JP5217277B2 - Manufacturing method of high alloy pipe - Google Patents

Manufacturing method of high alloy pipe Download PDF

Info

Publication number
JP5217277B2
JP5217277B2 JP2007189540A JP2007189540A JP5217277B2 JP 5217277 B2 JP5217277 B2 JP 5217277B2 JP 2007189540 A JP2007189540 A JP 2007189540A JP 2007189540 A JP2007189540 A JP 2007189540A JP 5217277 B2 JP5217277 B2 JP 5217277B2
Authority
JP
Japan
Prior art keywords
high alloy
less
yield strength
strength
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007189540A
Other languages
Japanese (ja)
Other versions
JP2009024231A (en
Inventor
均 諏訪部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007189540A priority Critical patent/JP5217277B2/en
Priority to PCT/JP2008/062332 priority patent/WO2009014000A1/en
Publication of JP2009024231A publication Critical patent/JP2009024231A/en
Application granted granted Critical
Publication of JP5217277B2 publication Critical patent/JP5217277B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/003Drawing materials of special alloys so far as the composition of the alloy requires or permits special drawing methods or sequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/002Extruding materials of special alloys so far as the composition of the alloy requires or permits special extruding methods of sequences
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel

Description

本発明は、炭酸ガス腐食環境や応力腐食環境においても優れた耐食性を発揮すると共に高い強度をも兼ね備えた高合金管の製造方法に関する。本発明によって製造される高合金管は、例えば油井やガス井(以下、合わせて、「油井」と称する。)に使用することができる。   The present invention relates to a method for producing a high alloy tube that exhibits excellent corrosion resistance even in a carbon dioxide gas corrosion environment and a stress corrosion environment and has high strength. The high alloy pipe produced according to the present invention can be used, for example, in oil wells and gas wells (hereinafter collectively referred to as “oil wells”).

深井戸や湿潤な炭酸ガス(CO),硫化水素(HS),塩素イオン(Cl)等の腐食性物質を含む過酷な腐食環境で使用される油井に使用される高合金管として、従来から、高Cr−高Ni合金からなる高合金管が使用されている。ところが、近年、油井は深井戸化する傾向が著しく、従来よりも過酷な環境での使用を目的として、特に110〜140ksiグレード(最低降伏強度が757.3〜963.8MPa)と高強度であって、かつ耐食性を有する高強度合金管が要求されている。 As a high alloy tube used in deep wells and oil wells used in severe corrosive environments containing corrosive substances such as wet carbon dioxide (CO 2 ), hydrogen sulfide (H 2 S), and chlorine ions (Cl ) Conventionally, a high alloy tube made of a high Cr-high Ni alloy has been used. However, in recent years, oil wells have a tendency to become deep wells, and have a high strength of 110 to 140 ksi grade (minimum yield strength of 757.3 to 963.8 MPa), particularly for use in harsher environments. There is a need for high strength alloy tubes having corrosion resistance.

特許文献1〜4には、高Cr−高Ni合金を熱間加工および溶体化処理後10〜60%の肉厚減少率で冷間加工して高強度の高合金油井管を得る方法が開示されている。   Patent Documents 1 to 4 disclose a method of obtaining a high-strength, high-alloy oil well pipe by cold working a high Cr-high Ni alloy at a thickness reduction rate of 10 to 60% after hot working and solution treatment. Has been.

また、特許文献5には、硫化水素環境での耐食性に優れたオーステナイト合金を得るために、La、Al、Ca、S、Oのそれぞれを特定の関係で含有させて介在物の形状を制御して冷間加工することが開示されている。ここでの冷間加工は強度付加のため行うが、耐食性の観点で30%以下の肉厚減少加工を行っている。   Further, in Patent Document 5, in order to obtain an austenitic alloy having excellent corrosion resistance in a hydrogen sulfide environment, each of La, Al, Ca, S, and O is contained in a specific relationship to control the shape of inclusions. And cold working is disclosed. The cold working here is performed for strength addition, but thickness reduction processing of 30% or less is performed from the viewpoint of corrosion resistance.

さらに、特許文献6には、CuとMoの含有量を調整して硫化水素環境での耐SCC性を改善した高Cr−高Ni合金が開示されており、熱間加工後にさらに加工度30%以下の冷間加工で強度を調整するのが好ましいことが記載されている。   Furthermore, Patent Document 6 discloses a high Cr-high Ni alloy in which the SCC resistance in a hydrogen sulfide environment is improved by adjusting the contents of Cu and Mo, and the degree of work is further increased by 30% after hot working. It is described that the strength is preferably adjusted by the following cold working.

特開昭58−6927号公報JP 58-6927 A 特開昭58−9922号公報Japanese Patent Laid-Open No. 58-9922 特開昭58−11735号公報JP 58-11735 A 米国特許4421571号明細書U.S. Pat. No. 4,421,571 特開昭63−274743号公報JP-A 63-274743 特開平11−302801号公報Japanese Patent Laid-Open No. 11-302801

しかしながら、上記の文献には、冷間加工により高強度とすることができることは開示されているが、高合金管の組成を考慮した冷間加工による高強度化についての具体的な検討はされておらず、目標とする強度、特に降伏強度を得るための適切な成分設計や冷間加工条件については、いずれも、なんら示唆するところがない。   However, although the above-mentioned document discloses that high strength can be achieved by cold working, specific studies have been made on increasing strength by cold working considering the composition of high alloy pipes. There is no suggestion of any suitable component design or cold working conditions for obtaining the target strength, particularly yield strength.

