JPS586927A - Production of high-strength oil well pipe of high stress corrosion cracking resistance - Google Patents

Production of high-strength oil well pipe of high stress corrosion cracking resistance

Info

Publication number
JPS586927A
JPS586927A JP10411181A JP10411181A JPS586927A JP S586927 A JPS586927 A JP S586927A JP 10411181 A JP10411181 A JP 10411181A JP 10411181 A JP10411181 A JP 10411181A JP S586927 A JPS586927 A JP S586927A
Authority
JP
Japan
Prior art keywords
less
temperature
thickness reduction
wall thickness
reduction rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10411181A
Other languages
Japanese (ja)
Other versions
JPS6362569B2 (en
Inventor
Yasutaka Okada
康孝 岡田
Kunihiko Yoshikawa
吉川 州彦
Yasuo Otani
大谷 泰夫
Takeo Kudo
赳夫 工藤
Akio Ikeda
昭夫 池田
Daiji Moroishi
諸石 大司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP10411181A priority Critical patent/JPS586927A/en
Priority to US06/389,568 priority patent/US4421571A/en
Priority to GB08217860A priority patent/GB2104100B/en
Priority to DE3224865A priority patent/DE3224865C2/en
Priority to SE8204121A priority patent/SE461986C/en
Priority to FR8211645A priority patent/FR2508930A1/en
Publication of JPS586927A publication Critical patent/JPS586927A/en
Publication of JPS6362569B2 publication Critical patent/JPS6362569B2/ja
Priority to SE8901647A priority patent/SE502102C2/en
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce titled oil well pipes by hot working and alloy contg. >=1 kind of Mo and W, as well as Ni and Cr and consisting of the balance Fe and holding this at specific temps. then cold woking the same. CONSTITUTION:The alloy which contains, by weight %, <=0.05% C, <=1.0% Si, <=2.0% Mn, <=0.030% P, <=0.005% S, <=0.5% sol.Al, 35-60% Ni, 22.5-35% Cr, contains >=1 kind of <4% Mo and <8% W, and, if necessary, contains >=1 kind of <=2% Cu and <=2% Co, further contains <=0.10% rare earth elements, <=0.20% Y, <=0.10% Mg, >=1 kind of <=0.5% Ti and <=0.10% Ca or both and consisting of the balance substantially Fe and which satisfies the equationsI, II is subjected to the following treatments: It is hot-worked under the conditions wherein the thickness reduction rate at temps. lower than the recrystallization temp. is kept at >=10%, then it is heat-treated under the conditions of holding it for <=2hr at the temps. between the lower limit and upper limit temps. deg.C calculated by the equations III, IV, after which it is cooled worked at 10-60% thickness reduction ratios.

Description

【発明の詳細な説明】 この発明は、優れた耐応力腐食割れ性を有する高強度油
井管の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing high-strength oil country tubular goods having excellent stress corrosion cracking resistance.

近年、エネルギー事情の悪化から、油井および天然ガス
井は深井戸化の傾向が著しく、深さ26000m以上、
なかには深さ:10,000m以上の深井戸が出現して
いる。
In recent years, due to the deterioration of the energy situation, there has been a marked tendency for oil and natural gas wells to become deeper;
Some deep wells with a depth of 10,000 m or more have appeared.

また、同様な事情から、湿潤な硫化水素をはじめ、炭酸
ガスや塩素イオンなどの腐食性成分を含有する苛酷な腐
食環境下での石油および天然ガスの採掘が予儀なくされ
つつある。
Furthermore, due to similar circumstances, it is becoming increasingly difficult to extract oil and natural gas in a harsh corrosive environment containing humid hydrogen sulfide, as well as corrosive components such as carbon dioxide gas and chloride ions.

このような厳しい環境下での石油および天然ガスの掘削
に伴い、これに使用される油井管にも高強度、並びに優
れた耐食性、特に耐応力腐食割れ性が要求されるように
なってきている。
As oil and natural gas are drilled in such harsh environments, the oil country tubular goods used therein are required to have high strength and excellent corrosion resistance, especially resistance to stress corrosion cracking. .

油井管の一般的腐食対策として、インヒビタと呼ばれる
腐食抑制剤を投入する方法が知られているが、この方法
は、例えば海上油井などには有効に活用できない場合が
多い。
As a general anti-corrosion measure for oil country tubular goods, it is known to introduce a corrosion suppressant called an inhibitor, but this method is often not effective for use in, for example, offshore oil wells.

かかる点から、最近では油井管の製造に、ステンレス鋼
ハシメ、インコロイやハステロイ(いずれも商品名)と
いった高級な耐食性高合金鋼の採用も検討されはじめて
いるが、いまのところ、これらの合金に関して、H2S
−CO2−C1″′の油井環境での腐食挙動についての
詳細は十分に解明されるに至っておらず、しかも深井戸
用油井管に要求される高強度をもつものではないのが現
状である。
From this point of view, consideration has recently begun to be given to the use of high-grade corrosion-resistant high-alloy steels such as stainless steel hashing, Incoloy, and Hastelloy (all trade names) for the production of oil country tubular goods, but so far, there are no reports regarding these alloys. H2S
The details of the corrosion behavior of -CO2-C1'' in an oil well environment have not yet been fully elucidated, and at present it does not have the high strength required for oil country tubular goods for deep wells.

そこで、本発明者等は、上述のような観点から、深井戸
や苛酷な腐食環境、特にI(2s −ca2− ct−
の油井環境下での石油掘削に十分耐え得る高強度とすぐ
れた耐応力腐食割れ性とを有する油井管を製造すべく研
究を行なった結果、 (a)  H2S−C02−CL″′環境下における腐
食の主たるものは応力腐食割れであるが、この場合の応
力腐食割れ態様は、オーステナイトステンレス鋼におけ
る一般的なそれとは挙動を全く異にするものであること
。すなわち、一般の応力腐食割れがCr7の存在と深く
係わるものであるのに対して、上記の油井環境によるも
のではCt−もさることながら、それ以上にH2Sの影
響が大きいこと。
Therefore, from the above-mentioned viewpoint, the present inventors investigated deep wells and severe corrosive environments, especially I(2s -ca2- ct-
As a result of conducting research to manufacture oil country tubular goods with high strength and excellent stress corrosion cracking resistance that can sufficiently withstand oil drilling in the oil well environment of (a) H2S-C02-CL'' The main type of corrosion is stress corrosion cracking, but the behavior of stress corrosion cracking in this case is completely different from that of general austenitic stainless steel.In other words, general stress corrosion cracking is Cr7 On the other hand, in the oil well environment mentioned above, the influence of H2S is greater than that of Ct-.

(b)  油井管として実用に供される鋼管は一般に、
強度上の必要から冷間加工が施されるが、冷間加工は上
記応力腐食割れに対する抵抗性を著しく減少させること
(b) Steel pipes used for practical use as oil country tubular goods are generally:
Cold working is performed to improve strength, but cold working significantly reduces the resistance to stress corrosion cracking.

(c)  H2S −CO2−C1−環境での鋼の溶出
速度(腐食速度)は+ cr、 Ni 、 Mo、およ
びWの含有量に依存し、これらの成分からなる表面皮膜
によって耐食性が保持され、かつこれらの成分は、応力
腐食割れに対してもその抵抗性を高め、特にMoはCr
に対し10倍の効果を、またMoはWの2倍の効果をも
っておシ、したがって、このMoおよびWが、Cr(@
+10Mo(%1l−175W(%)≧50%。
(c) The elution rate (corrosion rate) of steel in a H2S-CO2-C1- environment depends on the contents of +cr, Ni, Mo, and W, and the corrosion resistance is maintained by the surface film made of these components. These components also increase the resistance to stress corrosion cracking, and in particular, Mo is more resistant than Cr.
Mo is 10 times more effective than W, and Mo is twice as effective as W.
+10Mo(%1l-175W(%)≧50%.

165%≦Mo(# + + W (%) < ’%。165%≦Mo(# + + W (%) <’%.

の条件式を満足すると共に、Ni含有量を35〜60%
、 Or含有量を22.5〜35チとすると、冷間、加
工材であっても、きわめて腐食性の強いH2S−Co2
−Ct−の油井環境下、特に150℃以下の悪環境にお
いて、応力腐食割れに対して優れた抵抗性を示す表面皮
膜が得られること。
While satisfying the conditional expression, the Ni content should be 35 to 60%.
, If the Or content is 22.5 to 35 inches, H2S-Co2, which is extremely corrosive, can be used even in cold processed materials.
A surface film exhibiting excellent resistance to stress corrosion cracking in -Ct- oil well environments, particularly in adverse environments of 150° C. or lower, can be obtained.

