JPS6144135B2 - - Google Patents

Info

Publication number
JPS6144135B2
JPS6144135B2 JP56093174A JP9317481A JPS6144135B2 JP S6144135 B2 JPS6144135 B2 JP S6144135B2 JP 56093174 A JP56093174 A JP 56093174A JP 9317481 A JP9317481 A JP 9317481A JP S6144135 B2 JPS6144135 B2 JP S6144135B2
Authority
JP
Japan
Prior art keywords
less
stress corrosion
corrosion cracking
alloy
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56093174A
Other languages
Japanese (ja)
Other versions
JPS57210938A (en
Inventor
Takeo Kudo
Daiji Moroishi
Akio Ikeda
Yasuo Ootani
Yasutaka Okada
Kunihiko Yoshikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP9317481A priority Critical patent/JPS57210938A/en
Priority to US06/383,630 priority patent/US4400211A/en
Priority to GB08216701A priority patent/GB2102834B/en
Priority to DE3221857A priority patent/DE3221857C2/en
Priority to SE8203629A priority patent/SE454360C/en
Priority to FR8210117A priority patent/FR2507629B1/en
Publication of JPS57210938A publication Critical patent/JPS57210938A/en
Priority to GB8506639A priority patent/GB2154611B/en
Publication of JPS6144135B2 publication Critical patent/JPS6144135B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、高強度および優れた耐応力腐食割
れ性を有し、特に油井管の製造に用いるのに適し
た析出強化型合金に関するものである。 近年、エネルギー事情の悪化から、油井および
天然ガス井は深井戸化の傾向が著しく、深さ:
6000m以上、なかには深さ:10000m以上の深井
戸が出現している。 また、同様な事情から、湿潤な硫化水素をはじ
め、炭酸ガスや塩素イオンなどの腐食性成分を含
有する苛酷な腐食環境下での石油および天然ガス
の採掘が予儀なくされつつある。 このような厳しい環境下での石油および天然ガ
スの掘削に伴い、これに使用される油井管にも高
強度、並びに優れた耐食性、特に耐応力腐食割れ
性が要求されるようになつてきている。 油井管の一般的腐食対策として、インヒビタと
呼ばれる腐食抑制剤を投入する方法が知られてい
るが、この方法は、例えば海上油井などには有効
に活用できない場合が多い。 かかる点から、最近では油井管の製造に、ステ
ンレス鋼はじめ、インコロイやハステロイ(いず
れも商品名)といつた高級な耐食性高合金鋼の採
用も検討されはじめているが、いまのところ、こ
れらの合金に関して、H2S−CO2−Cl-の油井環
境での腐食挙動についての詳細は十分に解明され
るに至つておらず、しかも深井戸用油井管に要求
される高強度をもつものではないのが現状であ
る。 そこで、本発明者等は、上述のような観点か
ら、深井戸や苛酷な腐食環境、特にH2S−CO2
Cl-の油井環境下での石油掘削に十分耐え得る高
強度とすぐれた耐応力腐食割れ性とをもつた油井
管を得べく研究を行なつた結果、 (a) H2S−CO2−Cl-環境下における腐食の主た
るものは応力腐食割れであるが、この場合の応
力腐食割れ態様は、ステンレス鋼における一般
的なそれとは挙動を全く異にするものであるこ
と。すなわち、一般の応力腐食割れがCl-の存
