JPS625976B2 - - Google Patents

Info

Publication number
JPS625976B2
JPS625976B2 JP56089959A JP8995981A JPS625976B2 JP S625976 B2 JPS625976 B2 JP S625976B2 JP 56089959 A JP56089959 A JP 56089959A JP 8995981 A JP8995981 A JP 8995981A JP S625976 B2 JPS625976 B2 JP S625976B2
Authority
JP
Japan
Prior art keywords
less
stress corrosion
corrosion cracking
alloy
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56089959A
Other languages
Japanese (ja)
Other versions
JPS57203738A (en
Inventor
Yasutaka Okada
Kunihiko Yoshikawa
Yasuo Ootani
Takeo Kudo
Akio Ikeda
Daiji Moroishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP8995981A priority Critical patent/JPS57203738A/en
Priority to US06/383,803 priority patent/US4400209A/en
Priority to GB08216703A priority patent/GB2103655B/en
Priority to DE3221878A priority patent/DE3221878A1/en
Priority to SE8203627A priority patent/SE452477B/en
Priority to FR8210116A priority patent/FR2507628A1/en
Publication of JPS57203738A publication Critical patent/JPS57203738A/en
Publication of JPS625976B2 publication Critical patent/JPS625976B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、高強度および優れた耐応力腐食割
れ性を有し、特に油井管の製造に用いるのに適し
た析出強化型合金に関するものである。 近年、エネルギー事情の悪化から、油井および
天然ガス井は深井戸化の傾向が著しく、深さ:
6000m以上、なかには深さ:10000m以上の深井
戸が出現している。 また、同様な事情から、湿潤な硫化水素をはじ
め、炭酸ガスや塩素イオンなどの腐食性成分を含
有する苛酷な腐食環境下での石油および天然ガス
の採掘が予儀なくされつつある。 このような厳しい環境下での石油および天然ガ
スの掘削に伴い、これに使用される油井管にも高
強度、並びに優れた耐食性、特に耐応力腐食割れ
性が要求されるようになつてきている。 油井管の一般的腐食対策として、インヒビタと
呼ばれる腐食抑制剤を投入する方法が知られてい
るが、この方法は、例えば海上油井などには有効
に活用できない場合が多い。 かかる点から、最近では油井管の製造に、ステ
ンレス鋼はじめ、インコロイやハステロイ(いず
れも商品名)といつた高級な耐食性高合金鋼の採
用も検討されはじめているが、いまのところ、こ
れらの合金に関して、H2S―CO2―Cl―の油井環
境での腐食挙動についての詳細は十分に解明され
るに至つておらず、しかも深井戸用油井管に要求
される高強度をもつものではないのが現状であ
る。 そこで、本発明者等は、上述のような観点か
ら、深井戸や苛酷な腐食環境、特にH2S―CO2
Cl-の油井環境下での石油掘削に十分耐え得る高
強度とすぐれた耐応力腐食割れ性とをもつた油井
管を得べく研究を行なつた結果、 (a) H2S―CO2―Cl-環境下における腐食の主た
るものは応力腐食割れであるが、この場合の応
力腐食割れ形態は、ステンレス鋼における一般
的なそれとは挙動を全く異にするものであるこ
と。すなわち、一般の応力腐食割れがCl-の存
在と深く係わるものであるのに対して、上記の
油井環境によるものではCl-もさることなが
ら、それ以上にH2Sの影響が大きいこと。 (b) 油井管として実用に供される鋼管は一般に、
強度上の必要から冷間加工が施されるが、冷間
加工は上記応力腐食割れに対する抵抗性を著し
く減少させること。 (c) H2S―CO2―Cl-環境での鋼の溶出速度(腐
食速度)は、Cr,Ni,Mo,およびWの含有量
に依存し、これらの成分からなる表面皮膜によ
つて耐食性が保持され、かつこれらの成分は、
応力腐食割れに対してもその抵抗性を高め、特
にMoはCrに対し10倍の効果を、またMoはWの
2倍の効果をもつており、したがつて、この
MoおよびWが、 Cr(%)+10Mo(%)+5W(%)≧50%, 1.0%≦Mo(%)+1/2W(%)<3.5%, の条件式を満足すると共に、Ni含有量を25〜60
%,Cr含有量を22.5〜40%とすると、冷間加工材
であつても、きわめて腐食性の強いH2S―CO2
Cl-の油井環境下、特に150℃以下の悪環境にお
いて、応力腐食割れに対して優れた抵抗性を示す
表面皮膜が得られること。 (d) Niについては表面皮膜に対する効果だけで
なく、組織的にも応力腐食割れ抵抗性を高める
効果があること。 (e) 合金成分としてNb,Ti,Ta,Zr,およびV
のうちの1種または2種以上を0.5〜4%含有
させると、析出強化作用により合金は一段と高
強度をもつようになること。 (f) 不可避不純物としてのS含有量を0.0007%以
下に低減させると、合金の熱間加工性が著しく
改善されるようになること。 (g) 不可避不純物としてのP含有量を0.003%以
下に低減させると、水素割れ感受性が著しく低
下するようになること。 (h) 合金成分としてCu:1.5%未満含有させる
と、耐食性がさらに改善されるようになるこ
と。 (i) 合金成分として、希土類元素:0.10%以下,
Y:0.20%以下,Mg:0.10%以下、および
Ca:0.10%以下のうちの1種または2種以上
を含有させると、熱間加工性がさらに一段と改
善されるようになること。 以上(a)〜(i)に示される知見を得たのである。 したがつて、この発明は、上記知見にもとづい
てなされたものであつて、C:1.0%以下,Si:
1.0%以下,Mn:2.0%以下,P:0.030%以下、
望ましくは耐水素割れ性を一段と改善する目的で
P:0.003%以下,S:0.005%以下、望ましくは
熱間加工性を一段と改善する目的でS:0.0007%
以下,sol.Al:0.5%以下,Ni:25〜60%,Cr:
22.5〜40%を含有し、Nb,Ti,Ta,Zr,および
Vのうちの1種または2種以上:0.5〜4%を含
有し、Mo:3.5%未満およびW:7%未満のうち
の1種または2種を含有し、さらに必要に応じて
Cu:1.5%未満,希土類元素:0.10%以下,Y:
0.20%以下,Mg:0.10%以下,およびCa:0.10
%以下のうちの1種または2種以上を含有し、残
りがFeと不可避不純物からなる組成(以上重量
%、以下%の表示はすべて重量%を表わす)を有
すると共に、 Cr(%)+10Mo(%)+5W≧50%, 1.0%≦Mo+1/2W(%)<3.5%, の条件式を満足し、しかも高強度とすぐれた耐応
力腐食割れ性を有し、特にこれらの特性が要求さ
れる油井管の製造に用いるのに適した析出強化型
合金に特徴を有するものである。 つぎに、この発明の合金において、成分組成範
囲を上記の通りに限定した理由を説明する。 (a) C その含有量が0.10%を越えると、粒界に応力腐
食割れが生じやすくなることから、その上限値を
0.10%と定めた。 (b) Si Siは脱酸成分として必要な成分であるが、その
含有量が1.0%を越えると熱間加工性が劣化する
ようになることから、その上限値を1.0%と定め
た。 (c) Mn Mn成分にはSiと同様に脱酸作用があり、しか
もこの成分は応力腐食割れ性にほとんど影響を及
ぼさない成分であることから、その上限値を高め
の2.0%と定めた。 (d) P 不可避不純物としてのP成分には、その含有量
が0.030%を越えると、応力腐食割れ感受性を高
める作用が現われるので、上限値を0.030%と定
めて応力腐食割れ感受性を低位の状態とする必要
がある。また、P含有量を低減してゆくと、
0.003%を境にして急激に耐水素割れ性が改善さ
れるようになることが判明しており、かかる点か
ら、特にすぐれた耐水素割れ性を必要とする場合
には、P含有量を0.003%以下とするのが望まし
い。 (e) S 不可避不純物としてのS成分には、その含有量
が0.005%を越えると、熱間加工性を劣化させる
作用があるので、その上限値を0.005%と定めて
熱間加工性の劣化を防止する必要がある。このよ
うにS成分には、含有量が多くなると熱間加工性
を劣化させる作用があるが、その含有量を低めて
ゆき、0.0007%まで低減すると、逆に熱間加工性
が一段と改善されるようになることから、厳しい
条件での熱間加工を必要とする場合には、S含有
量を0.0007%以下とするのが望ましい。 (f) Al AlはSiおよびMnと同様に脱酸成分として有効
であり、sol.Al含有量で0.5%まで含有させても
合金の特性を何らそこなうものではないことか
ら、その含有量をsol.Al含有量で0.5%以下と定
めた。 (g) Ni Ni成分には合金の耐応力腐食割れ性を向上さ
せる作用があるが、その含有量が25%未満では所
望のすぐれた耐応力腐食割れ性を確保することが
できず、一方60%を越えて含有させても耐応力腐
食割れ性にさらに一段の向上効果は現われず、経
済性をも考慮して、その含有量を25〜60%と定め
た。 (h) Cr Cr成分は、Ni,Mo,およびW成分との共存に
おいて、耐応力腐食割れ性を著しく改善する成分
であるが、その含有量を22.5%未満としても熱間
加工性が改善されるようになるものでもなく、逆
に所望の耐応力腐食割れ性を確保するためには、
MoやWの含有量をそれだけ増加させなければな
らず、経済的に不利となることから、その下限値
を22.5%と定めた。一方、その含有量が40%を越
えると、いくらS含有量を低減させても熱間加工
性の劣化は避けることができないことから、その
上限値を40%と定めた。 (i) Nb,Ti,Ta,Zr,およびV これらの成分には、主としてNiとの間で金属