本発明は、このような状況に鑑み、深井戸や過酷な腐食環境で使用される油井管に要求される耐食性だけでなく、目標とする強度をも兼ね備えた高合金管の製造方法を提供することを目的とする。   In view of such circumstances, the present invention provides a method for producing a high alloy pipe having not only the corrosion resistance required for oil well pipes used in deep wells and severe corrosive environments, but also the target strength. For the purpose.

本発明者らは、上記の課題を解決するために、種々の化学組成を有する高合金材について、最終の冷間引抜加工度を種々に変化させて高合金管を製造し、その引張強度を確認する実験を行った結果、次の(a)〜(g)に示す知見を得た。   In order to solve the above-mentioned problems, the present inventors manufactured high alloy pipes for various types of high alloy materials having various chemical compositions by varying the final cold drawing degree, and the tensile strength thereof was changed. As a result of the experiment to confirm, the knowledge shown in the following (a) to (g) was obtained.

(a) 深井戸や過酷な腐食環境で使用される油井に使用される高合金管には、耐食性が要求される。高合金管の基本的な化学組成を、(20〜30%)Cr−(25〜40%)Niとすると、耐食性の観点からはC含有量を下げる必要がある。   (a) Corrosion resistance is required for high alloy pipes used in deep wells and oil wells used in harsh corrosive environments. If the basic chemical composition of the high alloy tube is (20-30%) Cr- (25-40%) Ni, it is necessary to lower the C content from the viewpoint of corrosion resistance.

(b) C含有量を下げると、そのままでは強度が不足することになるが、熱間加工あるいはさらに固溶化熱処理によって形成された高合金素管は、その後の冷間引抜加工により、その強度を向上させることができる。ただし、その際の加工度が断面減少率で40%を超えると、高強度を有するが、加工硬化が発生するため延性や靱性が低下する。また、その際の加工度が断面減少率で10%を下回ると所望の高強度を得ることができない。したがって、冷間引抜加工の際の加工度は断面減少率で10〜40%とする必要がある。   (b) If the C content is lowered, the strength will be insufficient as it is, but the high alloy base tube formed by hot working or further solution heat treatment will have its strength reduced by subsequent cold drawing. Can be improved. However, if the degree of work at that time exceeds 40% in terms of the cross-sectional reduction rate, it has high strength, but because work hardening occurs, ductility and toughness are reduced. Further, if the degree of processing at that time is less than 10% in terms of the cross-sectional reduction rate, a desired high strength cannot be obtained. Therefore, the degree of processing in the cold drawing process needs to be 10 to 40% in terms of the cross-sectional reduction rate.

(c) そして、冷間引抜加工を行う際の加工度Rdが断面減少率で10〜40%の範囲においては、(20〜30%)Cr−(25〜40%)Niを基本的な化学組成とする高合金管では、最終の冷間引抜加工での加工度Rdが大きいほど高い降伏強度YSを得られ、その加工度Rdと降伏強度YSが直線関係で表されることが分かった。   (c) And in the range of 10 to 40% of the cross-section reduction rate when the cold drawing is performed, (20 to 30%) Cr— (25 to 40%) Ni is the basic chemistry. It was found that, in the high alloy pipe having the composition, as the workability Rd in the final cold drawing process increases, a higher yield strength YS can be obtained, and the workability Rd and the yield strength YS are expressed in a linear relationship.

さらに、高合金管の強度にはN含有量の影響が大きく、高N材ほどより高強度の高合金管を得ることができることも分かった。これは、Nをより多く含有させると、Nによる固溶強化がより多く発現されて、強度が向上するためであると考えられる。   Furthermore, it was also found that the N content has a great influence on the strength of the high alloy tube, and that a high alloy tube with higher strength can be obtained with a higher N material. This is considered to be because when more N is contained, more solid solution strengthening due to N is expressed and the strength is improved.

図1は、後述する実施例において用いた種々の化学組成を有する高合金管について、断面減少率での加工度Rd(%)と引張試験で得られた降伏強度YS(MPa)とをプロットしたものである。高N材(N含有量:0.1960質量%)と低N材(N含有量:0.0738〜0.0916質量%)の両方とも、それぞれ、断面減少率での加工度Rdと降伏強度YSが直線関係にあることが示されている。そして、高N材は低N材よりも大きい降伏強度YSが得られることが示されており、N含有量を多くすることによって、より高強度の高合金管を得ることができることが判る。   FIG. 1 plots the workability Rd (%) at the cross-section reduction rate and the yield strength YS (MPa) obtained in the tensile test for the high alloy tubes having various chemical compositions used in the examples described later. Is. Both the high N material (N content: 0.1960% by mass) and the low N material (N content: 0.0738 to 0.0916% by mass) have a workability Rd and a yield strength at the cross-section reduction rate, respectively. YS is shown to be in a linear relationship. And it is shown that the yield strength YS obtained from the high N material is higher than that from the low N material, and it is understood that a higher strength high alloy tube can be obtained by increasing the N content.

(d) 次に、本発明者らは、高合金管の降伏強度が、冷間引抜加工を行う際の加工度Rdと高合金管の化学組成に依存するのであれば、この高合金管の目標とする降伏強度を得るために、管加工条件に関連づけた適切な成分設計手法を確立することが可能となると考えた。すなわち、この高合金管の目標とする降伏強度を得るために、高合金管の化学組成による微調整でなく、冷間引抜加工を行う際の加工度Rdによる微調整が可能となるので、強度レベル毎に合金組成を変更して多種類の高合金を溶製する必要がなくなり、したがって、材料ビレットの在庫を抑制できる。   (d) Next, if the yield strength of a high alloy pipe is dependent on the workability Rd at the time of cold drawing and the chemical composition of the high alloy pipe, In order to obtain the target yield strength, it was considered possible to establish an appropriate component design method related to the pipe processing conditions. That is, in order to obtain the target yield strength of the high alloy pipe, it is possible to make fine adjustment by the working degree Rd when performing the cold drawing process instead of fine adjustment by the chemical composition of the high alloy pipe. It is not necessary to change the alloy composition for each level to melt many kinds of high alloys, and therefore, the stock of material billets can be suppressed.