在と深く係わるものであるのに対して、上記の
油井環境によるものではCl-もさることなが
ら、それ以上にH2Sの影響が大きいこと。 (b) 油井管として実用に供される鋼管は一般に、
強度上の必要から冷間加工が施されるが、冷間
加工は上記応力腐食割れに対する抵抗性を著し
く減少させること。 (c) H2S−CO2−Cl-環境での鋼の溶出速度(腐
食速度)は、Cr,Ni,Mo,およびWの含有量
に依存し、これらの成分からなる表面皮膜によ
つて耐食性が保持され、かつこれらの成分は、
応力腐食割れに対してもその抵抗性を高め、特
にMoはCrに対し10倍の効果を、またMoはWの
2倍の効果をもつており、したがつて、この
MoおよびWが、 Cr(%)+10Mo(%) +5W(%)≧110%, 7.5%≦Mo(%)+1/2W(%)≦12%, の条件式を満足すると共に、Ni含有量を30〜60
%、Cr含有量を15〜35%とすると、時効処理を
施せば冷間加工材であつても、きわめて腐食性の
強いH2S−CO2−Cl-の油井環境下、特に200℃以
上の悪環境において、応力腐食割れに対して優れ
た抵抗性を示す表面皮膜が得られること。 (d) Niについては表面皮膜に対する効果だけで
なく、組織的にも応力腐食割れ抵抗性を高める
効果があること。 (e) 合金成分としてNを0.05〜0.25%含有させる
と、合金強度が向上するようになること。 (f) 合金成分としてNbおよびVのうちの1種ま
たは2種を0.5〜4%含有させると、析出強化
作用により合金は一段と高強度をもつようにな
ること。 (g) 不可避不純物としてのS含有量を0.0007%以
下に低減させると、合金の熱間加工性が著しく
改善されるようになること。 (h) 不可避不純物としてのP含有量を0.003%以
下に低減させると、水素割れ感受性が著しく低
下するようになること。 (i) 合金成分としてCu:2%以下およびCo:2
%以下のうちの1種または2種を含有させる
と、耐食性がさらに改善されるようになるこ
と。 (j) 合金成分として、希土類元素:0.10%以下、
Y:0.20%以下、Mg:0.10%以下、および
Ca:0.10%以下のうちの1種または2種以上
を含有させると、熱間加工性がさらに一段と改
善されるようになること。 以上(a)〜(j)に示される知見を得たのである。 したがつて、この発明は、上記知見にもとづい
てなされたものであつて、C:1.0%以下、Si:
1.0%以下、Mn:2.0%以下、P:0.030%以下、
望ましくは耐水素割れ性を一段と改善する目的で
P:0.003%以下、S:0.005%以下、望ましくは
熱間加工性を一段と改善する目的でS:0.0007%
以下、N:0.05〜0.25%、Ni:30〜60%、Cr:15
〜35%を含有し、NbおよびVのうちの1種また
は2種:0.5〜4%を含有し、Mo:12%以下およ
びW:24%以下のうちの1種または2種を含有
し、さらに必要に応じてCu:2%以下および
Co:2%以下のうちの1種または2種と、希土
類元素:0.10%以下、Y:0.20%以下、Mg:0.10
%以下、およびCa:0.10%以下のうちの1種ま
たは2種以上を含有し、残りがFeと不可避不純
物からなる組成(以上重量%、以下%の表示はす
べて重量%を表わす)を有すると共に、 Cr(%)+10Mo(%) +5W(%)≧110%, 7.5%≦Mo(%)+1/2W(%)≦12%, の条件式を満足し、しかも高強度とすぐれた耐応
力腐食割れ性を有し、特にこれらの特性が要求さ
れる油井管の製造に用いるのに適した析出強化型
合金に特徴を有するものである。 つぎに、この発明の合金において、成分組成範
囲を上記の通りに限定した理由を説明する。 (a) C その含有量が0.10%を越えると、粒界に応力
腐食割れが生じやすくなることから、その上限
値を0.10%と定めた。 (b) Si Siは脱酸成分として必要な成分であるが、そ
の含有量が1.0%を越えると熱間加工性が劣化
するようになることから、その上限値を1.0%
と定めた。 (c) Mn Mn成分にはSiと同様に脱酸作用があり、し
かもこの成分は応力腐食割れ性にほとんど影響
を及ぼさない成分であることから、その上限値
を高めの2.0%と定めた。 (d) P 不可避不純物としてのP成分には、その含有
量が0.030%を越えると、応力腐食割れ感受性
を高める作用が現われるので、上限値を0.030
%と定めて応力腐食割れ感受性を低位の状態と
する必要がある。また、P含有量を低減してゆ
くと、0.003%を境にして急激に耐水素割れ性