(a)  Niについては表面皮膜に対する効果だけで
なく、組織的にも応力腐食割れ抵抗性を高める効果があ
ること。
(a) Ni has the effect of increasing stress corrosion cracking resistance not only on the surface film but also on the structure.

(e)  合金成分としてNを0.05〜0,3%の範
囲で含有させると一段と管材強度が向上するようになる
こと。
(e) When N is contained as an alloy component in the range of 0.05 to 0.3%, the strength of the tube material is further improved.

(f)  不可避不純物としてのS含有量をO,O’O
C)’i’チ以下に低減させると、管材の熱間加工性が
著しく改善されるようになること。
(f) S content as an unavoidable impurity is O, O'O
C) If it is reduced to 'i' or less, the hot workability of the tube material will be significantly improved.

(g)  不可避不純物としてのP含有量を0.003
%以下に低減させると、水素割れ感受性が著しく低下す
るようになること。
(g) P content as an unavoidable impurity is 0.003
% or less, hydrogen cracking susceptibility significantly decreases.

(h)  合金成分としてCu:2%以下およびCo:
2チ以下のうちの1種または2種を含有させると、耐食
性がさらに改善されるようになること。
(h) Cu: 2% or less and Co: as alloy components
Corrosion resistance can be further improved by containing one or two of the following.

(1)合金成分として、希土類元素:0.10%以下、
y:o、20%以下、 Mg: 0.10%以下、T1
:。、5%yT、およica: 0.10 %U’T。
(1) Rare earth elements: 0.10% or less as alloy components;
y: o, 20% or less, Mg: 0.10% or less, T1
:. , 5%yT, and ica: 0.10%U'T.

’) ’C) (7) 1 ””  j’種または2種
以上を含有させると、熱間加工性がさらに一段と改善さ
れるようになること。
') 'C) (7) 1 ``'' When the j' type or two or more types are contained, the hot workability is further improved.

(J)シかし、所望の高強度を確保するためには、上記
組成の合金に、まず、望ましくは1050〜1250℃
の温度範囲内の温度に加熱して金属間化合物や炭化物を
完全に固溶した状態で、再結晶温度以下での肉厚減少率
が10チ以上の条件で熱間加工を施し、この熱間加工は
後工程の熱処理で微細な再結晶粒を形成し、もって高強
度と良好な延性を確保するためのものであシ、ついで経
験式: zsologc(%−41−13ooで算出さ
れた下限温度(財)と、同じく経験式: 16Mo(@
−)−10w(@+10Cr(@+777で算出された
上限温度(6)の間の温度に2時間以下保持の条件で熱
処理を施して、上記のように微細な再結晶粒を・形成し
、この場合耐食性を劣化させる未固溶の炭化物が存在す
れば、これが固溶されるものであシ、最終的に上記熱処
理後の管材に10〜60%の肉厚減少率で冷間加工を施
して、これを加工強化する必要があること。
(J) In order to ensure the desired high strength, the alloy having the above composition should be heated at a temperature of preferably 1050 to 1250°C.
After heating to a temperature within the temperature range of The processing is to form fine recrystallized grains in the post-process heat treatment, thereby ensuring high strength and good ductility. (Foundation) and the same empirical formula: 16Mo (@
-) -10w(@+10Cr(@+777) Heat treatment is performed under the condition of holding for 2 hours or less at a temperature between the upper limit temperature (6) calculated by @+777 to form fine recrystallized grains as described above, In this case, if there is undissolved carbide that degrades corrosion resistance, it will be dissolved, and the pipe material after the above heat treatment is finally subjected to cold working at a wall thickness reduction rate of 10 to 60%. Therefore, it is necessary to strengthen the processing.

以上(a)〜0)に示される知見を得たのである。The findings shown in (a) to 0) above were obtained.

したがって、この発明は上記知見にもとづいてなされた
ものであって、(:’:0.05%以下、S1:10 
%以下、 Mn; 2.0%以下、p : 0.030
%以下。
Therefore, this invention was made based on the above knowledge, and (:': 0.05% or less, S1: 10
% or less, Mn; 2.0% or less, p: 0.030
%below.

望ましくは耐水素割れ性を一段と改善する目的でp:o
、003%以下、S :0.005%以下、望マシくは
熱間加工性を一段と改善する目的でS :O,OOO’
7チ以下、 sot、All! : 015%以下、N
i:35〜60%。
Preferably p:o for the purpose of further improving hydrogen cracking resistance.
, 003% or less, S: 0.005% or less, preferably S: O, OOO' for the purpose of further improving hot workability.
7 inches or less, sot, All! : 015% or less, N
i: 35-60%.

Cr: 22.5〜35%を含有し、M(、:4%未満
およびW:8%未満のうちの1種または2種を含有し、
さらに必要に応じて、N : 0,05〜0.3%、C
u:2%以下、 CQ: 2チ以下、希土類元素:O,
lOチ以下、Y:0.20チ以下、 Mg: 0.10
%以下、Ti=0.5%以下、゛およびCa:0.10
%以下のうちの1種または2種以上を含有し、残シがF
eと不可避不純物からなる組成(以上重量%、以下饅の
表示はすべて重量%を意味する)を有し、かつ、Cr 
(%) + 10 Mo (%) + 5 W (%)
≧50%。
Contains 22.5 to 35% of Cr, and one or two of M(,: less than 4% and W: less than 8%,
Furthermore, if necessary, N: 0.05-0.3%, C
u: 2% or less, CQ: 2% or less, rare earth element: O,
10 or less, Y: 0.20 or less, Mg: 0.10
% or less, Ti = 0.5% or less, ゛ and Ca: 0.10
% or less, and the remainder is F.
It has a composition consisting of e and unavoidable impurities (the above weight %, below all indications of 饅 means weight %), and Cr
(%) + 10 Mo (%) + 5 W (%)
≧50%.

1.5%≦MoC%)++W℃)〈4%。1.5%≦MoC%)++W℃)〈4%.

の条件を満足する合金を、再結晶温度以下での肉厚減少
率を10%以上とした条件で熱間加工し、ついで26 
ol、gc (@−1−1300で算出された下限温度
(ト)と、l 6Mo(%)+ 10 W (%)+ 
l 0Cr(%9 +77’7で算出された上限温度(
6)の間の温度に、2時間以下保持の条件で熱処理した
後、10〜60チの肉厚減少率で冷間加工することによ
って、耐応力腐食割れ性に優れた高強度油井管を製造す
る方法に特徴を有するものである。
An alloy that satisfies the conditions is hot worked under conditions where the wall thickness reduction rate below the recrystallization temperature is 10% or more, and then 26
ol, gc (lower limit temperature (g) calculated by @-1-1300 and l 6Mo (%) + 10 W (%) +
l 0Cr(%9 +77'7 upper limit temperature calculated
After heat treatment at a temperature between 6) for 2 hours or less, cold working at a wall thickness reduction rate of 10 to 60 inches produces high-strength oil country tubular goods with excellent stress corrosion cracking resistance. This method is unique in its method.

つぎに、この発明の油井管の製造法において、成分組成
、熱処理条件、熱間加工および冷間加工における肉厚減
少率を上記の過多に限定した理由を以下に説明する。
Next, in the method for manufacturing oil country tubular goods of the present invention, the reason why the component composition, heat treatment conditions, and wall thickness reduction rate in hot working and cold working are limited to the above excessive values will be explained below.

A、成分組成 (a)C C含有量を低くすればするほど炭化物の析出が抑制され
るようになるので、熱間加工における加熱温度および熱
処理温度を低くでき、このことは冷間加工後の強度上昇
によシ有効に作用するものである。したがって、C含有
量はできるだけ低い方が望ましいが、C含有量が0.0
5%を越えると、粒界応力腐食割れが生じやすくなるこ
とから、その上限値を0.05 %と定めた。
A. Ingredient composition (a) C The lower the C content, the more suppressed the precipitation of carbides, so the heating temperature and heat treatment temperature during hot working can be lowered. This effectively acts to increase strength. Therefore, it is desirable that the C content is as low as possible, but if the C content is 0.0
If it exceeds 5%, intergranular stress corrosion cracking tends to occur, so the upper limit was set at 0.05%.

(b)SI Slは脱酸成分として必要な成分であるが、その含有量
が1.0%を越えると熱間加工性が劣化するようになる
ことから、その上限値を1.0%と定めた。
(b) SI Sl is a necessary component as a deoxidizing component, but if its content exceeds 1.0%, hot workability will deteriorate, so the upper limit is set at 1.0%. Established.