このように、管加工条件に関連づけた適切な成分設計手法が確立できれば、目標とする強度を有する高合金管を得るために、素材の合金組成をその都度変化させなくても、素材の合金組成を考慮して求められる目標とする冷間引抜加工条件、すなわち、目標とする加工度Rdまたはそれ以上の加工度でもって冷間引抜加工をすればよい。   Thus, if an appropriate component design method related to pipe processing conditions can be established, the alloy composition of the material can be obtained without changing the alloy composition of the material each time in order to obtain a high alloy tube having the target strength. It is only necessary to perform cold drawing with a target cold drawing process condition determined in consideration of the above, that is, with a target degree of processing Rd or higher.

(e) このような着想の下で、高合金管の降伏強度と冷間引抜加工を行う際の加工度Rdと高合金管の化学組成との間の相関関係について、鋭意検討と実験を重ねた結果、(20〜30%)Cr−(25〜40%)Niを基本的な化学組成とする高合金管は、冷間引抜加工を行う際の加工度Rdが断面減少率で10〜40%の範囲においては、降伏強度YS(MPa)は、冷間引抜加工を行う際の加工度Rdと、高合金管の化学組成のうちのCrとMoとNの各成分の含有量に基づいて、次の(2)式に基づいて計算することができることを知見した。
YS=11×(Rd+1.3×Cr+2×Mo+90×N)+83 ・・・・(2)
但し、式中のYSおよびRdはそれぞれ降伏強度(MPa)および断面減少率での加工度(%)を意味し、そして、Cr、MoおよびNはそれぞれの元素の含有量(質量%)を意味する。
(e) Under such an idea, repeated investigations and experiments were conducted on the correlation between the yield strength of a high alloy pipe and the degree of processing Rd during cold drawing and the chemical composition of the high alloy pipe. As a result, in the high alloy tube having a basic chemical composition of (20-30%) Cr- (25-40%) Ni, the degree of work Rd at the time of cold drawing is 10-40 in terms of the cross-sectional reduction rate. In the range of%, the yield strength YS (MPa) is based on the workability Rd when performing cold drawing and the contents of Cr, Mo, and N in the chemical composition of the high alloy tube. It was found that the calculation can be made based on the following equation (2).
YS = 11 × (Rd + 1.3 × Cr + 2 × Mo + 90 × N) +83 (2)
However, YS and Rd in the formulas mean the yield strength (MPa) and the degree of work (%) at the cross-section reduction rate, respectively, and Cr, Mo and N mean the content (% by mass) of each element. To do.

図2は、後述する実施例において用いた種々の高合金管について、化学組成とその断面減少率での加工度Rd(%)を上記(2)式の右辺に代入して得られた値をX軸にとり、そして、実際に引張試験で得られた降伏強度YS(MPa)をY軸にとって、プロットしたものである。(20〜30%)Cr−(25〜40%)Niを基本的な化学組成とする高合金管であれば、(2)式によって、その化学組成とその断面減少率での加工度Rd(%)から降伏強度を精度良く求めることでできることが示されている。   FIG. 2 shows values obtained by substituting the degree of processing Rd (%) at the chemical composition and the reduction rate of the cross section for the various high alloy pipes used in the examples described later into the right side of the above equation (2). The Y-axis is a plot of the yield strength YS (MPa) actually taken in the tensile test on the X-axis. If it is a high alloy pipe having a basic chemical composition of (20-30%) Cr- (25-40%) Ni, the chemical composition and the degree of workability Rd (the cross-sectional reduction rate) according to the equation (2) %) Shows that the yield strength can be obtained accurately.

(f) したがって、目標とする強度を有する高合金管を得るためには、素材の合金成分、すなわち、Cr、MoおよびNの含有量で発現される降伏強度を除いた分を冷間引抜加工によって発現すればよいことになる。そして、目標とする降伏強度MYS(110〜140ksiグレード(最低降伏強度が757.3〜963.8MPa))を得るには、高合金管の化学組成を選定した後、上記(2)式から得られる加工度Rd(%)またはそれ以上の加工度でもって最終の冷間引抜加工をすればよいから、最終の冷間引抜加工工程における断面減少率での加工度Rdが10〜40%の範囲内であってかつ下記(1)式を満足する条件で冷間引抜加工すればよいことになる。
Rd(%)≧(MYS−83)/11−(1.3×Cr+2×Mo+90×N) ・・・・(1)
但し、式中のRdおよびMYSはそれぞれ断面減少率での加工度(%)および目標降伏強度(MPa)を意味し、そして、Cr、MoおよびNはそれぞれの元素の含有量(質量%)を意味する。
(f) Therefore, in order to obtain a high-alloy tube having a target strength, cold drawing is performed on the material excluding the yield strength expressed by the alloy components, that is, the contents of Cr, Mo and N. It should be expressed by. In order to obtain the target yield strength MYS (110 to 140 ksi grade (minimum yield strength is 757.3 to 963.8 MPa)), after selecting the chemical composition of the high alloy tube, the workability obtained from the above equation (2) Since the final cold drawing process may be performed with a working degree of Rd (%) or higher, the working degree Rd at the cross-section reduction rate in the final cold drawing process is within the range of 10 to 40%. In the meantime, it is only necessary to perform cold drawing under conditions satisfying the following expression (1).
Rd (%) ≧ (MYS−83) / 11− (1.3 × Cr + 2 × Mo + 90 × N) (1)
However, Rd and MYS in the formula mean the workability (%) and the target yield strength (MPa) at the cross-section reduction rate, respectively, and Cr, Mo and N are the contents (mass%) of the respective elements. means.