が改善されるようになることが判明しており、
かかる点から、特にすぐれた耐水素割れ性を必
要とする場合には、P含有量を0.0030%以下と
するのが望ましい。 (e) S 不可避不純物としてのS成分には、その含有
量が0.005%を越えると、熱間加工性を劣化さ
せる作用があるので、その上限値を0.005%と
定めて熱間加工性の劣化を防止する必要があ
る。このようにS成分には、含有量が多くなる
と熱間加工性を劣化させる作用があるが、その
含有量を低めてゆき、0.0007%まで低減する
と、逆に熱間加工性が一段と改善されるように
なることから、厳しい条件での熱間加工を必要
とする場合には、S含有量を0.0007%以下とす
るのが望ましい。 (f) N Nには固溶強化作用により合金の強度を向上
させる作用があるが、その含有量が0.05%未満
では所望の高強度を得ることができず、一方
0.25%を越えて含有させると、時効処理時に窒
化物を形成して合金の耐食性を劣化させるよう
になることから、その含有量を0.05〜0.25%と
定めた。 (g) Ni Ni成分には合金の耐応力腐食割れ性を向上
させる作用があるが、その含有量が30%未満で
は所望のすぐれた耐応力腐食割れ性を確保する
ことができず、一方60%を越えて含有させても
耐応力腐食割れ性にさらに一段の向上効果は現
われず、経済性をも考慮して、その含有量を30
〜60%と定めた。 (h) Cr Cr成分は、Ni,Mo,およびW成分との共存
において、耐応力腐食割れ性を著著しく改善す
る成分であるが、その含有量を15%未満として
も熱間加工性が改善されるようになるものでも
なく、逆に所望の耐応力腐食割れ性を確保する
ためには、MoやWの含有量をそれだけ増加さ
せなければならず、経済的に不利となることか
ら、その下限値を15%と定めた。一方、その含
有量が35%を越えると、いくらS含有量を低減
させても熱間加工性の劣化は避けることができ
ないことから、その上限値を35%と定めた。 (i) NbおよびV これらの成分には、主としてNiとの間で金
属間化合物を形成して合金を析出強化する均等
的作用があるが、その含有量が0.5%未満では
所望の高強度を得ることができず、一方4%を
越えて含有させると、延性および靭性が低下
し、かつ熱間加工性も劣化するようになること
から、その含有量を0.5〜4%と定めた。 したがつて、この発明の合金より油井管を製
造するに際しては、加工率:10〜60%の冷間加
工前後のいずれか、あるいは製造工程の適当な
個所で温度:450〜800℃に1〜20時間保持の時
効処理を施して、その析出強化をはかる必要が
ある。 (j) MoおよびW 上記のように、これらの成分には、Niおよ
びCrとの共存において耐応力腐食割れ性を改
善する均等的作用があるが、それぞれMo:12
%、およびW:24%を越えて含有させても、環
境温度が200℃以上のH2S−CO2−Cl-の腐食環
境で、さらに一段の改善効果が現われず、経済
性を考慮して、それぞれの含有量を、Mo:12
%以下、W:24%以下と定めた。また、Moと
Wの含有量に関して、条件式:Mo(%)+1/2W (%)で規定するのは、WがMoに対し原子量が約
2倍で、効果の点では約1/2で均等となることか
らで、この値が7.5%未満では特に200℃以上の上
記悪環境下で所望の耐応力腐食割れ性が得られ
ず、一方、この値を12%を越えて高くしても、上
記の通り実質的に不必要な量のMoおよびWの含
有となり、経済的でなく、かかる点
から、Mo(%)+1/2W(%)の値を7.5〜12%と した。 (k) CuおよびCo これらの成分には、合金の耐食性を向上させ
る均等的作用があり、さらにCoには固溶強化
作用があるので、特にこれらの特性を必要とす
る場合に必要に応じて含有されるが、Cuは2
%を越えて含有させると、熱間加工性が劣化す
るようになり、一方Coには2%を越えて含有
させてもより一層の改善効果はないことから、
それぞれの含有量をCu:2%以下、Co:2%
以下と定めた。 (l) 希土類元素、Y,Mg、およびCa これらの成分には、熱間加工性をさらに改善
する均等的作用があるので、厳しい条件で熱間
加工が行なわれる場合に、必要に応じて含有さ
れるが、それぞれ希土類元素:0.10%、Y:
0.20%、Mg:0.10%、およびCa:0.10%を越
えて含有させても、熱間加工性に改善効果は見
られず、むしろ劣化現象さえ現われるようにな
ることから、それぞれの含有量を、希土類元
素:0.10%以下、Y:0.20%以下、Mg:0.10%
