5211841B2 (en) Manufacturing method of duplex stainless steel pipe
JP3227734B2 (en) High corrosion resistant duplex stainless steel and its manufacturing method
JP6441909B2 (en) Duplex ferrite and austenitic stainless steel
JP5162954B2 (en) High-strength nonmagnetic stainless steel, high-strength nonmagnetic stainless steel parts, and method for manufacturing the same
KR100545301B1 (en) A ferritic-austenitic steel alloy
JP4462452B1 (en) Manufacturing method of high alloy pipe
JP2006274443A (en) Nonmagnetc high-hardness alloy
JP2010508439A (en) Duplex stainless steel and use of this steel
JP6776136B2 (en) Duplex stainless steel wire for heat-resistant bolts and heat-resistant bolt parts using the duplex stainless steel wire
JP5088455B2 (en) Duplex stainless steel
JP5217277B2 (en) Manufacturing method of high alloy pipe
KR100704201B1 (en) Duplex stainless steel
JP4120354B2 (en) Nonmagnetic stainless steel and method of manufacturing the same
JP3911868B2 (en) High strength nonmagnetic stainless steel with excellent corrosion resistance and method for producing the same
JP2008248271A (en) High strength stainless steel and high strength stainless steel wire using the same
JP4285302B2 (en) Stainless steel containing fine inclusions and method for producing the same
JP5857914B2 (en) Welding material for duplex stainless steel
JP3509604B2 (en) High Cr steel pipe for line pipe
JP6776469B1 (en) Duplex stainless steel and its manufacturing method
JP3222113B2 (en) Welding material for high Cr ferritic heat resistant steel, TIG welding rod, submerged arc welding rod, welding wire and coated arc welding rod made of this material
JP2970432B2 (en) High temperature stainless steel and its manufacturing method
JP4207447B2 (en) Stainless steel rebar and manufacturing method thereof
JPH1060576A (en) H steel excellent in toughness in fillet part and its production
JP2019099866A (en) Two-phase stainless steel and weld article thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4120354

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 6

EXPY Cancellation because of completion of term