(g) このように、(20〜30%)Cr−(25〜40%)Niを基本的な化学組成とする高合金管について、過度に合金成分を添加することもなく、冷間加工条件を選択することによって目標とする降伏強度を得ることができるので、材料コストの低減を図ることができる。さらに、素材の合金組成に合わせて冷間加工条件を選択することで目標とする強度を有する高合金管を得ることができるため、強度レベル毎に合金組成を変更して多種類の高合金を溶製する必要がなくなり、したがって、材料ビレットの在庫を抑制できる。   (g) As described above, with respect to a high alloy pipe having a basic chemical composition of (20-30%) Cr- (25-40%) Ni, cold working conditions are not added excessively. Since the desired yield strength can be obtained by selecting, the material cost can be reduced. Furthermore, by selecting cold working conditions according to the alloy composition of the material, a high alloy tube having the target strength can be obtained. There is no need to melt, and therefore the stock of material billets can be reduced.

本発明はこのような新たな知見のもとに完成したものであり、その要旨は次に示すとおりである。   The present invention has been completed based on such new knowledge, and the gist thereof is as follows.

質量%で、C:0.03%以下、Si:0.5%以下、Mn:0.3〜1.0%、Ni:25〜40%、Cr:20〜30%、Mo:0〜4%、Cu:0〜3%、N:0.15〜0.30%を含有し、残部がFeおよび不純物からなり、かつ、不純物中のP、SおよびOがそれぞれP:0.03%以下、S:0.03%以下およびO:0.010%以下である化学組成を有する高合金素管を熱間加工によりあるいはさらに固溶化熱処理することにより作製した後、冷間引抜加工によって高合金管を製造する方法であって、最終の冷間引抜加工工程における断面減少率での加工度Rdが10〜40%の範囲内であってかつ下記(1)式を満足する条件で冷間引抜加工することを特徴とする、757.3〜963.8MPaの最低降伏強度を有する高合金管の製造方法。
Rd(%)≧(MYS−83)/11−(1.3×Cr+2×Mo+90×N)・・・・(1)
但し、式中のRdおよびMYSはそれぞれ断面減少率での加工度(%)および目標降伏強度(MPa)を意味し、そして、Cr、MoおよびNはそれぞれの元素の含有量(質量%)を意味する。なお、目標降伏強度とは高合金管の最低降伏強度が757.3〜963.8MPaの範囲内で設定される値のことである。
In mass%, C: 0.03% or less, Si: 0.5% or less, Mn: 0.3-1.0%, Ni: 25-40%, Cr: 20-30%, Mo: 0-4 %, Cu: 0 to 3%, N: 0.15 to 0.30%, the balance is Fe and impurities, and P, S, and O in the impurities are each P: 0.03% or less , S: 0.03% or less and O: 0.010% or less of a high alloy element tube having a chemical composition is produced by hot working or by further solution heat treatment, and then cold drawn to obtain a high alloy. A method of manufacturing a tube, in which the cold drawing is performed under the condition that the working degree Rd at the cross-section reduction rate in the final cold drawing process is within a range of 10 to 40% and the following expression (1) is satisfied. How to make high alloy tubes with minimum yield strength of 757.3 ~ 963.8MPa, characterized by processing Law.
Rd (%) ≧ (MYS−83) / 11− (1.3 × Cr + 2 × Mo + 90 × N) (1)
However, Rd and MYS in the formula mean the workability (%) and the target yield strength (MPa) at the cross-section reduction rate, respectively, and Cr, Mo and N are the contents (mass%) of the respective elements. means. The target yield strength is a value at which the minimum yield strength of the high alloy pipe is set within a range of 757.3 to 963.8 MPa.

本発明によれば、深井戸や過酷な腐食環境で使用される油井管に要求される耐食性だけでなく、目標とする強度をも兼ね備えた高合金管を、過度に合金成分を添加することもなく、冷間加工条件を選択することによって製造することができる。     According to the present invention, not only the corrosion resistance required for oil well pipes used in deep wells and harsh corrosive environments, but also high alloy pipes that have the target strength can be excessively added with alloy components. And can be manufactured by selecting cold working conditions.

次に、本発明に係る高合金管の製造方法において用いる高合金鋼の化学組成の限定理由について述べる。なお、各元素の含有量の「%」は「質量%」を表す。   Next, the reason for limiting the chemical composition of the high alloy steel used in the method for producing a high alloy pipe according to the present invention will be described. In addition, “%” of the content of each element represents “mass%”.

C:0.03%以下
Cは、その含有量が0.03%を超えると結晶粒界にCr炭化物を形成し、粒界での応力腐食割れ感受性が増大する。このため、その上限を0.03%とした。好ましい上限は0.02%である。
C: 0.03% or less When the content of C exceeds 0.03%, Cr carbide is formed at the crystal grain boundary, and the stress corrosion cracking susceptibility at the grain boundary increases. For this reason, the upper limit was made 0.03%. A preferable upper limit is 0.02%.

Si:0.5%以下
Siは、合金の脱酸剤として有効な元素であり、必要に応じて含有させることができる。脱酸剤としての効果は0.05%以上の含有量で得られる。しかしながら、その含有量が0.5%を超えると熱間加工性が低下するため、Si含有量は0.5%以下とした。好ましい範囲は、0.4%以下である。
Si: 0.5% or less Si is an element effective as a deoxidizer for the alloy, and can be contained as necessary. The effect as a deoxidizer is obtained at a content of 0.05% or more. However, when the content exceeds 0.5%, the hot workability decreases, so the Si content is set to 0.5% or less. A preferable range is 0.4% or less.