(c)  Mn Mn成分にはSlと同様に脱酸作用がちシ、しかもこの
成分は応力腐食割れ性にほとんど影響を及ぼさない成分
であることから、その上限値を高めの2.0%と定めた
(c) Mn The Mn component tends to have a deoxidizing effect like Sl, and since this component has little effect on stress corrosion cracking resistance, the upper limit value was set at a relatively high 2.0%. Ta.

(a)  p 不可避不純物としてのP成分には、その含有量が0.0
30%を越えると、応力腐食割れ感受性を高める作用が
現われるので、上限値をQ、030%と定めて応力腐食
割れ感受性を低位の状態とする必要がある。また、P含
有量を低減してゆくと、 0.003チを境にして急激
に耐水素割れ性が改善されるよ・うになることが判明し
ておシ、かかる点から、特にすぐれた耐水素割れ性を必
要とする場合には、P含有量を0.0030%以下とす
るのが望ましい。
(a) p The P component as an unavoidable impurity has a content of 0.0
If it exceeds 30%, the effect of increasing the stress corrosion cracking susceptibility appears, so it is necessary to set the upper limit to Q, 030% to keep the stress corrosion cracking susceptibility to a low state. It has also been found that as the P content is reduced, the hydrogen cracking resistance rapidly improves after reaching 0.003 cm. When hydrogen crackability is required, the P content is desirably 0.0030% or less.

(e)   S 不可避不純物としてのS成分には、その含有量がo、、
oo5%を越えると、熱間加工性を劣化させる作用があ
るので、その上限値を0.005 %と定めて熱間加工
性の劣化を防止する必要がある。このようにS成分には
、含有量が多くなると熱間加工性を劣化させる作用があ
るが、その含有量を低めてゆき、0.000 ’i’%
まで低減すると、逆に熱間加工性が一段と改善されるよ
うになることから、厳しい条件での熱間加工を必要とす
る場合には、S含有量を0.000’7%以下とするの
が望ましい。
(e) S The S component as an unavoidable impurity has a content of o,...
If it exceeds 5%, it has the effect of deteriorating hot workability, so it is necessary to set the upper limit at 0.005% to prevent deterioration of hot workability. In this way, the S component has the effect of deteriorating hot workability when its content increases, but if its content is lowered to 0.000 'i'%
On the contrary, if the S content is reduced to 0.000'7% or less, the hot workability will be further improved. is desirable.

(f)AI!。(f) AI! .

AQはSlおよびMnと同様に脱酸成分として有効であ
り、sot、 At!含有量で0.5チまで含有させて
も管材の特性を何らそこなうものではないことから、そ
の含有量をsol、fiJl含有量で0.5%以下と定
めた。
AQ is effective as a deoxidizing component like Sl and Mn, and sot, At! Since it does not impair the properties of the pipe material even if the content is up to 0.5%, the content was determined to be 0.5% or less in terms of sol and fiJl content.

(g)  Ni N1成分には管材の耐応力腐食割れ性を向上させる作用
があるが、その含有量が35チ未満では所望のすぐれた
耐応力腐食割れ性を確保することがで1きす、一方60
%を越えて含有させても耐応力腐食割れ性にさらに一段
の向上効果は現われず、経済性をも考慮して、その含有
量を35〜60%と定めた。
(g) Ni The N1 component has the effect of improving the stress corrosion cracking resistance of the pipe material, but if its content is less than 35 nickels, the desired excellent stress corrosion cracking resistance cannot be secured. 60
Even if the content exceeds 35%, no further improvement effect on stress corrosion cracking resistance appears, and the content was set at 35% to 60%, taking economic efficiency into account.

(旬 cr cr酸成分、Ni、Mo、およびW成分との共存におい
て、耐応力腐食割れ性を著しく改善する成分であるが、
その含有量を22.5%未満としても熱間加工性が改善
されるようになるものでもなく、逆に所望の耐応力腐食
割れ性を確保するためには、MoやWの含有量をそれだ
け増加させなければならず、経済的に不利となることか
ら、その下限値を22.5%と定めた。一方、その含有
量が35%を越えると、いくらS含有量を低減させても
熱間加工性の劣化は避けることができないことから、そ
の上限値を35チと定めた。
(It is a component that significantly improves stress corrosion cracking resistance in coexistence with CR acid components, Ni, Mo, and W components.
Even if the content is less than 22.5%, hot workability will not be improved; on the contrary, in order to secure the desired stress corrosion cracking resistance, the content of Mo and W must be increased to that extent. Since this would be economically disadvantageous, the lower limit was set at 22.5%. On the other hand, if the S content exceeds 35%, deterioration in hot workability cannot be avoided no matter how much the S content is reduced, so the upper limit was set at 35%.

(i)  MoおよびW 上記のように、これらの成分には、Niおよびcrとの
共存において耐応力腐食割れ性を改善する均等的作用が
あるが、それぞれMo:4%以上、およびW:8%以上
含有させても、環境温度が150℃以下のH2S−CO
2−C1−の腐食環境では、さらに一段の改善効果が現
われず、経済性を考慮して、それぞれの含有量を、MO
:4%未満2w:8%未満と定めた。また、MoとWの
含有量に関して、条件式: Mo (%il + + 
W (%’)で規定するのは、WがMOに対し原子量が
約2倍で、効果の点では約十で均等となることからで、
この値が1.5%未満では特に150℃以下の上記悪環
境下で所望の耐応力腐木割れ性が得られず、一方、この
値を4−以上としても、上記の過多実質的に不必要な量
のMoおよびWの含有となシ、経済的でなく、かかる点
から、Mo(4+ 4 W(9))の値を1.5〜4%
未満と定めた。
(i) Mo and W As mentioned above, these components have an equal effect of improving stress corrosion cracking resistance when coexisting with Ni and Cr, but Mo: 4% or more and W: 8% or more, respectively. H2S-CO whose environmental temperature is 150℃ or less even if it is contained more than %
In the corrosive environment of 2-C1-, no further improvement effect appeared, and considering economic efficiency, the respective contents were changed to MO
: Less than 4% 2w: Less than 8%. In addition, regarding the content of Mo and W, the conditional expression: Mo (%il + +
The reason for specifying W (%') is that the atomic weight of W is about twice that of MO, and the effect is about 10, which is equivalent.
If this value is less than 1.5%, the desired stress rotten wood cracking resistance cannot be obtained, especially under the above-mentioned adverse environment of 150°C or less.On the other hand, even if this value is 4- or more, the above-mentioned excessive It is not economical to contain the necessary amounts of Mo and W, so the value of Mo (4 + 4 W (9)) is set to 1.5 to 4%.
It is set as less than

(j)  N N成分には固溶強化による強度向上作用があるので、特
に高強度が要求される場合に必要に応じて含有されるが
、その含有量が0.05 %未満では所望の強度向上効
果を得ることができず、一方0、3 %を越えて含有さ
せると、溶製および造塊が困難となることから、その含
有量を0.05〜0.3(劫 Cuおよびc。
(j) N Since the N component has the effect of improving strength through solid solution strengthening, it is included as necessary when particularly high strength is required, but if the content is less than 0.05%, the desired strength cannot be achieved. If the content exceeds 0.3%, melting and ingot making will become difficult, so the content should be set at 0.05 to 0.3% (Cu and c).

これらの成分には管材の耐食性を向上させる均等的作用
があシ、かつcoにはさらに固溶強化作用があるので、
特に一段とすぐれた耐食性が要求される場合に必要に応
じて含有されるが、Cuが2%を越えると、熱間加工性
が劣化するようになシ、一方COは2%を越えて含有さ
せてもよシ一層の改善効果は現われないことから、その
上限値をそれぞれCu:2%、Co:2チと定めた。
These components have a uniform effect of improving the corrosion resistance of the pipe material, and co has a solid solution strengthening effect, so
Cu is added as necessary when even better corrosion resistance is required, but if it exceeds 2%, hot workability deteriorates, while CO should not be added if it exceeds 2%. Since no further improvement effect was observed, the upper limits were set as Cu: 2% and Co: 2%, respectively.

(4希土類元素+ Y r Mg + Tl + およ
びCaこれらの成分には、熱間加工性をさらに改善する
均等的作用があるので、厳しい条件で熱間加工が行なわ
れる場合に、必要に応じて含有されるが、それぞれ希土
類元素:0.10%、Y:0.20%。
(4 Rare earth elements + Y r Mg + Tl + and Ca These components have a uniform effect to further improve hot workability, so when hot working is carried out under severe conditions, they can be added as necessary. Rare earth elements: 0.10% and Y: 0.20%, respectively.