間化合物を形成して合金を析出強化する均等的作
用があるが、その含有量が0.5%未満では所望の
高強度を得ることができず、一方4%を越えて含
有させると、延性および靭性が低下し、かつ熱間
加工性も劣化するようになることから、その含有
量を0.5〜4%と定めた。 したがつて、この発明の合金より油井管を製造
するに際しては、加工率:10〜60%の冷間加工前
後のいずれか、あるいは製造工程の適当な個所で
温度:450〜800℃に1〜20時間保持の時効処理を
施して、その析出強化をはかる必要がある。 (j) MoおよびW 上記のように、これらの成分には、Niおよび
Crとの共存において耐応力腐食割れ性を改善す
る均等的作用があるが、それぞれMo:3.5%以
上,およびW:7%以上含有させても、環境温度
が150℃以下のH2S―CO2―Cl-の腐食環境では、
さらに一段の改善効果が現われず、経済性を考慮
して、それぞれの含有量を、Mo:3.5%未満,
W:7%未満と定めた。また、MoとWの含有量
に関して、条件式:Mo(%)+1/2W(%)で規定 するのは、WがMoに対し原子量が約2倍で、効
果の点では約1/2で均等となることからで、この値 が1.0%未満では特に150℃以下の上記悪環境下で
所望の耐応力腐食割れ性が得られず、一方、この
値を3.5%以上としても、上記の通り実質的に不
必要な量のMoおよびWの含有となり、経済的で
なく、かかる点から、Mo(%)+1/2W(%)の値 を1.0〜3.5%未満とした。 (k) Cu Cu成分には合金の耐食性を向上させる作用が
あるので、特に一段とすぐれた耐食性が要求され
る場合に必要に応じて含有されるが、1.5%以上
含有させると、熱間加工性が劣化するほか、冷間
加工による強度上昇が妨げられるようになること
から、その含有量を1.5%未満と定めた。 (l) 希土類元素,Y,Mg,およびCa これらの成分には、熱間加工性をさらに改善す
る均等的作用があるので、厳しい条件で熱間加工
が行なわれる場合に、必要に応じて含有される
が、それぞれ希土類元素:0.10%,Y:0.20%,
Mg:0.10%,およびCa:0.10%を越えて含有さ
せても、熱間加工性に改善効果は見られず、むし
ろ劣化現象さえ現われるようになることから、そ
れぞれの含有量を、希土類元素:0.10%以下,
Y:0.20%以下,Mg:0.10%以下,およびCa:
0.10%以下と定めた。 (m) Cr(%)+10Mo(%)+5W(%) 第1図は厳しい腐食環境下での耐応力腐食割れ
性に関し、Cr(%)+10Mo(%)+5W(%)とNi
(%)との関係を示したものである。すなわち、
Cr,Ni,Mo,およびWの含有量を種々変化させ
たCr―Ni―Mo系、Cr―Ni―W系、およびCr―Ni
―Mo―W系の鋼を溶製し、鋳造し、鍛伸し、熱
間圧延して板厚:7mmの板材とし、ついでこの板
材に、温度:1050℃に30分保持後水冷の溶体化処
理を施した後、強度向上の目的で加工率:22%の
冷間加工を加え、さらに温度:650℃に15時間保
持の時効処理を施し、この結果得られた鋼板から
圧延方向と直角に、厚さ:2mm×幅:10mm×長
さ:75mmの試験片を切り出し、この試験片につい
て、第2図に示す3点支持ビーム冶具を用い、前
記試験片Sに0.2%耐力に相当する引張応力を付
加した状態で、10気圧のH2Sおよび10気圧のCO2
でH2SおよびCO2を飽和させた20%NaCl溶液(温
度:150℃)中に1000時間浸漬の応力腐食割れ試
験を行ない、試験後、前記試験片における割れ発
生の有無を観察した。これらの結果に基き、発明
者等が独自に設定した条件式:Cr(%)+10Mo
(%)+5W(%)とNi含有量との間には、耐応力
腐食割れ性に関して、第1図に示される関係があ
ることが明確になつたのである。なお、第1図に
おいて、〇印は割れ発生なし、×印は割れ発生を
それぞれ示すものである。第2図に示される結果
から、Cr(%)+10Mo(%)+5W(%)の値が50
%未満にして、Ni含有量が25%未満では所望の
すぐれた耐応力腐食割れ性は得られないことが明
らかである。 なお、この発明の合金において、不可避不純物
としてB,Sn,Pb,およびZnをそれぞれ0.1%以
下の範囲で含有しても、この発明の合金の特性が
何らそこなわれるものではない。 つぎに、この発明の合金を実施例により比較例
および従来例と対比しながら説明する。 実施例 それぞれ第1表に示される成分組成をもつた溶
湯を通常の電気炉、並びに必要に応じて脱硫の目
的でAr―酸素脱炭炉(AOD炉)と、脱燐の目的
でエレクトロスラグ溶解炉(ESR炉)を使用し
て溶製した後、直径:500mmφのインゴツトに鋳
造し、ついでこのインゴツトに温度:1200℃〜
1000℃の温度範囲で熱間鍛造を施して直径:150
mmφのビレツトを成形し、この場合熱間加工性を
評価する目的でビレツトに割れの発生があるか否
かを観察し、引続いて前記ビレツトより熱間押出
加工により直径:60mmφ×肉厚:4mmの素管を成
形した後、さらにこれに抽伸加工にて22%の冷間
加工を施して直径:55mmφ×肉厚:3.1mmの寸法
とすることによつて、本発明合金管材1〜16、比
較合金管材1〜5、および従来合金管材1〜4を
それぞれ製造し、引続いて本発明合金管材1〜16
と比較合金管材1〜5には温度:650℃に15時間
保持の時効処理を施した。 なお、比較合金管材1〜5は、いずれも構成成
分のうちのいずれかの成分の含有量(第1表には
※印を付して表示)がこの発明の範囲から外れた
組成をもつものであり、また従来合金管材1は
JIS・SUS316に、同2はJIS・310Sに、同3はイ
ンコロイ800に、さらに従来合金管材4はJIS・
SUS329JIにそれぞれ相当する組成をもつもので
ある。 ついで、この結果得られた本発明合金管材1〜
16、比較合金管材1〜5、および従来合金管材1
〜4より長さ:20mmの試験片をそれぞれ切出し、
この試験片より長さ方向にそつて60゜に相当する
部分を切落し、この状態の試験片に第3図に正面
図で示されるようにボルトを貫通し、ナツトでし
めつけて管外表面に0.2%耐力に相当する引張応
力を付加し、この状態の試験片Sに対して、H2S
分圧をそれぞれ0.1気圧、1気圧、および15気圧
としたH2S―10気圧CO2―20%NaCl溶液(液温:
150℃)中に1000時間浸漬の応力腐食割れ試験を
行ない、試験後における応力腐食割れの有無を調
査した。この結果を、上記の熱間鍛造時の割れ発
生の有無、引張試験結果、および衝
The present invention relates to a precipitation-strengthened alloy that has high strength and excellent stress corrosion cracking resistance and is particularly suitable for use in the manufacture of oil country tubular goods. In recent years, due to the deterioration of the energy situation, there has been a marked tendency for oil and natural gas wells to become deeper.
Deep wells over 6000m deep, some over 10000m deep, have appeared. Furthermore, due to similar circumstances, it is becoming increasingly difficult to extract oil and natural gas in a harsh corrosive environment containing humid hydrogen sulfide, as well as corrosive components such as carbon dioxide gas and chloride ions. As oil and natural gas are drilled in such harsh environments, the oil country tubular goods used therein are required to have high strength and excellent corrosion resistance, especially resistance to stress corrosion cracking. . As a general anti-corrosion measure for oil country tubular goods, it is known to introduce a corrosion suppressant called an inhibitor, but this method is often not effective for use in, for example, offshore oil wells. From this point of view, consideration has recently begun to be given to the use of stainless steel and other high-grade corrosion-resistant high-alloy steels such as Incoloy and Hastelloy (both trade names) for the production of oil country tubular goods. The details of the corrosion behavior of H 2 S―CO 2 -Cl― in the oil well environment have not yet been fully elucidated, and furthermore, it does not have the high strength required for oil country tubular goods for deep wells. is the current situation. Therefore, from the above-mentioned point of view, the present inventors investigated deep wells and severe corrosive environments, especially H 2 S―CO 2 -