Mn:0.3〜1.0%
Mnは、上記のSiと同様に、合金の脱酸剤として有効な元素であり、オーステナイト相の安定に有効な元素である。その効果は0.3%以上の含有量で得られる。しかし、その含有量が1.0%を超えると熱間加工性が低下する。このため、Mn含有量は0.3〜1.0%とした。好ましい範囲は、0.4〜0.8%である。
Mn: 0.3 to 1.0%
Mn is an element that is effective as a deoxidizing agent for the alloy, and is an element that is effective for stabilizing the austenite phase. The effect is obtained with a content of 0.3% or more. However, when the content exceeds 1.0%, hot workability is lowered. For this reason, Mn content was made into 0.3 to 1.0%. A preferable range is 0.4 to 0.8%.

Ni:25〜40%
Niは、オーステナイト相を安定させ耐食性を維持するために重要な元素である。しかし、その含有量が25%未満では、合金の外表面にNi硫化物皮膜が十分に生成しないので、Niを含有させる効果が得られない。一方、40%を超えて含有させてもその効果は飽和し、合金の価格上昇を招いて経済性を損なうことになる。したがって、Ni含有量は25〜40%とした。好ましい範囲は29〜37%である。
Ni: 25-40%
Ni is an important element for stabilizing the austenite phase and maintaining the corrosion resistance. However, if the content is less than 25%, the Ni sulfide film is not sufficiently formed on the outer surface of the alloy, so that the effect of containing Ni cannot be obtained. On the other hand, even if the content exceeds 40%, the effect is saturated, resulting in an increase in the price of the alloy and impairing the economy. Therefore, the Ni content is set to 25 to 40%. A preferred range is 29-37%.

Cr:20〜30%
Crは、Niとの共存下で耐応力腐食割れ性に代表される耐硫化水素腐食性を向上させ、固溶強化により高強度化を図るのに有効な成分である。しかし、その含有量が20%未満ではその効果が得られない。一方、その含有量が30%を超えるとその効果は飽和し、熱間加工性の観点からも好ましくない。したがってCr含有量は20〜30%とした。好ましい範囲は23〜27%である。
Cr: 20-30%
Cr is an effective component for improving the hydrogen sulfide corrosion resistance represented by stress corrosion cracking resistance in the coexistence with Ni and increasing the strength by solid solution strengthening. However, if the content is less than 20%, the effect cannot be obtained. On the other hand, when the content exceeds 30%, the effect is saturated, which is not preferable from the viewpoint of hot workability. Therefore, the Cr content is 20-30%. A preferred range is 23-27%.

Mo:0〜4%(無添加も含む)
Moは、Ni及びCrとの共存下において、耐応力腐食割れ性を改善させる作用を有するとともに固溶強化により強度向上に寄与するのに有効な成分であるので、必要に応じて含有させることができる。この効果を得たい場合には、0.01%以上含有させるのが好ましい。一方、その含有量が4%以上ではその効果は飽和し、過度の含有は熱間加工性を低下させる。このため、Mo含有量は0.01〜4%とするのが好ましい。より優れた耐応力腐食割れ性を得るには下限を1.5%とするのが好ましい。
Mo: 0 to 4% (including no additive)
Mo is an effective component for improving the strength by solid solution strengthening and has the effect of improving the stress corrosion cracking resistance in the coexistence with Ni and Cr. it can. When it is desired to obtain this effect, the content is preferably 0.01% or more. On the other hand, when the content is 4% or more, the effect is saturated, and excessive content decreases hot workability. For this reason, it is preferable to make Mo content into 0.01 to 4%. In order to obtain better stress corrosion cracking resistance, the lower limit is preferably 1.5%.

Cu:0〜3%(無添加も含む)
Cuは、硫化水素環境下での耐硫化水素腐食性を著しく向上させる作用があり、必要に応じて含有させることができる。この効果を得たい場合には、0.1%以上含有させるのが好ましい。しかし、含有量が3%を超えるとその効果は飽和し、逆に熱間加工性が低下する。このため、Cuを含有させる場合には、その含有量は0.1〜3%とするのが好ましい。より好ましくは0.5〜2%である。
Cu: 0 to 3% (including no additive)
Cu has the effect of remarkably improving the resistance to hydrogen sulfide corrosion under a hydrogen sulfide environment, and can be contained as required. When it is desired to obtain this effect, the content is preferably 0.1% or more. However, if the content exceeds 3%, the effect is saturated, and conversely the hot workability is lowered. For this reason, when Cu is contained, the content is preferably 0.1 to 3%. More preferably, it is 0.5 to 2%.

N:0.05〜0.30%
本発明の高合金は、耐食性の観点からC含有量を下げる必要がある。そのため、Nを積極的に含有させて、耐食性を劣化させることなく、固溶強化により高強度化を図る。また、Nを積極的に含有させることによって、固溶化熱処理後においてより高強度な高合金管を得ることができる。それにより、冷間加工を行う際の加工度(断面減少率)をむやみに高めることなく低加工度でも所望とする強度を確保できるため、高加工度による延性低下を抑制することができる。その効果を得るには0.05%以上の含有が必要である。一方、0.30%を超えると熱間加工性が低下する。そのため、N含有量は0.05〜0.30%以下とした。好ましい範囲は0.06〜0.22%である。なお、より高強度を得たい場合は、N含有量を0.15%以上とするのが好ましい。
N: 0.05-0.30%
The high alloy of the present invention needs to lower the C content from the viewpoint of corrosion resistance. Therefore, N is positively contained, and the strength is increased by solid solution strengthening without deteriorating the corrosion resistance. Further, by positively containing N, a high alloy pipe having higher strength can be obtained after the solution heat treatment. Thereby, since the desired strength can be ensured even at a low workability without unnecessarily increasing the workability (cross-sectional reduction rate) at the time of cold working, a decrease in ductility due to the high workability can be suppressed. In order to acquire the effect, 0.05% or more must be contained. On the other hand, when it exceeds 0.30%, hot workability will fall. Therefore, the N content is set to 0.05 to 0.30% or less. A preferable range is 0.06 to 0.22%. In order to obtain higher strength, the N content is preferably 0.15% or more.