以下、およびCa:0.10%以下と定めた。 (m) Cr(%)+10Mo(%)+5W(%) 第1図は厳しい腐食環境下での耐応力腐食割
れ性に関し、Cr(%)+10Mo(%)+5W(%)
とNi(%)との関係を示したものである。す
なわち、Cr,Ni,Mo,およびWの含有量を
種々変化させたCr−Ni−Mo系、Cr−Ni−W
系、およびCr−Ni−Mo−W系の鋼を溶製し、
鋳造し、鍛伸し、熱間圧延して板厚:7mmの板
材とし、ついでこの板材に、温度:1050℃に30
分保持後水冷の溶体化処理を施した後、強度向
上の目的で加工率:22%の冷間加工を加え、さ
らに温度:650℃に15時間保持の時効処理を施
し、この結果得られた鋼板から圧延方向と直角
に、厚さ:2mm×幅:10mm×長さ:75mmの試験
片を切り出し、この試験片について、第2図に
示す3点支持ビーム冶具を用い、前記試験片S
に0.2%耐力に相当する引張応力を付加した状
態で、10気圧のH2Sおよび10気圧のCO2でH2S
およびCO2を飽和させた20%NaCl溶液(温
度:300℃)中に1000時間浸漬の応力腐食割れ
試験を行ない、試験後、前記試験片における割
れ発生の有無を観察した。これらの結果に基
き、発明者等が独自に設定した条件式:Cr
(%)+10Mo(%)+5W(%)とNi含有量との
間には、耐応力腐食割れ性に関して、第1図に
示される関係があることが明確になつたのであ
る。なお、第1図において、〇印は割れ発生な
し、×印は割れ発生をそれぞれ示すものであ
る。第1図に示される結果から、Cr(%)+
10Mo(%)+5W(%)の値が110%未満にし
て、Ni含有量が30%未満では所望のすぐれた
耐応力腐食割れ性は得られないことが明らかで
ある。 なお、この発明の合金において、不可避不純
物としてTi,Al,B,Sn,Pb、およびZnをそ
れぞれ0.1%以下の範囲で含有しても、この発
明の合金の特性が何らそこなわれるものではな
い。 つぎに、この発明の合金を実施例により比較例
および従来例と対比しながら説明する。 実施例 それぞれ第1表に示される成分組成をもつた溶
湯を通常の電気炉、並びに窒素含有および脱硫の
目的でAr−酸素脱炭炉(AOD炉)と、必要に応
じて脱燐の目的でエレクトロスラグ溶解炉
(ESR炉)を使用して溶製した後、直径:500mm
φのインゴツトに鋳造し、ついでこのインゴツト
に温度:1200℃で熱間鍛造を施して直径:150mm
φのビレツトを成形し、この場合熱間加工性を評
価する目的でビレツトに割れの発生があるか否か
を観察し、引続いて前記ビレツトより熱間押出加
工により直径:60mmφ×肉厚:4mmの素管を成形
した後、さらにこれに抽伸加工にて2%の冷間加
工を施して直径:55mmφ×肉厚:3.1mmの寸法と
することによつて、本発明合金管材1〜22、比較
合金管材1〜8、および従来合金管材1〜3をそ
れぞれ製造し、引続いて本発明合金管材1〜22と
比較合金管材1〜8には温度:650℃に15時間保
持の時効処理を施した。 なお、比較合金管材1〜8は、いずれも構成成
分のうちのいずれかの成分の含有量(第1表には
※印を付して表示)がこの発明の範囲から外れた
組成をもつものであり、また従来合金管材1は、
JIS・316に、従来合金管材2はインコロイ800
に、さらに従来合金管材3はJIS・SUS329J1にそ
れぞれ相当する組成をもつものである。 ついで、この結果得られた本発明合金管材1〜
22、比較合金管材1〜8、および従来合金管材1
〜3より長さ:20mmの試験片をそれぞれ切出し、
この試験片より長さ方向にそつて60゜に相当する
部分を切落し、この状態の試験片に第3図に正面
図で示されるようにボルトを貫通し、ナツト
The present invention relates to a precipitation-strengthened alloy that has high strength and excellent stress corrosion cracking resistance and is particularly suitable for use in the manufacture of oil country tubular goods. In recent years, due to the deterioration of the energy situation, there has been a marked tendency for oil and natural gas wells to become deeper.