As a result of research aimed at obtaining oil country tubular goods with high strength and excellent stress corrosion cracking resistance that can withstand oil drilling in Cl - oil well environments, we found that (a) H 2 S―CO 2 - The main type of corrosion in a Cl - environment is stress corrosion cracking, but the behavior of stress corrosion cracking in this case is completely different from that of general stainless steel. In other words, whereas general stress corrosion cracking is deeply related to the presence of Cl - , in the oil well environment mentioned above, the influence of H 2 S is greater than that of Cl - . (b) Steel pipes used for practical use as oil country tubular goods are generally
Cold working is performed to improve strength, but cold working significantly reduces the resistance to stress corrosion cracking. (c) The elution rate (corrosion rate) of steel in an H 2 S—CO 2 —Cl environment depends on the contents of Cr, Ni, Mo, and W, and is affected by the surface film made of these components. Corrosion resistance is maintained and these components are
It also increases its resistance to stress corrosion cracking, and in particular, Mo is 10 times more effective than Cr and twice as effective as W.
Mo and W satisfy the following conditional expressions: Cr (%) + 10Mo (%) + 5W (%) ≧ 50%, 1.0% ≦ Mo (%) + 1/2W (%) < 3.5%, and the Ni content 25-60
%, and the Cr content is 22.5 to 40%, H 2 S―CO 2 ―, which is extremely corrosive, even if it is a cold-worked material.
It is possible to obtain a surface film that exhibits excellent resistance to stress corrosion cracking in a Cl - oil well environment, especially in a harsh environment below 150°C. (d) Ni has the effect of increasing stress corrosion cracking resistance not only on the surface film but also on the structure. (e) Nb, Ti, Ta, Zr, and V as alloying components
When one or more of these are contained in an amount of 0.5 to 4%, the alloy will have even higher strength due to precipitation strengthening. (f) When the S content as an unavoidable impurity is reduced to 0.0007% or less, the hot workability of the alloy will be significantly improved. (g) When the P content as an unavoidable impurity is reduced to 0.003% or less, the susceptibility to hydrogen cracking significantly decreases. (h) When less than 1.5% of Cu is contained as an alloy component, corrosion resistance is further improved. (i) Rare earth elements as alloy components: 0.10% or less,
Y: 0.20% or less, Mg: 0.10% or less, and
Ca: When one or more of 0.10% or less is contained, hot workability is further improved. The findings shown in (a) to (i) above were obtained. Therefore, this invention was made based on the above knowledge, and includes C: 1.0% or less, Si:
1.0% or less, Mn: 2.0% or less, P: 0.030% or less,
Preferably, for the purpose of further improving hydrogen cracking resistance, P: 0.003% or less, S: 0.005% or less, desirably S: 0.0007% for the purpose of further improving hot workability.
Below, sol.Al: 0.5% or less, Ni: 25-60%, Cr:
Contains 22.5 to 40%, one or more of Nb, Ti, Ta, Zr, and V: 0.5 to 4%, Mo: less than 3.5% and W: less than 7%. Contains one or two types, and further as necessary
Cu: less than 1.5%, rare earth elements: 0.10% or less, Y:
0.20% or less, Mg: 0.10% or less, and Ca: 0.10
% or less, with the remainder consisting of Fe and unavoidable impurities (all % by weight and % by weight), and Cr (%) + 10Mo ( %)+5W≧50%, 1.0%≦Mo+1/2W(%)<3.5%, and has high strength and excellent stress corrosion cracking resistance, and these characteristics are particularly required. This is a precipitation-strengthened alloy suitable for use in the production of oil country tubular goods. Next, the reason why the composition range of the alloy of the present invention is limited as described above will be explained. (a) If the C content exceeds 0.10%, stress corrosion cracking is likely to occur at grain boundaries, so the upper limit value should be set.
It was set at 0.10%. (b) Si Si is a necessary component as a deoxidizing component, but if its content exceeds 1.0%, hot workability deteriorates, so its upper limit was set at 1.0%. (c) Mn The Mn component has a deoxidizing effect like Si, and since this component has little effect on stress corrosion cracking resistance, the upper limit was set at a rather high value of 2.0%. (d) P The P component as an unavoidable impurity has the effect of increasing stress corrosion cracking susceptibility when its content exceeds 0.030%, so the upper limit is set at 0.030% and the stress corrosion cracking susceptibility is kept in a low state. It is necessary to do so. Also, as the P content is reduced,