さらに、不純物として含有される、P,S,Oは下記の理由により、P:0.03%以下、S:0.03%以下、O:0.010%以下に制限するのが好ましい。   Furthermore, P, S, and O contained as impurities are preferably limited to P: 0.03% or less, S: 0.03% or less, and O: 0.010% or less for the following reasons.

P:0.03%以下
Pは、不純物として含有されるが、その含有量が0.03%を超えると硫化水素環境での応力腐食割れ感受性が増大する。このため、その上限を0.03%以下とするのが好ましい。さらに好ましい上限は0.025%である。
P: 0.03% or less P is contained as an impurity. When the content exceeds 0.03%, the sensitivity to stress corrosion cracking in a hydrogen sulfide environment increases. For this reason, it is preferable to make the upper limit into 0.03% or less. A more preferred upper limit is 0.025%.

S:0.03%以下
Sは、上記のPと同様に、不純物として含有されるが、その含有量が0.03%を超えると熱間加工性が著しく低下する。このため、その上限値を0.03%とするのが好ましい。さらに好ましい上限は0.005%である。
S: 0.03% or less S is contained as an impurity in the same manner as P described above, but when its content exceeds 0.03%, hot workability is significantly reduced. For this reason, it is preferable that the upper limit is 0.03%. A more preferred upper limit is 0.005%.

O:0.010%以下
本発明ではN含有量を0.05%〜0.3%以下と多量に含有させるため、熱間加工性が劣化し易い。Oの含有量が0.010%を超えると熱間加工性を劣化させる。そのため、O含有量は0.010%以下とするのが好ましい。
O: 0.010% or less In the present invention, since the N content is contained in a large amount of 0.05% to 0.3% or less, hot workability is likely to deteriorate. When the content of O exceeds 0.010%, hot workability is deteriorated. Therefore, the O content is preferably 0.010% or less.

本発明の高合金管は、上記の必須元素あるいはさらに上記の任意元素を含有し、残部がFeおよび不純物からなるものであり、通常商業的な生産に用いられている製造設備および製造方法によって製造することができる。例えば、合金の溶製は、電気炉、Ar−O混合ガス底吹き脱炭炉(AOD炉)や真空脱炭炉(VOD炉)などを利用することができる。溶製された溶湯は、インゴットに鋳造してもよいし、連続鋳造法で棒状のビレットなどに鋳造してもよい。これらのビレットを用いて、ユジーンセジュルネ法などの押し出し製管法またはマンネスマン製管法などの熱間加工によって、高合金の冷間加工用素管を製造することができる。そして、熱間加工後の素管は、冷間引抜などの冷間加工により所望の強度を有する製品管とする The high alloy pipe of the present invention contains the above-mentioned essential elements or further any of the above-mentioned optional elements, the balance is made of Fe and impurities, and is manufactured by a manufacturing facility and a manufacturing method that are usually used for commercial production. can do. For example, for melting the alloy, an electric furnace, an Ar—O 2 mixed gas bottom blowing decarburization furnace (AOD furnace), a vacuum decarburization furnace (VOD furnace), or the like can be used. The molten metal may be cast into an ingot, or may be cast into a rod-shaped billet by a continuous casting method. By using these billets, a high-alloy cold work blank can be manufactured by hot working such as an extrusion pipe making method such as the Eugene Sejurne method or a Mannesmann pipe making method. The base tube after hot working is a product tube having a desired strength by cold working such as cold drawing.

また、本発明では、最終の冷間加工の際の加工度を規定しており、熱間加工で得た冷間加工用素管を、必要により固溶化熱処理を行った後、管表面のスケール除去のデスケーリングを行い、1回の冷間加工で所望の強度を有する高合金管を製造してもよいし、最終の冷間加工の前に1回または複数回の途中の冷間加工を行って固溶化熱処理を行い、デスケーリング後に最終の冷間加工を行ってもよい。途中に冷間加工を行うことで、最終の冷間引抜加工での加工度を調整しやすいと同時に、熱間加工のままで冷間加工を行う場合と比べて、最終の冷間加工でより精度の高い管寸法を有する管を得ることができる。   Further, in the present invention, the degree of work at the time of the final cold working is defined, and the raw tube for cold working obtained by hot working is subjected to solution heat treatment if necessary, and then the scale of the pipe surface is measured. The descaling of removal may be performed to produce a high alloy tube having a desired strength by one cold working, or one or more intermediate cold workings may be performed before the final cold working. And a solution heat treatment may be performed, and the final cold working may be performed after descaling. By performing cold work in the middle, it is easy to adjust the degree of work in the final cold drawing process, and at the same time, it is more effective in the final cold work than in the case of cold work with hot work A tube having a highly accurate tube size can be obtained.

まず、表1に示す化学組成を有する合金を、電気炉で溶解し、目標の化学組成にほぼ成分調整した後、AOD炉を用いて脱炭および脱硫処理を行う方法で溶製した。得られた溶湯は、重さ1500kg、直径500mmのインゴットに鋳造した。そして、長さ1000mmに切断して押し出し製管用ビレットを得た。次に、このビレットを用いてユジーンセジュルネ法による熱間押出製管法で冷間加工用素管に成形した。   First, an alloy having a chemical composition shown in Table 1 was melted in an electric furnace, adjusted to a target chemical composition, and then melted by a method of decarburization and desulfurization using an AOD furnace. The obtained molten metal was cast into an ingot having a weight of 1500 kg and a diameter of 500 mm. And it cut | disconnected to length 1000mm and obtained the billet for extrusion pipe making. Next, the billet was formed into a cold-working raw tube by a hot extrusion pipe manufacturing method based on the Eugene Sejurnee method.