Mg:0.10%、 Ti: 0.5%、およびCa:
0.10%を越えて含有させても、熱間加工性に改善効
果はζ 見られず、むしろ劣化現象さえ現われるようにな   
°□゛°・することから、それぞれの含有量を、希土類
元素:0、−10%以下、Y:0.20%以下、 Mg
: 0.10 %以下、 Ti: 0.5%以下、およ
びCa:0.10%以下と定めた。
Mg: 0.10%, Ti: 0.5%, and Ca:
Even if the content exceeds 0.10%, no improvement effect on hot workability is observed, and in fact, deterioration phenomena even appear.
°□゛°・ Therefore, the respective contents are: rare earth elements: 0, -10% or less, Y: 0.20% or less, Mg
: 0.10% or less, Ti: 0.5% or less, and Ca: 0.10% or less.

(m)  Cr(%) −1−10Mo (@+ 5 
W (%)第1図は厳しい腐食環境下での耐応力腐食割
れ性に関し、Cr(@+ 10 Mo(9り + 5 
W (%lとN1含有量の関係を示したものである。す
なわち、Cr、 Ni 、 Mo 。
(m) Cr (%) -1-10Mo (@+ 5
W (%) Figure 1 shows stress corrosion cracking resistance under severe corrosive environments.
This shows the relationship between W (%l) and N1 content. That is, Cr, Ni, Mo.

およびWの含有量を種々変化させたCr−Ni−Mo系
and Cr-Ni-Mo systems with various W contents.

Cr−Ni−W系、およびCr −Ni −Mo −W
系の鋼を溶製し、鋳造し、鍛伸して板厚:50酩のスラ
ブとした後、これを1200℃に加熱して熱間圧延を開
始し、この熱間圧延において、板厚が10朋となった時
点、すなわち再結晶が進行しない1000℃となった時
点からの加工率を30%として板厚=7順まで熱延し、
ついでこの板材に、温度:1000℃に30分保持後水
冷の熱処理を施し、引続いて強度向上の目的で加工率:
22%の冷間加工を加え、この結果得られた鋼板から圧
延方向と享角に、厚さ=2朋X幅=10朋×長さニア5
醇の試験片を切シ出し、この試験片について、第2図に
示す3点支持ビーム冶具を用い、前記試験片Sに0.2
%耐力に相当する引張応力を付加した状態で、10気圧
のH2Sおよび10気圧のC02でH2SおよびCO2
を飽和させた20チNaC4溶液(温度=150℃)中
に1000時間浸漬の応力腐食割れ試験を行ない、試験
後、前記試験片における割れ発生の有無を観察した。こ
れらの結果に基き、発明者等が独自に設定した条件式:
 Cr(%) + 1 o+v○(@+5W←)とN1
含有量との間には、耐応力腐食割れ性に関して、第1図
に示される関係があることが明確になったのである。な
お、第1図において、O印は割れ発生なし、X印は割れ
発生をそれぞれ示すものである。第1図に示される結果
から、Cr(@+10 Mo (チ)+5W(@の値が
50%未満にして、N1含有量が3少チ未満では所望の
すぐれた耐応力腐食割れ性は得られないことが明らかで
ある。
Cr-Ni-W system, and Cr-Ni-Mo-W
After melting, casting, and forging a slab with a thickness of 50 mm, this is heated to 1200°C to start hot rolling. From the time when the temperature reached 10 mm, that is, from the time when the temperature reached 1000 ° C. at which recrystallization does not proceed, the processing rate was set to 30%, and the plate thickness was hot rolled to the order of 7.
Next, this plate material was held at a temperature of 1000°C for 30 minutes and then subjected to water cooling heat treatment, followed by a processing rate of:
22% cold working is applied, and the resulting steel plate has a thickness of 2mm x width = 10mm x length near 5mm in the rolling direction and angle.
Cut out a test piece, and use the three-point support beam jig shown in FIG.
H2S and CO2 at 10 atm H2S and 10 atm C02 with the addition of tensile stress corresponding to % proof stress.
A stress corrosion cracking test was carried out by immersing the specimen in a 20% NaC4 solution (temperature = 150°C) saturated with water for 1000 hours, and after the test, the presence or absence of cracking in the test piece was observed. Based on these results, the inventors independently set the conditional expression:
Cr (%) + 1 o+v○ (@+5W←) and N1
It has become clear that there is a relationship between the content and the stress corrosion cracking resistance shown in FIG. In FIG. 1, the O mark indicates no cracking, and the X mark indicates cracking. From the results shown in Figure 1, it is clear that the desired excellent stress corrosion cracking resistance cannot be obtained when the value of Cr(@+10 Mo (chi) It is clear that there is no.

なお、この発明の合金において、不可避不純物としてB
、Sn、Pb、およびZnをそれぞれ0.1%以°下の
範囲で含有しても、この発明の合金の特性が何らそこな
われるものではない。
In addition, in the alloy of this invention, B is included as an unavoidable impurity.
, Sn, Pb, and Zn each in a range of 0.1% or less does not impair the properties of the alloy of the present invention.

B、熱間加工条件 熱間加工における再結晶温度以下での肉厚減少率を10
%以上としたのは、この肉厚減少率が10%未満では後
工程の熱処理で、管材に所望の高強度とすぐれた延性を
付与するのに不可欠な微細再結晶粒を十分に形成するこ
とができないからである。また、熱間加工に際しては、
その加熱温度を1050〜1250℃とするのが望まし
く、これは、加熱温度が1050℃未満では熱間加工時
の変形抵抗が高くなシすぎて加工自体が困難になるばか
シでなく、未固溶の金属間化合物や炭化物が残留して靭
性や耐食性を劣化させる原因となシ、一方1250℃を
越えた加熱温度になると、熱間における変形能の著しい
低下をもたらし、熱間加工が難しくなるという理由によ
るものである。
B. Hot working conditions The wall thickness reduction rate below the recrystallization temperature during hot working is 10
% or more is because if the wall thickness reduction rate is less than 10%, sufficient fine recrystallized grains, which are essential for imparting the desired high strength and excellent ductility to the pipe material, will be formed in the post-process heat treatment. This is because it is not possible. In addition, during hot processing,
It is desirable to set the heating temperature to 1050 to 1250°C. This is because if the heating temperature is less than 1050°C, the deformation resistance during hot processing will be too high and the processing itself will be difficult, and the Intermetallic compounds and carbides in the melt remain and cause deterioration of toughness and corrosion resistance.On the other hand, heating temperatures exceeding 1250°C result in a significant decrease in hot deformability, making hot working difficult. This is for the reason.

C0熱処理条件 上述のように、この熱処理は微細な再結晶粒を十分に形
成するために施されるが1、この場合の微細再結晶粒の
形成は、260瞳C(%)−4−1300で算出された
下限温度呻)と、16Mo(%) + l OW (%
) + l 0cr(@−4−777で算出された上限
温度(ト)との間の温度に2時間以下保持することによ
って行なわれるものである。この下限温度の算出式:z
6oiogc(%)+1300および上限温度の算出式
: 16 Mo (@ +10W (%)+ l 0C
r((イ)+777は多数の試験結果にもとづいて経験
的に定められたものであって、上記の下限温度未満では
所定の微細再結晶の形成を十分にはかることができず、
一方熱処理温度が上記の上限温度を越えて高くなった9
、保持時間が2時間を越えたりすると、結晶粒が粗大化
して熱間加ニーによってもたらされる効果が消滅してし
まって所望の高強度並びに高靭性を確保することができ
なくなることから、熱処理条件を上記の過多に限定した
のである。
C0 heat treatment conditions As mentioned above, this heat treatment is performed to sufficiently form fine recrystallized grains1, but the formation of fine recrystallized grains in this case is 260 pupil C (%) - 4 - 1300 16Mo (%) + l OW (%
) + l 0cr (@ -4-777 This is done by maintaining the temperature between the upper limit temperature (G) calculated in 2 hours or less. Calculation formula for this lower limit temperature: z
Calculation formula for 6oiogc (%) + 1300 and upper limit temperature: 16 Mo (@ +10W (%) + l 0C
r ((A) +777 is determined empirically based on the results of numerous tests, and below the above lower limit temperature it is not possible to sufficiently measure the formation of the specified fine recrystallization.
On the other hand, the heat treatment temperature exceeded the above upper limit temperature9
If the holding time exceeds 2 hours, the crystal grains will become coarse and the effect brought about by hot annealing will disappear, making it impossible to secure the desired high strength and toughness, so heat treatment conditions was limited to the above-mentioned excess.

なお、この場合未固溶の金属間化合物や炭化物が残留す
ると耐食性劣化の原因となるが、熱処理温度を上記の下
限温度以上とすることによって、これを完全に固溶する
ことができる。
In this case, if undissolved intermetallic compounds and carbides remain, they will cause deterioration of corrosion resistance, but by setting the heat treatment temperature to the above-mentioned lower limit temperature or higher, they can be completely dissolved.