It has been found that hydrogen cracking resistance rapidly improves after reaching 0.003%. From this point of view, when particularly excellent hydrogen cracking resistance is required, the P content should be reduced to 0.003%. % or less. (e) S The S component as an unavoidable impurity has the effect of deteriorating hot workability when its content exceeds 0.005%, so the upper limit is set at 0.005% to reduce the deterioration of hot workability. It is necessary to prevent this. In this way, the S component has the effect of deteriorating hot workability when its content increases, but when its content is lowered to 0.0007%, hot workability is further improved. Therefore, if hot working under severe conditions is required, it is desirable to set the S content to 0.0007% or less. (f) Al Al is effective as a deoxidizing component like Si and Mn, and even if it is included up to 0.5% in sol.Al content, it will not impair the properties of the alloy. .Al content is set at 0.5% or less. (g) Ni The Ni component has the effect of improving the stress corrosion cracking resistance of the alloy, but if its content is less than 25%, the desired excellent stress corrosion cracking resistance cannot be secured; Even if the content exceeds 25%, no further improvement effect on stress corrosion cracking resistance appears, and the content was set at 25% to 60%, taking economic efficiency into consideration. (h) Cr The Cr component is a component that significantly improves stress corrosion cracking resistance when coexisting with Ni, Mo, and W components, but hot workability is not improved even if its content is less than 22.5%. On the contrary, in order to ensure the desired stress corrosion cracking resistance,
The lower limit was set at 22.5% because it would be economically disadvantageous to have to increase the content of Mo and W by that much. On the other hand, if the S content exceeds 40%, deterioration of hot workability cannot be avoided no matter how much the S content is reduced, so the upper limit was set at 40%. (i) Nb, Ti, Ta, Zr, and V These components have the uniform effect of forming intermetallic compounds mainly with Ni and strengthening the alloy by precipitation, but their content is 0.5%. If the content is less than 4%, the desired high strength cannot be obtained; on the other hand, if the content exceeds 4%, ductility and toughness will decrease, as well as hot workability. It was set at 4%. Therefore, when manufacturing oil country tubular goods from the alloy of the present invention, it is necessary to perform cold working at a working rate of 10 to 60% or after cold working at a temperature of 450 to 800°C at an appropriate point in the manufacturing process. It is necessary to perform aging treatment for 20 hours to strengthen the precipitation. (j) Mo and W As mentioned above, these components include Ni and
Coexistence with Cr has a uniform effect of improving stress corrosion cracking resistance, but even if Mo: 3.5% or more and W: 7% or more are contained, H 2 S—CO at an environmental temperature of 150°C or less 2 - In a corrosive environment of Cl - ,
Furthermore, since no further improvement effect appeared, the respective contents were changed to Mo: less than 3.5%, considering economic efficiency.
W: Set as less than 7%. Furthermore, regarding the content of Mo and W, the conditional expression: Mo (%) + 1/2 W (%) specifies that W has about twice the atomic weight of Mo, and is about 1/2 as effective in terms of effectiveness. If this value is less than 1.0%, the desired stress corrosion cracking resistance cannot be obtained, especially under the above adverse environment of 150℃ or less.On the other hand, even if this value is 3.5% or more, as mentioned above, This results in substantially unnecessary amounts of Mo and W being contained, which is uneconomical.From this point of view, the value of Mo (%) + 1/2 W (%) was set to less than 1.0 to 3.5%. (k) Cu The Cu component has the effect of improving the corrosion resistance of the alloy, so it is included as necessary when even better corrosion resistance is required. The content was set at less than 1.5% because it not only deteriorates the carbon content but also impedes the increase in strength through cold working. (l) Rare earth elements, Y, Mg, and Ca These components have the uniform effect of further improving hot workability, so they may be added as necessary when hot working is performed under severe conditions. However, rare earth elements: 0.10%, Y: 0.20%,
Even if the content exceeds Mg: 0.10% and Ca: 0.10%, there is no improvement effect on hot workability, and even deterioration phenomenon appears. Therefore, the content of each rare earth element: 0.10% or less,