Figure 0005217277
Figure 0005217277

得られた冷間加工用素管を途中抽伸した後、1100℃で2分以上保持後に水冷する条件の溶体化熱処理を施した後、さらに、断面減少率での加工度Rd(%)を表2に示すとおり、種々変更して、プラグとダイスを用いた引抜法による最終の冷間加工を行って、高合金を得た。なお、冷間引抜加工を行う前には、管に対してショットブラストを行い、表面のスケールを除去しておいた。最終冷間加工の前後の管寸法(外径mm×肉厚mm)を表2に示す。   The obtained cold-working raw tube was drawn on the way, and then subjected to a solution heat treatment under the condition that it was kept at 1100 ° C. for 2 minutes or more and then water-cooled. As shown in FIG. 2, various changes were made, and a final cold working was performed by a drawing method using a plug and a die to obtain a high alloy. Prior to cold drawing, the tube was shot blasted to remove the surface scale. Table 2 shows the tube dimensions (outer diameter mm × thickness mm) before and after the final cold working.

Figure 0005217277
Figure 0005217277

その後、得られた高合金管から、管軸方向の弧状引張試験片を採取し、引張試験を行った。その結果の実測値を、引張試験での降伏強度(0.2%耐力)YS(Mpa)および引張強度TS(MPa)を、(2)式の右辺の数値とともに表2に示す。   Thereafter, an arc-shaped tensile test piece in the tube axis direction was taken from the obtained high alloy tube, and a tensile test was performed. The measured values of the results are shown in Table 2 with the yield strength (0.2% yield strength) YS (Mpa) and tensile strength TS (MPa) in the tensile test, together with the numerical value on the right side of equation (2).

以上のとおりであるから、本発明によれば、深井戸や過酷な腐食環境で使用される油井管に要求される耐食性だけでなく、目標とする強度をも兼ね備えた高合金管を、過度に合金成分を添加することもなく、冷間加工条件を選択することによって製造することができる。   As described above, according to the present invention, not only the corrosion resistance required for oil well pipes used in deep wells and harsh corrosive environments, but also high alloy pipes having the target strength, It can be manufactured by selecting cold working conditions without adding alloy components.

高合金管について、断面減少率での加工度Rd(%)と引張試験で得られた降伏強度YS(MPa)とをプロットしたものである。For high alloy pipes, the degree of work Rd (%) at the cross-section reduction rate and the yield strength YS (MPa) obtained by the tensile test are plotted. 高合金管について、その化学組成と断面減少率での加工度Rd(%)を上記(2)式の右辺に代入して得られた値をX軸にとり、そして、引張試験で得られた降伏強度YS(MPa)をY軸にとって、プロットしたものである。For high alloy pipes, the value obtained by substituting the degree of processing Rd (%) at the chemical composition and the rate of reduction of the cross section for the right side of the above equation (2) is taken on the X axis, and the yield obtained by the tensile test The strength YS (MPa) is plotted on the Y axis.

Claims (1)

質量%で、C:0.03%以下、Si:0.5%以下、Mn:0.3〜1.0%、Ni:25〜40%、Cr:20〜30%、Mo:0〜4%、Cu:0〜3%、N:0.15〜0.30%を含有し、残部がFeおよび不純物からなり、かつ、不純物中のP、SおよびOがそれぞれP:0.03%以下、S:0.03%以下およびO:0.010%以下である化学組成を有する高合金素管を熱間加工によりあるいはさらに固溶化熱処理することにより作製した後、冷間引抜加工によって高合金管を製造する方法であって、最終の冷間引抜加工工程における断面減少率での加工度Rdが10〜40%の範囲内であってかつ下記(1)式を満足する条件で冷間引抜加工することを特徴とする、757.3〜963.8MPaの最低降伏強度を有する高合金管の製造方法。
Rd(%)≧(MYS−83)/11−(1.3×Cr+2×Mo+90×N)・・・・(1)
但し、式中のRdおよびMYSはそれぞれ断面減少率での加工度(%)および目標降伏強度(MPa)を意味し、そして、Cr、MoおよびNはそれぞれの元素の含有量(質量%)を意味する。なお、目標降伏強度とは高合金管の最低降伏強度が757.3〜963.8MPaの範囲内で設定される値のことである。
In mass%, C: 0.03% or less, Si: 0.5% or less, Mn: 0.3-1.0%, Ni: 25-40%, Cr: 20-30%, Mo: 0-4 %, Cu: 0 to 3%, N: 0.15 to 0.30%, the balance is Fe and impurities, and P, S, and O in the impurities are each P: 0.03% or less , S: 0.03% or less and O: 0.010% or less of a high alloy element tube having a chemical composition is produced by hot working or by further solution heat treatment, and then cold drawn to obtain a high alloy. A method of manufacturing a tube, in which the cold drawing is performed under the condition that the working degree Rd at the cross-section reduction rate in the final cold drawing process is within a range of 10 to 40% and the following expression (1) is satisfied. How to make high alloy tubes with minimum yield strength of 757.3 ~ 963.8MPa, characterized by processing Law.
Rd (%) ≧ (MYS−83) / 11− (1.3 × Cr + 2 × Mo + 90 × N) (1)
However, Rd and MYS in the formula mean the workability (%) and the target yield strength (MPa) at the cross-section reduction rate, respectively, and Cr, Mo and N are the contents (mass%) of the respective elements. means. The target yield strength is a value at which the minimum yield strength of the high alloy pipe is set within a range of 757.3 to 963.8 MPa.
JP2007189540A 2007-07-20 2007-07-20 Manufacturing method of high alloy pipe Active JP5217277B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007189540A JP5217277B2 (en) 2007-07-20 2007-07-20 Manufacturing method of high alloy pipe
PCT/JP2008/062332 WO2009014000A1 (en) 2007-07-20 2008-07-08 Process for production of high alloy steel tubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007189540A JP5217277B2 (en) 2007-07-20 2007-07-20 Manufacturing method of high alloy pipe