、D、  冷間加工条件 また、この発明では、上記のように熱処理後に冷間加工
を施して強度向上をはかるが、この冷間加工が肉厚減少
率で10チ未満では所望の強度を確保することができず
、一方同じく肉厚減少率で60%を越えた冷間加工を施
すと、延性および靭性の劣化が著しくなることから、冷
間加工を肉厚減少率で10〜60チと定めたのである。
, D. Cold working conditions In addition, in this invention, as described above, cold working is performed after heat treatment to improve the strength, but if the cold working reduces the wall thickness by less than 10 inches, the desired strength cannot be secured. On the other hand, if cold working is performed at a wall thickness reduction rate of more than 60%, the deterioration of ductility and toughness becomes significant. It was established.

以上の成分組成および製造条件を適用することによって
0.2チ耐力が85 kgf/mj以上の高強度をもち
、かつ延性および靭性は勿論のこと、耐応力腐食割れ性
に優れた油井管を製造することができるのである。
By applying the above component composition and manufacturing conditions, we can manufacture oil country tubular goods that have high strength with a 0.2 inch proof stress of 85 kgf/mj or more, and have excellent stress corrosion cracking resistance as well as ductility and toughness. It is possible.

つぎに、この発明の油井管製造法を実施例によシ比較例
と対比しながら具体的に説明する。
Next, the method for producing oil country tubular goods according to the present invention will be specifically explained using examples and comparing with comparative examples.

実施例 それぞれ第1表に示される成分組成をもった溶湯を通常
の電気炉、および脱硫とN付加の目的でAr−酸素脱炭
炉(AOD炉)を併用し、さらに必要に応じて脱燐の目
的でエレクトロスラグ溶解炉(、ESR炉)を使用して
溶製した後、直径:500rrartφのインゴットに
鋳造し、ついでこのインゴットに温度:1200℃で熱
間鍛造を施して直径:150 gφのビレットを成形し
、この場合熱間加工性を評価する目的でビレットに割れ
の発生があるか否かを観察し、引続いて前記ビレットに
それぞれ第1表に示される熱間加工条件にて熱間押出加
工を施して外径:60朋φ×肉厚:4朋の素管を成形し
、引続いて、同じくそれぞれ第1表に示される熱処理条
件(処理後の冷却はいずれも水冷)および肉厚減少率で
、熱処理と冷間加工を施すことによって、本発明合金管
材1〜27.比較合金管材1〜9、および従来合金管材
1〜4をそれぞれ製造した。
In each of the examples, a molten metal having the composition shown in Table 1 was heated in a conventional electric furnace, an Ar-oxygen decarburization furnace (AOD furnace) for the purpose of desulfurization and N addition, and further dephosphorization as necessary. After melting using an electroslag melting furnace (ESR furnace) for the purpose of melting, it was cast into an ingot with a diameter of 500 rrartφ, and then this ingot was hot forged at a temperature of 1200°C to form an ingot with a diameter of 150 gφ. A billet is formed, and in this case, for the purpose of evaluating hot workability, it is observed whether or not cracks occur in the billet, and then the billet is heated under the hot working conditions shown in Table 1. A blank tube with an outer diameter of 60 mm and a wall thickness of 4 mm is formed by extrusion processing, and then heat treatment conditions shown in Table 1 (cooling after treatment is water cooling in both cases) and By applying heat treatment and cold working at a wall thickness reduction rate, the alloy tube materials 1 to 27 of the present invention. Comparative alloy tube materials 1 to 9 and conventional alloy tube materials 1 to 4 were manufactured, respectively.

なお、比較合金管材1〜9は、構成成分のうちのいずれ
かの成分の含有量、あるいは製造条件のうちのいずれか
の条件(第1表に※印を付して表示)がこの発明の範囲
から外れた条件で製造されたものであシ、また従来合金
管材は、いずれも公知の成分組成をもつものであって、
同管材1は、JIS・SUS 316に、同2はJIS
−8US31O8に、同3、・はインコロイ800に、
同4はJ’lS−8US 329J1にそれぞれ相当す
る組成をもつものである。
Comparative alloy tube materials 1 to 9 have a content of any one of the constituent components or one of the manufacturing conditions (indicated with an asterisk in Table 1) of the present invention. All conventional alloy tube materials have known compositions, and are manufactured under conditions that are outside the range.
The pipe material 1 is JIS SUS 316, and the pipe material 2 is JIS SUS 316.
-8US31O8, same 3,・ is Incoloy 800,
No. 4 has a composition corresponding to J'lS-8US 329J1.

ついで、この結果得られた本発明合金管材1〜27、比
較合金管材1〜9.および従来合金管材1−4より長さ
:20+111+Lの試験片をそれぞれ切出し、この試
験片より長さ方向にそって60°に相当する部分を切落
し、この状態の試験片に第3図に正面図で示されるよう
にボルトを貫通し、ナツトでしめつけて管外表面に0.
2%耐力に相当する引張応力を付加し、この状態の試験
片Sに対して、H2S分圧をそれぞれ0.1気圧、1気
圧、および20気圧としたH2S −10気圧CO2−
20%NaCt溶液(液温、150℃)中に1000時
間浸漬の応力腐食割れ試験を行ない、試験後における応
力腐食割れの有無を調査した。この結果を、上記の熱間
鍛造時の割れ発生の有無、引張試験結果、および衝撃試
験結果と共に、第2表に合せて示した。なお、第2表に
おいて、○印はいずれも割れ発生のないものを示し、一
方×印は割れ発生のあったものを示す。
Next, the resulting alloy tube materials 1 to 27 of the present invention and comparative alloy tube materials 1 to 9. A test piece with a length of 20 + 111 + L was cut out from the conventional alloy tube material 1-4, and a portion corresponding to 60° was cut off along the length direction of the test piece. Penetrate the bolt as shown in the figure, tighten it with a nut, and attach it to the outer surface of the tube.
A tensile stress equivalent to 2% proof stress was applied to the test piece S in this state, and H2S partial pressures were set to 0.1 atm, 1 atm, and 20 atm, respectively. H2S -10 atm CO2-
A stress corrosion cracking test was conducted by immersing the sample in a 20% NaCt solution (liquid temperature, 150° C.) for 1000 hours, and the presence or absence of stress corrosion cracking after the test was investigated. The results are shown in Table 2 together with the presence or absence of cracking during hot forging, the tensile test results, and the impact test results. In Table 2, the ○ mark indicates that no cracking occurred, while the x mark indicates that cracking occurred.

第2表に示される結果から、比較合金管材1〜9は、熱
間加工性、耐応力腐食割れ性、および強度のうちの少な
くともいずれかの性質が劣ったものであるのに対して、
本発明合金管材1〜27は、いずれもすぐれた熱間加工
性および耐応力腐食割れ性を有し、さらに高強度を有し
、かつ熱間加工性は良好であるが、相対的に強度が低く
、しかも耐応力腐食割れ性に劣る従来合金管材1〜4と
比較しても一段とすぐれた特性を有することが明らかで
ある。
From the results shown in Table 2, comparative alloy tube materials 1 to 9 were inferior in at least one of hot workability, stress corrosion cracking resistance, and strength;
All of the alloy tube materials 1 to 27 of the present invention have excellent hot workability and stress corrosion cracking resistance, and also have high strength and good hot workability, but have relatively low strength. It is clear that this material has even better properties than conventional alloy tube materials 1 to 4, which have low stress corrosion cracking resistance and are inferior in stress corrosion cracking resistance.