Y: 0.20% or less, Mg: 0.10% or less, and Ca:
It was set at 0.10% or less. (m) Cr (%) + 10Mo (%) + 5W (%) Figure 1 shows the stress corrosion cracking resistance of Cr (%) + 10Mo (%) + 5W (%) and Ni in a severe corrosive environment.
(%). That is,
Cr-Ni-Mo system, Cr-Ni-W system, and Cr-Ni with various contents of Cr, Ni, Mo, and W
- Mo-W steel is melted, cast, forged, and hot rolled to form a plate with a thickness of 7 mm, which is then held at a temperature of 1050°C for 30 minutes and then solution-cooled with water. After the treatment, we added cold working at a processing rate of 22% for the purpose of improving strength, and then performed aging treatment at a temperature of 650°C for 15 hours. A test piece of thickness: 2 mm x width: 10 mm x length: 75 mm was cut out, and a tensile force equivalent to 0.2% proof stress was applied to the test piece S using the three-point support beam jig shown in Figure 2. 10 atm H2S and 10 atm CO2 under stress
A stress corrosion cracking test was conducted by immersing the specimen in a 20% NaCl solution (temperature: 150°C) saturated with H 2 S and CO 2 for 1000 hours, and after the test, the presence or absence of cracking in the test piece was observed. Based on these results, the inventors independently set a conditional expression: Cr (%) + 10Mo
It has become clear that there is a relationship between (%) + 5W (%) and Ni content with respect to stress corrosion cracking resistance, as shown in Figure 1. In FIG. 1, the ◯ mark indicates no cracking, and the x mark indicates cracking. From the results shown in Figure 2, the value of Cr (%) + 10Mo (%) + 5W (%) is 50
It is clear that if the Ni content is less than 25%, the desired excellent stress corrosion cracking resistance cannot be obtained. Note that even if the alloy of the present invention contains B, Sn, Pb, and Zn as unavoidable impurities in a range of 0.1% or less, the properties of the alloy of the present invention will not be impaired in any way. Next, the alloy of the present invention will be explained using examples while comparing with comparative examples and conventional examples. Example Molten metal having the composition shown in Table 1 was melted in a normal electric furnace, and if necessary, in an Ar-oxygen decarburization furnace (AOD furnace) for the purpose of desulfurization and electroslag melting for the purpose of dephosphorization. After melting using a furnace (ESR furnace), it is cast into an ingot with a diameter of 500mmφ, and then the ingot is heated to a temperature of 1200℃~
Hot forged in a temperature range of 1000℃ Diameter: 150
A billet of mmφ is formed, and in this case, for the purpose of evaluating hot workability, it is observed whether or not cracks occur in the billet, and then the billet is hot extruded to a diameter of 60 mmφ x wall thickness: After forming a 4 mm raw tube, it was further subjected to 22% cold working by drawing processing to obtain dimensions of diameter: 55 mmφ x wall thickness: 3.1 mm, thereby producing alloy tube materials 1 to 16 of the present invention. , Comparative alloy tube materials 1 to 5 and conventional alloy tube materials 1 to 4 were manufactured, respectively, and then the present invention alloy tube materials 1 to 16 were manufactured.
Comparative alloy tube materials 1 to 5 were subjected to aging treatment at a temperature of 650°C for 15 hours. In addition, Comparative Alloy Tube Materials 1 to 5 all have compositions in which the content of one of the constituent components (indicated with an asterisk in Table 1) is outside the scope of this invention. , and the conventional alloy tube material 1 is
JIS/SUS316, same 2 is JIS/310S, same 3 is Incoloy 800, and conventional alloy tube material 4 is JIS/310S.
Each has a composition corresponding to SUS329JI. Next, the resulting alloy tube materials 1 to 1 of the present invention
16, comparative alloy pipe materials 1 to 5, and conventional alloy pipe material 1
From ~4, cut out a test piece with a length of 20 mm,
Cut off a section corresponding to 60° along the length of this test piece, pass a bolt through this test piece as shown in the front view in Figure 3, tighten it with a nut, and attach it to the outside surface of the tube. A tensile stress equivalent to 0.2% proof stress is applied to the specimen S in this state, and H 2 S
H 2 S - 10 atm CO 2 - 20% NaCl solution (liquid temperature:
A stress corrosion cracking test was conducted by immersing the steel in a temperature of 150°C for 1000 hours, and the presence or absence of stress corrosion cracking after the test was investigated. This result is compared to the presence or absence of cracking during hot forging, the tensile test results, and the impact