Publications (2)

Publication Number Publication Date
JP2009024231A JP2009024231A (en) 2009-02-05
JP5217277B2 true JP5217277B2 (en) 2013-06-19

Family

ID=40281258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007189540A Active JP5217277B2 (en) 2007-07-20 2007-07-20 Manufacturing method of high alloy pipe

Country Status (2)

Country Link
JP (1) JP5217277B2 (en)
WO (1) WO2009014000A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5211841B2 (en) * 2007-07-20 2013-06-12 新日鐵住金株式会社 Manufacturing method of duplex stainless steel pipe
US9005591B2 (en) * 2008-05-16 2015-04-14 Avon Products, Inc. Compositions for imparting hydrophobicity and water repellency to hair
JP4462452B1 (en) * 2008-12-18 2010-05-12 住友金属工業株式会社 Manufacturing method of high alloy pipe
US10253382B2 (en) * 2012-06-11 2019-04-09 Huntington Alloys Corporation High-strength corrosion-resistant tubing for oil and gas completion and drilling applications, and process for manufacturing thereof
JP5768950B1 (en) * 2014-02-07 2015-08-26 新日鐵住金株式会社 Oil well high alloy
KR102583353B1 (en) 2015-12-30 2023-09-26 산드빅 인터렉츄얼 프로퍼티 에이비 Method for manufacturing austenitic stainless steel tube
ES2890331T3 (en) * 2015-12-30 2022-01-18 Sandvik Intellectual Property A production process of a duplex stainless steel tube
CN110777247A (en) * 2019-10-31 2020-02-11 浙江国邦钢业有限公司 NS1403 iron-nickel base alloy corrosion-resistant seamless pipe and preparation process thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5948932B2 (en) * 1976-12-09 1984-11-29 株式会社クボタ Drawing method for high Ni-Cr centrifugally cast steel pipes
JPS57203736A (en) * 1981-06-10 1982-12-14 Sumitomo Metal Ind Ltd Alloy of high stress corrosion cracking resistance for high-strength oil well pipe
JPS586927A (en) * 1981-07-03 1983-01-14 Sumitomo Metal Ind Ltd Production of high-strength oil well pipe of high stress corrosion cracking resistance
JPS589922A (en) * 1981-07-10 1983-01-20 Sumitomo Metal Ind Ltd Production of high strength oil well pipe of high stress corrosion cracking resistance
US4456371A (en) * 1982-06-30 1984-06-26 International Business Machines Corporation Optical projection printing threshold leveling arrangement
JPS6383248A (en) * 1986-09-25 1988-04-13 Nkk Corp High-ni alloy for pipe of oil well having superior resistance to stress corrosion cracking and its manufacture
JP3650951B2 (en) * 1998-04-24 2005-05-25 住友金属工業株式会社 Seamless steel pipe for oil wells with excellent stress corrosion cracking resistance
JP2002212634A (en) * 2000-11-17 2002-07-31 Nippon Steel Corp Method for producing austenitic heat resistant steel tue having excellent creep rupture strength
JP5211841B2 (en) * 2007-07-20 2013-06-12 新日鐵住金株式会社 Manufacturing method of duplex stainless steel pipe

Also Published As

Publication number Publication date
JP2009024231A (en) 2009-02-05
WO2009014000A1 (en) 2009-01-29

Similar Documents

Publication Publication Date Title
JP5211841B2 (en) Manufacturing method of duplex stainless steel pipe
WO2010082395A1 (en) Process for production of duplex stainless steel pipe
JP6264521B1 (en) Steel bar for downhole member and downhole member
JP5217277B2 (en) Manufacturing method of high alloy pipe
JP4462452B1 (en) Manufacturing method of high alloy pipe
JP5124857B2 (en) Martensitic stainless steel
JP5176561B2 (en) Manufacturing method of high alloy pipe
US20120031534A1 (en) METHOD FOR PRODUCING HIGH-STRENGTH Cr-Ni ALLOY SEAMLESS PIPE
JP2009007658A (en) Martensitic stainless seamless steel pipe for oil well pipe, and method for producing the same
JP5915818B2 (en) Seamless steel pipe for line pipe used in sour environment
JP5170351B1 (en) Duplex stainless steel
JP4337712B2 (en) Martensitic stainless steel
US10280487B2 (en) High alloy for oil well
WO2012086179A1 (en) PRODUCTION METHOD FOR ROUND STEEL BAR FOR SEAMLESS PIPE COMPRISING HIGH Cr-Ni ALLOY, AND PRODUCTION METHOD FOR SEAMLESS PIPE USING ROUND STEEL BAR
JP4462454B1 (en) Manufacturing method of duplex stainless steel pipe
JP5246280B2 (en) Steel sheet for high strength steel pipe and high strength steel pipe
KR20170121267A (en) Hot rolled bar stock, manufacturing method of parts and hot rolled bar stock
CN114502757B (en) Alloy material and seamless pipe for oil well
JP5890342B2 (en) Duplex stainless steel and duplex stainless steel pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130108

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5217277

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350