上述のように、この発明の方法によって製造された油井
管は、特に高強度および優れた耐応力腐食割れ性を有す
るので、これらの特性が要求される苛酷な環境下での石
油並びに天然ガス採掘は勿論のこと、地熱井管として用
いた場合にもきわめて優れた性能を発揮するのである。
As mentioned above, oil country tubular goods manufactured by the method of the present invention have particularly high strength and excellent stress corrosion cracking resistance, and are therefore suitable for oil and natural gas extraction in harsh environments where these properties are required. Of course, it also exhibits extremely excellent performance when used as geothermal well pipes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は合金の耐応力腐食割れ性に関し、Ni含有量と
Cr(伺+l0M0(%9 + 5 W (%)との関
係を示した図、第2図および第3図はそれぞれ板状およ
び管   i、1状試験片に対する応力腐食割れ試験の
態様を示す図である。 Cr(%ン+IOMo(%)+5W(%)不2図 拳3図 第1頁の続き 0発 明 者 池田昭夫 尼崎市西長洲本通1丁目3番地 住友金属工業株式会社中央技術 研究所内 0発 明 者 諸石犬司 尼崎市西長洲本通1丁目3番地 住友金属工業株式会社中央技術 研究所内
Figure 1 is a diagram showing the relationship between Ni content and Cr (%9 + 5 W (%)) regarding the stress corrosion cracking resistance of alloys, and Figures 2 and 3 are for plate-like and It is a diagram showing the mode of the stress corrosion cracking test on the tube i, 1-state test piece. Inside the Sumitomo Metal Industries, Ltd. Central Research Laboratory, 1-3 Nishi-Nagasu Hondori, Amagasaki City 0 Inventor Moroishi Inuji Inside the Sumitomo Metal Industries, Ltd. Central Technology Research Laboratory, 1-3 Nishi-Nagasu Hondori, Amagasaki City

Claims (1)