【表】【table】

【表】【table】

【表】 撃試験結果と共に、第2表に合せて示した。な
お、第2表において、〇印はいずれも割れ発生の
ないものを示し、一方×印は割れ発生のあつたも
のを示す。 第2表に示される結果から、比較合金管材1〜
5、は熱間加工性、耐応力腐食割れ性、および強
度のうちの少なくともいずれかの性質が劣つたも
のであるのに対して、本発明合金管材1〜16は、
いずれもすぐれた熱間加工性および耐応力腐食割
れ性を有し、さらに高強度を有し、かつ熱間加工
性は良好であるが、相対的に強度が低く、しかも
耐応力腐食割れ性に劣る従来合金管材1〜4と比
較しても一段とすぐれた特性を有することが明ら
かである。 上述のように、この発明の合金は、特に高強度
および優れた耐応力腐食割れ性を有しているの
で、これらの特性が要求される苛酷な環境下での
石油および天然ガス採掘に用いられる油井管とし
て、さらに地熱井管として使用した場合にきわめ
て優れた性能を発揮するのである。
[Table] The results are shown in Table 2 along with the impact test results. In Table 2, the ○ marks indicate those with no cracks, while the x marks indicate those with cracks. From the results shown in Table 2, comparative alloy tube materials 1 to
In contrast, alloy tube materials 1 to 16 of the present invention are inferior in at least one of hot workability, stress corrosion cracking resistance, and strength.
Both have excellent hot workability and stress corrosion cracking resistance, and also have high strength and good hot workability, but have relatively low strength and poor stress corrosion cracking resistance. It is clear that this material has even better properties than conventional alloy tube materials 1 to 4, which are inferior. As mentioned above, the alloy of the present invention has particularly high strength and excellent stress corrosion cracking resistance, making it suitable for use in oil and natural gas extraction in harsh environments where these properties are required. It exhibits extremely excellent performance when used as oil country tubular goods and geothermal country tubular goods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は合金の耐応力腐食割れ性に関し、Ni
含有量とCr(%)+10Mo(%)+5W(%)との関
係を示した図、第2図および第3図はそれぞれ板
状および管状試験材に対する応力腐食割れ試験の
態様を示す図である。
Figure 1 shows the stress corrosion cracking resistance of alloys.
A diagram showing the relationship between content and Cr (%) + 10Mo (%) + 5W (%), Figures 2 and 3 are diagrams showing the mode of stress corrosion cracking tests on plate-shaped and tubular test materials, respectively. .

Claims (1)

【特許請求の範囲】 1 C:0.1%以下、Si:1%以下、 Mn:2%以下、P:0.03%以下、 S:0.005%以下、sol.Al:0.5%以下、 Ni:25〜60%、Cr:22.5〜40%、 を含有し、 Nb,Ti,Ta,Zr,およびVのうちの1種また
は2種以上(2種以上の場合は合計で):0.5〜
4%、 を含有し、さらに、 Mo:3.5%未満およびW:7%未満のうちの1
種または2種、 を含有し、かつ Cr(%)+10Mo(%)+5W(%)≧50%、 1%≦Mo(%)+1/2W(%)<3.5%、 の条件を満足し、残りがFeとその他の不可避不
純物からなる組成(以上重量%)を有することを
特徴とする耐応力腐食割れ性に優れた高強度油井
管用析出強化型合金。 2 C:0.1%以下、Si:1%以下、 Mn:2%以下、P:0.03%以下、 S:0.005%以下、sol.Al:0.5%以下、 Ni:25〜60%、Cr:22.5〜40%、 を含有し、 Nb,Ti,Ta,Zr,およびVのうちの1種また
は2種以上(2種以上の場合は合計で):0.5〜
4%、 を含有し、 Mo:3.5%未満およびW:7%未満のうちの1
種または2種、 を含有し、さらに、 Cu:1.5%未満、 を含有し、かつ、 Cr(%)+10Mo(%)+5W(%)≧50%、 1%≦Mo(%)+1/2W(%)<3.5%、 の条件を満足し、残りがFeとその他の不可避不
純物からなる組成(以上重量%)を有することを
特徴とする耐応力腐食割れ性に優れた高強度油井
管用析出強化型合金。 3 C:0.1%以下、Si:1%以下、 Mn:2%以下、P:0.03%以下、 S:0.005%以下、sol.Al:0.5%以下、Ni:25〜
60%、Cr:22.5〜40%、 を含有し、 Nb,Ti,Ta,Zr,およびVのうちの1種また
は2種以上(2種以上の場合は合計で):0.5〜
4%、 を含有し、 Mo:3.5%未満およびW:7%未満のうちの1
種または2種、 を含有し、さらに、 希土類元素:0.1%以下、Y:0.2%以下、 Mg:0.1%以下、Ca:0.1%以下、 のうちの1種または2種以上、 を含有し、かつ、 Cr(%)+10Mo(%)+5W(%)≧50%、 1%≦Mo(%)+1/2W(%)<3.5%、 の条件を満足し、残りがFeとその他の不可避不
純物からなる組成(以上重量%)を有することを
特徴とする耐応力腐食割れ性に優れた高強度油井
管用析出強化型合金。 4 C:0.1%以下、Si:1%以下、 Mn:2%以下、P:0.03%以下、 S:0.005%以下、sol.Al:0.5%以下、 Ni:25〜60%、Cr:22.5〜40%、 を含有し、 Nb,Ti,Ta,Zr,およびVのうちの1種また
は2種以上(2種以上の場合は合計で):0.5〜
4%、 を含有し、 Mo:3.5%未満およびW:7%未満のうちの1
種または2種、 を含有し、さらに、 希土類元素:0.1%以下、Y:0.2%以下、 Mg:0.1%以下、Ca:0.1%以下、 のうちの1種または2種以上と、 Cu:1.5%未満、 を含有し、かつ Cr(%)+10Mo(%)+5W(%)≧50%、 1%≦Mo(%)+1/2W(%)<3.5%、 の条件を満足し、残りがFeとその他の不可避不
純物からなる組成(以上重量%)を有することを
特徴とする耐応力腐食割れ性に優れた高強度油井
管用析出強化型合金。
[Claims] 1 C: 0.1% or less, Si: 1% or less, Mn: 2% or less, P: 0.03% or less, S: 0.005% or less, sol.Al: 0.5% or less, Ni: 25 to 60 %, Cr: 22.5 to 40%, and one or more of Nb, Ti, Ta, Zr, and V (in the case of two or more, in total): 0.5 to
4%, furthermore, one of Mo: less than 3.5% and W: less than 7%.
species or two species, and satisfies the following conditions: Cr (%) + 10Mo (%) + 5W (%) ≧ 50%, 1% ≦ Mo (%) + 1/2W (%) < 3.5%, and the remaining A precipitation-strengthened alloy for high-strength oil country tubular goods with excellent stress corrosion cracking resistance, characterized by having a composition (by weight %) consisting of Fe and other unavoidable impurities. 2 C: 0.1% or less, Si: 1% or less, Mn: 2% or less, P: 0.03% or less, S: 0.005% or less, sol.Al: 0.5% or less, Ni: 25-60%, Cr: 22.5- 40%, Contains one or more of Nb, Ti, Ta, Zr, and V (total if two or more): 0.5 to
4%, Mo: less than 3.5% and W: less than 7%.
Contains one or two species, Cu: less than 1.5%, and Cr (%) + 10Mo (%) + 5W (%) ≧50%, 1%≦Mo (%) + 1/2W ( %) < 3.5%, and the remainder is Fe and other unavoidable impurities (weight%). A precipitation-strengthened type for high-strength oil country tubular goods with excellent stress corrosion cracking resistance. alloy. 3 C: 0.1% or less, Si: 1% or less, Mn: 2% or less, P: 0.03% or less, S: 0.005% or less, sol.Al: 0.5% or less, Ni: 25~
60%, Cr: 22.5 to 40%, one or more of Nb, Ti, Ta, Zr, and V (total if two or more): 0.5 to
4%, Mo: less than 3.5% and W: less than 7%.
contains one or more of the following: rare earth elements: 0.1% or less, Y: 0.2% or less, Mg: 0.1% or less, Ca: 0.1% or less, And, the following conditions are satisfied: Cr (%) + 10Mo (%) + 5W (%) ≧ 50%, 1% ≦ Mo (%) + 1/2W (%) < 3.5%, and the rest is free from Fe and other unavoidable impurities. A precipitation-strengthened alloy for high-strength oil country tubular goods with excellent stress corrosion cracking resistance, characterized by having the following composition (the above weight %): 4 C: 0.1% or less, Si: 1% or less, Mn: 2% or less, P: 0.03% or less, S: 0.005% or less, sol.Al: 0.5% or less, Ni: 25-60%, Cr: 22.5- 40%, Contains one or more of Nb, Ti, Ta, Zr, and V (total if two or more): 0.5 to
4%, Mo: less than 3.5% and W: less than 7%.
Contains one or more of the following: rare earth elements: 0.1% or less, Y: 0.2% or less, Mg: 0.1% or less, Ca: 0.1% or less, Cu: 1.5 %, and satisfies the following conditions: Cr (%) + 10Mo (%) + 5W (%) ≧ 50%, 1% ≦ Mo (%) + 1/2W (%) < 3.5%, and the rest is Fe. A precipitation-strengthened alloy for high-strength oil country tubular goods with excellent stress corrosion cracking resistance, characterized by having a composition (by weight %) consisting of and other unavoidable impurities.
JP8995981A 1981-06-10 1981-06-11 Precipitation hardening alloy of high stress corrosion cracking resistance for high-strength oil well pipe Granted JPS57203738A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP8995981A JPS57203738A (en) 1981-06-11 1981-06-11 Precipitation hardening alloy of high stress corrosion cracking resistance for high-strength oil well pipe
US06/383,803 US4400209A (en) 1981-06-10 1982-06-01 Alloy for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking
GB08216703A GB2103655B (en) 1981-06-10 1982-06-09 Alloy for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking
DE3221878A DE3221878A1 (en) 1981-06-10 1982-06-09 ALLOY, ESPECIALLY FOR THE PRODUCTION OF HIGHLY RESILIENT PIPING OF DEEP HOLES OR THE LIKE
SE8203627A SE452477B (en) 1981-06-10 1982-06-10 ALLOY FOR MANUFACTURE OF HOGHALL SOLID FOODS AND PIPES FOR DEEP DRILLS, APPLICATION OF THE ALLOY AND HOGHALLFAST RODS MADE BY THIS ALLOY
FR8210116A FR2507628A1 (en) 1981-06-10 1982-06-10 ALLOY FOR MAKING PITCHES AND TUBES FOR DEEP WELLS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8995981A JPS57203738A (en) 1981-06-11 1981-06-11 Precipitation hardening alloy of high stress corrosion cracking resistance for high-strength oil well pipe