【特許請求の範囲】 (1)  C:0.05%以下T S 1: l 、O
%以下、 Mn : 2.0チ以下、P:0.030チ
以下、S:0.005%以下、 so L、M :0.
5%以下、 Ni: 3 ff)M−60%、Cr:2
2.5〜35チを含有し、Mo:4%未満およびW:8
%未満のうちの1種または2種を含有し、残シがFeと
不可避不純物からなる組成(以上重量%)を有し、かつ
、cr(@+ 1 oMo(%9+ 5 W(#≧50
%。 1.5チ≦MO(%)+ + W(@< 4 % 。 の条件を満足する合金を、再結晶温度以下での肉厚減少
率を10%以上とした条件で熱間加工し、ついで260
瞳C(4)+1300で算出された下限温度(ト)と、
 16 M。 ((6)+10W(→+10Cr(→+マ11で算出さ
れた上限温度(00間の温度に、2時間以下保持の条件
で熱処理した後、10〜60チの肉厚減少率で冷間加工
することを特徴とする耐応力腐食割れ性に優れた高強度
油井管の製造法。 (2)  C: 0.05%以下、Sl:1.0%以下
、Mn:2.0チ以下、P :0.030チ以下、S 
:0.005%以下、 soL、Al : 0.5%以
下、 Ni: 35〜60 %、Cr:22.5〜35
%を含有し、MO:4%未満およびW:8チ未満のうち
の1種または2種を含有し、さらにCu:2%以下およ
びCo:2%以下のうちの1種または2種を含有し、残
シがFeと不可避不純物からなる組成(以上重量%)を
有し、かつ、Cr C罰+ 10 Mo(@+ 5 W
 (%)≧50%。 1.5チ≦MO(%) + + W (%) < 4%
。 の条件を満足する合金を再結晶温度以下での肉厚減少率
を10%以上とした条件で熱間加工し、ついで2601
0gC(9))+1300で算出された下限温度や)・
と、l 6Mo(@+l OW(%)−)−10Cr(
e8−1−777で算出された上限温度呻)の間の温度
に、2時間以下保持の条件で熱処理した後、′10〜6
0%の肉厚減少率で冷間加工することを特徴とする耐応
力腐食割れ性に優れた高強度油井管の製造法。 (3)  C: 0.05%以下、Si:1.0%以下
、Mn:2.0チ以下、P :0.030チ以下、 S
:0.O05チ以下r sot、 Al : 0.5%
以下、 Ni: 35〜60 %、Cr:22.5〜3
5%を含有し、Mo:4%未満お上、びWaS%未満の
うちのImまたは2種を含有し、さらに希土類元素:0
.10チ以下、’1’:0.20%以下、 Mg : 
0.10%以下、 Ti: 0.5−以下、およびCa
: 0.10%以下のうちの1種または2種以上を含有
し、残シがFeと不可避不純物からなる組成(以上重量
%)を有し、かつ、 Cr (’J +10 Mo(’l) +5 W (%
)250%。 1.5%≦MO(%) + + W (%) < 4%
。 の条件を満足する合金を、再結晶温度以下での肉厚減少
率を10−以上とした条件で熱間加工し、ついで260
1ogC(5)+1300で算出された下限温度(ト)
と、16Mo(%)+ l OW (%)+10Cr(
@+’7 ’77で算出された上限温度(6)の間の温
度に、2時間以下保持の条件で熱処理した後、10〜6
0チの肉厚減少率で冷間加工することを特徴とする耐応
力腐食割れ性に優もだ高強度油井管の製造法。 (4)  C: 0.05%以下、 Si: 1.0 
%以下、 Mn :2.0%以下、 P :0.030
 %以下、S :0.005%以下、 soムAQ:0
.5%以下、Ni: 35〜60%、Cr: 22.5
〜35チを含有し、Mo:4チ未満およびW:8%未満
のうちの1種または2種を含有し、さらにCu:2%以
下およびCo:2%以下のうちの1種または2種と、希
土類元素: 0.10 %以下。 Y:0.20%以下、 Mg: 0.10%以下、 T
i: 0.5−以下、およびCa:0.10%以下のう
ちの1種またけ2種以上とを含有し、残シがFeと不可
避不純物からなる組成(以上重量%)を有し、かつ、C
r(%)+ 10M0(%)+5W(%)250%。 1.5%≦Mo(4++w (%)<4%。 の条件を満足する合金を、再結晶温度以下での肉厚減少
率を10%以上とした条件で熱間加工し、゛ついで26
01ogC(イ)+1300で算出された下限温度  
 1・1(りと、16Mo(%)−1−10W(%)+
 100r(%)+77マで算出゛された上限温度(6
)の間の温度に、2時間以下保持の条件で熱処理した後
、10〜60%の肉厚減少率で冷間加工することを特徴
とする耐応力腐食割れ性に優れた高強度油井管の製造法
。 (5)  C: 0.Oa%以下、Si:1.0%以下
、Mn:2.0%以下、p:o、oso%以下、 S 
:0.005 q6以下、 soム7u:0.5%以下
、 N : 0.05〜0.3%。 Ni: 35〜60%、 Cr: 22.5〜35%を
含有し、Mo二4%未満およびw二s1未満のうちの1
種または2種を含有し、残シがFeと不可避不純物がら
々る組成(以上重量%)を有し、かつ、CrC%)+ 
10M0(@+5 W(%)250%。 1.5%≦MO(%) + + W (%) < 4%
。 の条件を満足する合金を、再結晶温度以下での肉厚減少
率を10%以上とした条件で熱間加工し、ついで260
瞳C1%)−4−1300で算出された下限温度(ト)
と、16M0(%)−1−10W (%) −1−10
Cr(%)−1−77’7で算出された上限温度(6)
の間の温度に、2時間以下保持の条件で熱処理した後、
10〜60チの肉厚減少率で冷間加工することを特徴と
する耐応力腐食割れ性に優れた高強度油井管の製造法。 (6)  c : 0.05%以下、Si:1.0%以
下、Mn:2.0%以下、 p :、0.030%以下
、S :0.005%以下、 soL、I%l:o、5
チ以下、N:0.05〜0.3チ。 Ni: 35〜60 %、’ Cr: 22.5〜35
 %を含有し、Mo:4%未満およびw:eq6未満の
うちの1種または2種を含有し、さらにCu:2%以下
およびC0:2%以下のうちの1橿または2種を含有し
、残シがFeと不可避不純物からなる組成(以上重量%
)を有し、かつ、 cr(% + 10 Mo(%) + 5 W (%)
≧50チ。 1.5%≦Mo(%)十士W優)〈4%。 の条件を満足する合金を、再結晶温度以下での肉厚減少
率を10%以上とした条件で熱間加工し、ついで260
1.gC(@−)−1300で算出された下限温度(り
と、16Mo(@+10 W(%)−1−10Cr(%
)−1−’i”i”i’で算出された上限温度(C)の
間の温度に、2時間以下保持の条件で熱処理した後、1
0〜60%の肉厚減少率で冷間加工することを特徴とす
る耐応力腐食割れ性に優れた高強度油井管の製造法。 (l′f)C:0.05%以下、 3i: 1.0%以
下、Mn:2.0%以下、P :0.030%以下、s
 :o、oo5チ以下、 sot、 Ai!: 015
%以下、 N : 0.05−0.3 %。 Ni: 35〜60%、 Cr: 22.5〜35%を
含有し、MO:4%未満およびW:8%未満のうちの1
種または2種を含有し、さらに希土類元素:0.10%
以下、Y:0.20チ以下、 Mg: 0.10%以下
、Ti:0.5%以下、およびCa: 0.10%以下
のうちの1種または2種以上を含有し、残シがFeと不
可避不純物からなる組成(以上重量%)を有し、かつ、
Or(%i) +10 Mo(%l −1−5W (%
)≧50チ。 1.5%≦Mo(鋤++W(イ)く4チ。 の条件を満足する合金を、再結晶温度以下での肉厚減少
率を10チ以上とした条件で熱間加工し、ついで26 
ol、gc 1%)−1−130,0で算出された下限
温度(6)と、16Mo(%) −1−10W (%)
 +10 Cr(%)−1−7’/ ’i’で算出され
た上限温度(6)の間の温度に、2時間以下保持の条件
で熱処理した後、10〜60%の肉厚減少率7で冷間加
工することを特徴とする耐応力腐食割れ性に優れた高強
度油井管の製造法。 (8)  C: 0.05%以下、 Si :’ 1.
0%以下、Mn二2.0%以下、P :0.030%以
下、S :0.005%以下、 sot、M :’0.
5 %以下、 N : 0.05〜0.3%。 Ni:35〜60%、 Cr: 22.5〜35%を含
有し、MO:4%未満およびw:86ID未満のうちの
1種または2種を含有し、さらにCu:2%以下および
CO:2%以下のうちの1種または2種と、希土類元素
:0.10%以下、Y:0.20%以下、 Mg : 
0.10チ以下、Ti:0.5%以下、およびca:0
101%以下のうちの1種または2種以上とを含有し、
残シがFeと不可避不純物からなる組成(以上重量%)
を有し、かつ、 Cr(@+ 10Mo (@ + 5 W (%)25
0%。 1.5%≦MoC%)++W(%に4%。 の条件を満足する合金を、再結晶温度以下での肉厚減少
率を10%以上とした条件で熱間加工し、ついで260
1ogCI%)−1−1300で算出された下限温度(
ト)と、l 6Mo(%)−)−10W(%)+l 0
Cr(%) +777で算出された上限温度(6)の間
の温度に、2時間以下保持の条件で熱処理した後、10
〜60%の肉厚減少率で冷間加工することを特徴とする
耐応力腐食割れ性に優れた高強度油井管の製造法。
[Claims] (1) C: 0.05% or less T S 1: l, O
% or less, Mn: 2.0 inches or less, P: 0.030 inches or less, S: 0.005% or less, so L, M: 0.
5% or less, Ni: 3 ff) M-60%, Cr: 2
Contains 2.5-35%, Mo: less than 4% and W: 8
%, the remainder has a composition consisting of Fe and unavoidable impurities (weight %), and cr(@+ 1 oMo(% 9+ 5 W(#≧50
%. An alloy satisfying the condition of 1.5CH≦MO(%)++W(@<4%. 260
The lower limit temperature (g) calculated by pupil C(4)+1300,
16 M. ((6)+10W(→+10Cr(→+Maximum temperature calculated in 11 A method for producing high-strength oil country tubular goods having excellent stress corrosion cracking resistance. (2) C: 0.05% or less, Sl: 1.0% or less, Mn: 2.0% or less, P : 0.030 inch or less, S
: 0.005% or less, soL, Al: 0.5% or less, Ni: 35-60%, Cr: 22.5-35
%, contains one or two of MO: less than 4% and W: less than 8%, and further contains one or two of Cu: 2% or less and Co: 2% or less. However, the residue has a composition (more than % by weight) consisting of Fe and unavoidable impurities, and Cr C + 10 Mo (@ + 5 W
(%)≧50%. 1.5chi ≦ MO (%) + + W (%) < 4%
. An alloy that satisfies the following conditions is hot worked under conditions where the wall thickness reduction rate below the recrystallization temperature is 10% or more, and then 2601
The lower limit temperature calculated by 0gC(9))+1300)・
and l 6Mo(@+l OW(%)-)-10Cr(
After heat treatment under the condition of holding for 2 hours or less at a temperature between
A method for producing high-strength oil country tubular goods with excellent stress corrosion cracking resistance, which is characterized by cold working with a wall thickness reduction rate of 0%. (3) C: 0.05% or less, Si: 1.0% or less, Mn: 2.0 or less, P: 0.030 or less, S
:0. O05 or less r sot, Al: 0.5%
Below, Ni: 35-60%, Cr: 22.5-3
5%, Mo: less than 4%, and Im or two of WaS%, and further rare earth elements: 0
.. 10 or less, '1': 0.20% or less, Mg:
0.10% or less, Ti: 0.5- or less, and Ca
Cr ('J + 10 Mo ('l) +5 W (%
)250%. 1.5%≦MO (%) + + W (%) < 4%
. An alloy that satisfies the conditions is hot worked under conditions where the wall thickness reduction rate below the recrystallization temperature is 10- or more, and then 260
Lower limit temperature (g) calculated by 1ogC(5)+1300
and 16Mo (%) + l OW (%) + 10Cr (
@+'7 After heat treatment at a temperature between the upper limit temperature (6) calculated in '77 for 2 hours or less, 10 to 6
A method for producing high-strength oil country tubular goods having excellent stress corrosion cracking resistance, which is characterized by cold working at a wall thickness reduction rate of 0. (4) C: 0.05% or less, Si: 1.0
% or less, Mn: 2.0% or less, P: 0.030
% or less, S: 0.005% or less, somAQ: 0
.. 5% or less, Ni: 35-60%, Cr: 22.5
~35%, contains one or two of Mo: less than 4% and W: less than 8%, and further contains one or two of Cu: 2% or less and Co: 2% or less. and rare earth elements: 0.10% or less. Y: 0.20% or less, Mg: 0.10% or less, T
i: 0.5% or less, and Ca: 0.10% or less, and has a composition (wt %) in which the remainder is Fe and unavoidable impurities, And, C
r (%) + 10M0 (%) + 5W (%) 250%. An alloy that satisfies the condition of 1.5%≦Mo(4++w (%)<4%.
Lower limit temperature calculated by 01ogC(a)+1300
1・1(Rito, 16Mo(%)−1−10W(%)+
Upper limit temperature (6
) is heat-treated at a temperature of 2 hours or less, and then cold-worked at a wall thickness reduction rate of 10 to 60%. Manufacturing method. (5) C: 0. Oa% or less, Si: 1.0% or less, Mn: 2.0% or less, p: o, oso% or less, S
: 0.005 q6 or less, som7u: 0.5% or less, N: 0.05 to 0.3%. Contains Ni: 35-60%, Cr: 22.5-35%, Mo2 less than 4% and W2 less than 1.
CrC%)+
10M0 (@+5 W (%) 250%. 1.5%≦MO (%) + + W (%) < 4%
. An alloy that satisfies the conditions is hot worked under conditions where the wall thickness reduction rate below the recrystallization temperature is 10% or more, and then
Lower limit temperature (G) calculated from Pupil C1%)-4-1300
and 16M0 (%) -1-10W (%) -1-10
Upper limit temperature (6) calculated from Cr (%) -1-77'7
After heat treatment at a temperature between 2 hours or less,
A method for producing high-strength oil country tubular goods having excellent stress corrosion cracking resistance, characterized by cold working at a wall thickness reduction rate of 10 to 60 inches. (6) c: 0.05% or less, Si: 1.0% or less, Mn: 2.0% or less, p: 0.030% or less, S: 0.005% or less, soL, I%l: o, 5
Below 1, N: 0.05 to 0.3. Ni: 35-60%, 'Cr: 22.5-35
%, contains one or two of Mo: less than 4% and w: less than 6, and further contains one or two of Cu: 2% or less and C0: 2% or less. , a composition in which the remainder consists of Fe and unavoidable impurities (more than % by weight)
), and cr(% + 10 Mo(%) + 5 W(%)
≧50chi. 1.5%≦Mo(%)Jushi W Yu)〈4%. An alloy that satisfies the conditions is hot worked under conditions where the wall thickness reduction rate below the recrystallization temperature is 10% or more, and then
1. The lower limit temperature calculated by gC(@-)-1300 (Rito, 16Mo(@+10 W(%)-1-10Cr(%
)-1-'i''i''i' After heat treatment at a temperature between the upper limit temperature (C) calculated by 'i''i''i' for 2 hours or less, 1
A method for producing high-strength oil country tubular goods having excellent stress corrosion cracking resistance, characterized by cold working at a wall thickness reduction rate of 0 to 60%. (l'f) C: 0.05% or less, 3i: 1.0% or less, Mn: 2.0% or less, P: 0.030% or less, s
:o, oo5chi or less, sot, Ai! : 015
% or less, N: 0.05-0.3%. Contains Ni: 35-60%, Cr: 22.5-35%, MO: less than 4% and W: less than 8%.
Contains one or two species, and further contains rare earth elements: 0.10%
Contains one or more of the following: Y: 0.20% or less, Mg: 0.10% or less, Ti: 0.5% or less, and Ca: 0.10% or less, and has no residue. has a composition (more than % by weight) consisting of Fe and unavoidable impurities, and
Or(%i) +10 Mo(%l -1-5W (%
)≧50chi. An alloy that satisfies the condition of 1.5%≦Mo (plow + W (a) × 4 cm) is hot worked under the condition that the wall thickness reduction rate below the recrystallization temperature is 10 cm or more, and then 26 cm
The lower limit temperature (6) calculated from ol, gc 1%) -1-130,0 and 16Mo (%) -1-10W (%)
+10 Cr (%) -1-7'/'i' After heat treatment at a temperature between the upper limit temperature (6) calculated by 'i' for 2 hours or less, a wall thickness reduction rate of 10 to 60%7 A method for producing high-strength oil country tubular goods with excellent stress corrosion cracking resistance, which is characterized by cold working. (8) C: 0.05% or less, Si: '1.
0% or less, Mn 2.0% or less, P: 0.030% or less, S: 0.005% or less, sot, M:'0.
5% or less, N: 0.05-0.3%. Contains Ni: 35-60%, Cr: 22.5-35%, MO: less than 4% and w: less than 86 ID, and further contains Cu: 2% or less and CO: One or two of 2% or less, rare earth elements: 0.10% or less, Y: 0.20% or less, Mg:
0.10 or less, Ti: 0.5% or less, and ca: 0
Containing one or more of 101% or less,
Composition where the remainder is Fe and unavoidable impurities (weight%)
and Cr(@+10Mo(@+5W(%)25
0%. An alloy satisfying the condition of 1.5%≦MoC%)++W (% to 4%) is hot worked under conditions where the wall thickness reduction rate below the recrystallization temperature is 10% or more, and then 260%
1ogCI%)-1-1300 lower limit temperature (
g) and l 6Mo (%) -) - 10W (%) + l 0
Cr (%) After heat treatment at a temperature between the upper limit temperature (6) calculated by +777 for 2 hours or less, 10
A method for producing high-strength oil country tubular goods having excellent stress corrosion cracking resistance, characterized by cold working at a wall thickness reduction rate of ~60%.
JP10411181A 1981-07-03 1981-07-03 Production of high-strength oil well pipe of high stress corrosion cracking resistance Granted JPS586927A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP10411181A JPS586927A (en) 1981-07-03 1981-07-03 Production of high-strength oil well pipe of high stress corrosion cracking resistance
US06/389,568 US4421571A (en) 1981-07-03 1982-06-17 Process for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking
GB08217860A GB2104100B (en) 1981-07-03 1982-06-21 High strength deep well casing and tubing having improved resistance to stress-corrosion cracking
DE3224865A DE3224865C2 (en) 1981-07-03 1982-07-02 Process for the production of heavy-duty casing for deep boreholes or the like
SE8204121A SE461986C (en) 1981-07-03 1982-07-02 PROCEDURES FOR PREPARING HOEGHAALLFASTA DEEP BORROWS WITH RESISTANCE TO TENSION CORROSION
FR8211645A FR2508930A1 (en) 1981-07-03 1982-07-02 PROCESS FOR MANUFACTURING HIGH MECHANICAL RESISTANCE PIPES AND PIPES FOR DEEP WELLS
SE8901647A SE502102C2 (en) 1981-07-03 1989-05-09 Process for the manufacture of high strength deep drill pipes with resistance to stress corrosion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10411181A JPS586927A (en) 1981-07-03 1981-07-03 Production of high-strength oil well pipe of high stress corrosion cracking resistance

Publications (2)

Publication Number Publication Date
JPS586927A true JPS586927A (en) 1983-01-14
JPS6362569B2 JPS6362569B2 (en) 1988-12-02

Family

ID=14372011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10411181A Granted JPS586927A (en) 1981-07-03 1981-07-03 Production of high-strength oil well pipe of high stress corrosion cracking resistance

Country Status (1)

Country Link
JP (1) JPS586927A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7015990B2 (en) 2000-04-24 2006-03-21 Nitto Denko Corporation Liquid crystal display including O-type and E-type polarizer
WO2009014000A1 (en) * 2007-07-20 2009-01-29 Sumitomo Metal Industries, Ltd. Process for production of high alloy steel tubes
JP2009120875A (en) * 2007-11-12 2009-06-04 Sumitomo Metal Ind Ltd High alloy seamless tube and manufacturing method therefor
WO2009150989A1 (en) 2008-06-13 2009-12-17 住友金属工業株式会社 Process for producing high-alloy seamless pipe
WO2010070990A1 (en) 2008-12-18 2010-06-24 住友金属工業株式会社 Method for producing high alloy steel pipe
US8701455B2 (en) 2007-07-02 2014-04-22 Nippon Steel & Sumitomo Metal Corporation Method for manufacturing a high alloy pipe
WO2017037851A1 (en) * 2015-08-31 2017-03-09 株式会社日立製作所 Cr-BASED TWO-PHASE ALLOY AND PRODUCT USING SAID TWO-PHASE ALLOY
CN113684395A (en) * 2020-05-19 2021-11-23 宝武特种冶金有限公司 Nickel-based alloy resistant to high temperature molten salt corrosion and easy to process

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7315338B2 (en) 2000-04-24 2008-01-01 Nitto Denko Corporation Liquid crystal display including O-type and E-type polarizer
US7453640B2 (en) 2000-04-24 2008-11-18 Nitto Denko Corporation Liquid crystal display including O-type and E-type polarizer
US7015990B2 (en) 2000-04-24 2006-03-21 Nitto Denko Corporation Liquid crystal display including O-type and E-type polarizer
US8701455B2 (en) 2007-07-02 2014-04-22 Nippon Steel & Sumitomo Metal Corporation Method for manufacturing a high alloy pipe
WO2009014000A1 (en) * 2007-07-20 2009-01-29 Sumitomo Metal Industries, Ltd. Process for production of high alloy steel tubes
JP2009024231A (en) * 2007-07-20 2009-02-05 Sumitomo Metal Ind Ltd Method of manufacturing high-alloy steel pipe
JP2009120875A (en) * 2007-11-12 2009-06-04 Sumitomo Metal Ind Ltd High alloy seamless tube and manufacturing method therefor
WO2009150989A1 (en) 2008-06-13 2009-12-17 住友金属工業株式会社 Process for producing high-alloy seamless pipe
US8245552B2 (en) 2008-06-13 2012-08-21 Sumitomo Metal Industries, Ltd. Process for producing high-alloy seamless tube
US8312751B2 (en) 2008-12-18 2012-11-20 Sumitomo Metal Industries, Ltd. Method for producing high alloy pipe
WO2010070990A1 (en) 2008-12-18 2010-06-24 住友金属工業株式会社 Method for producing high alloy steel pipe
WO2017037851A1 (en) * 2015-08-31 2017-03-09 株式会社日立製作所 Cr-BASED TWO-PHASE ALLOY AND PRODUCT USING SAID TWO-PHASE ALLOY
CN113684395A (en) * 2020-05-19 2021-11-23 宝武特种冶金有限公司 Nickel-based alloy resistant to high temperature molten salt corrosion and easy to process

Also Published As

Publication number Publication date
JPS6362569B2 (en) 1988-12-02

Similar Documents

Publication Publication Date Title
JP2005290554A (en) Steel plate excellent in machinability, toughness and weldability, and method for production thereof
JPS625977B2 (en)
JPS625976B2 (en)
JPS586927A (en) Production of high-strength oil well pipe of high stress corrosion cracking resistance
JPS6144133B2 (en)
JP3328967B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JPS6363608B2 (en)
JPS5811736A (en) Production of high strength oil well pipe of superior stress corrosion cracking resistance
JPS6144135B2 (en)
JP4207447B2 (en) Stainless steel rebar and manufacturing method thereof
JPS5811735A (en) Production of high-strength oil well pipe of superior stress corrosion cracking resistance
JPS581044A (en) High strength alloy having superior stress corrosion cracking resistance for oil well pipe
JPS6363606B2 (en)
JP2672437B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JPH0148345B2 (en)
JPS6144126B2 (en)
JPS6144128B2 (en)
JP5136174B2 (en) High strength steel for bolts with excellent weather resistance and delayed fracture resistance
JPS58210155A (en) High-strength alloy for oil well pipe with superior corrosion resistance
JPS6199661A (en) High strength and high toughness welded clad steel pipe for line pipe
JPS6362570B2 (en)
JPS6144134B2 (en)
JPS6144125B2 (en)
JPS589923A (en) Production of high strength oil well pipe of high stress corrosion cracking resistance
JPS5811737A (en) Production of high strength oil well pipe of superior stress corrosion cracking resistance