Publications (2)

Publication Number Publication Date
JPS57203738A JPS57203738A (en) 1982-12-14
JPS625976B2 true JPS625976B2 (en) 1987-02-07

Family

ID=13985220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8995981A Granted JPS57203738A (en) 1981-06-10 1981-06-11 Precipitation hardening alloy of high stress corrosion cracking resistance for high-strength oil well pipe

Country Status (1)

Country Link
JP (1) JPS57203738A (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4410489A (en) * 1981-07-17 1983-10-18 Cabot Corporation High chromium nickel base alloys
JPS59229457A (en) * 1983-06-13 1984-12-22 Sumitomo Metal Ind Ltd Ni-base high-cr alloy having excellent resistance to stress corrosion cracking
JPS59232246A (en) * 1983-06-13 1984-12-27 Sumitomo Metal Ind Ltd Ni-cr alloy having excellent resistance to stress corrosion cracking
JPS60230966A (en) * 1984-04-27 1985-11-16 Sumitomo Metal Ind Ltd Steel for dry and corrosive environment containing chloride at high temperature
US4950873A (en) * 1984-04-27 1990-08-21 Sumitomo Metal Industries, Ltd. Sheath heater
JPS6156263A (en) * 1984-08-27 1986-03-20 Kobe Steel Ltd Stainless alloy for sulfide-chloride environment at high temperature
JPS61288041A (en) * 1985-06-14 1986-12-18 Babcock Hitachi Kk Ni-base alloy excellent in intergranular stress corrosion cracking resistance and pitting resistance
JPS63100152A (en) * 1986-10-15 1988-05-02 Kubota Ltd Highly corrosion-resistant casting alloy
US4750950A (en) * 1986-11-19 1988-06-14 Inco Alloys International, Inc. Heat treated alloy
EP1710041B1 (en) * 2004-01-21 2009-09-02 Mitsubishi Heavy Industries, Ltd. Ni BASE HIGH Cr ALLOY FILLER MATERIAL AND WELDING ROD FOR SHIELDED METAL ARC WELDING
JP4998014B2 (en) * 2007-02-28 2012-08-15 住友金属工業株式会社 Welding material for austenitic stainless steel, weld metal and welded joint using the same
JP5846076B2 (en) * 2012-03-28 2016-01-20 新日鐵住金株式会社 Austenitic heat-resistant alloy
WO2017037851A1 (en) * 2015-08-31 2017-03-09 株式会社日立製作所 Cr-BASED TWO-PHASE ALLOY AND PRODUCT USING SAID TWO-PHASE ALLOY

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57104647A (en) * 1980-10-31 1982-06-29 Huntington Alloys Medium depth sour oil well pipe material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57104647A (en) * 1980-10-31 1982-06-29 Huntington Alloys Medium depth sour oil well pipe material

Also Published As

Publication number Publication date
JPS57203738A (en) 1982-12-14

Similar Documents

Publication Publication Date Title
US4400211A (en) Alloy for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking
US4788036A (en) Corrosion resistant high-strength nickel-base alloy
JP2500162B2 (en) High strength duplex stainless steel with excellent corrosion resistance
US4400349A (en) Alloy for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking
JPS625977B2 (en)
JPS625976B2 (en)
JPS6144133B2 (en)
JPS6144135B2 (en)
JPS6363608B2 (en)
JPS6362569B2 (en)
JPS6363610B2 (en)
JPS6144128B2 (en)
JPS6199660A (en) High strength welded steel pipe for line pipe
JPS6363609B2 (en)
JPS6144126B2 (en)
JPS6144134B2 (en)
JPH0372698B2 (en)
JPS6363606B2 (en)
JPS581044A (en) High strength alloy having superior stress corrosion cracking resistance for oil well pipe
JPS6144125B2 (en)
JPH0371506B2 (en)
JP3470418B2 (en) High strength austenitic alloy with excellent seawater corrosion resistance and hydrogen sulfide corrosion resistance
JPH0372699B2 (en)
JPS6144132B2 (en)
JPS6363611B2 (en)