Deep wells have appeared that are over 6,000 meters deep, and some are over 10,000 meters deep. Furthermore, due to similar circumstances, it is becoming increasingly difficult to extract oil and natural gas in a harsh corrosive environment containing humid hydrogen sulfide, as well as corrosive components such as carbon dioxide gas and chloride ions. As oil and natural gas are drilled in such harsh environments, the oil country tubular goods used in this process are now required to have high strength and excellent corrosion resistance, especially stress corrosion cracking resistance. . As a general anti-corrosion measure for oil country tubular goods, it is known to introduce a corrosion suppressant called an inhibitor, but this method is often not effective for use in, for example, offshore oil wells. From this point of view, consideration has recently begun to be given to the use of high-grade corrosion-resistant high-alloy steels such as stainless steel and Incoloy and Hastelloy (both trade names) for the production of oil country tubular goods. Regarding the corrosion behavior of H 2 S−CO 2 −Cl in an oil well environment, the details have not yet been fully elucidated, and furthermore, it does not have the high strength required for oil country tubular goods for deep wells. is the current situation. Therefore, from the above-mentioned point of view, the present inventors investigated deep wells and severe corrosive environments, especially H 2 S−CO 2
As a result of research aimed at obtaining oil country tubular goods with high strength and excellent stress corrosion cracking resistance that can withstand oil drilling in a Cl - oil well environment, we found that (a) H 2 S−CO 2 − The main type of corrosion in a Cl - environment is stress corrosion cracking, but the behavior of stress corrosion cracking in this case is completely different from that of general stainless steel. In other words, whereas general stress corrosion cracking is deeply related to the presence of Cl - , in the oil well environment mentioned above, the influence of H 2 S is greater than that of Cl - . (b) Steel pipes used for practical use as oil country tubular goods are generally
Cold working is performed to improve strength, but cold working significantly reduces the resistance to stress corrosion cracking. (c) The elution rate (corrosion rate) of steel in an H 2 S−CO 2 −Cl environment depends on the contents of Cr, Ni, Mo, and W, and is affected by the surface film made of these components. Corrosion resistance is maintained and these components are
It also increases its resistance to stress corrosion cracking, and in particular, Mo is 10 times more effective than Cr and twice as effective as W.
Mo and W satisfy the following conditional expressions: Cr (%) + 10Mo (%) + 5W (%) ≧110%, 7.5%≦Mo (%) + 1/2W (%)≦12%, and the Ni content 30-60
%, and the Cr content is 15 to 35%, even if it is a cold-worked material if it is aged, it will be exposed to extremely corrosive H 2 S−CO 2 −Cl oil well environments, especially at temperatures above 200°C. It is possible to obtain a surface film that exhibits excellent resistance to stress corrosion cracking in adverse environments. (d) Ni has the effect of increasing stress corrosion cracking resistance not only on the surface film but also on the structure. (e) When 0.05 to 0.25% of N is included as an alloy component, the alloy strength improves. (f) When 0.5 to 4% of one or both of Nb and V are contained as alloying ingredients, the alloy will have even higher strength due to precipitation strengthening. (g) When the S content as an unavoidable impurity is reduced to 0.0007% or less, the hot workability of the alloy will be significantly improved. (h) When the P content as an unavoidable impurity is reduced to 0.003% or less, the susceptibility to hydrogen cracking significantly decreases. (i) Cu: 2% or less and Co: 2 as alloy components
% or less, the corrosion resistance is further improved. (j) Rare earth elements: 0.10% or less as alloy components;
Y: 0.20% or less, Mg: 0.10% or less, and
Ca: When one or more of 0.10% or less is contained, hot workability is further improved. The findings shown in (a) to (j) above were obtained. Therefore, this invention was made based on the above knowledge, and includes C: 1.0% or less, Si:
1.0% or less, Mn: 2.0% or less, P: 0.030% or less,
Preferably, for the purpose of further improving hydrogen cracking resistance, P: 0.003% or less, S: 0.005% or less, desirably S: 0.0007% for the purpose of further improving hot workability.
Below, N: 0.05-0.25%, Ni: 30-60%, Cr: 15
~35%, one or two of Nb and V: 0.5 to 4%, one or two of Mo: 12% or less and W: 24% or less, Furthermore, Cu: 2% or less and
Co: 2% or less, rare earth element: 0.10% or less, Y: 0.20% or less, Mg: 0.10
% or less, and Ca: 0.10% or less, with the remainder consisting of Fe and unavoidable impurities (all % by weight and % by weight). , Cr (%) + 10Mo (%) + 5W (%) ≧110%, 7.5%≦Mo (%) + 1/2W (%)≦12%, and has high strength and excellent stress corrosion resistance. It is characterized by being a precipitation-strengthened alloy that has crackability and is particularly suitable for use in the production of oil country tubular goods that require these properties. Next, the reason why the composition range of the alloy of the present invention is limited as described above will be explained. (a) C If its content exceeds 0.10%, stress corrosion cracking is likely to occur at grain boundaries, so the upper limit value was set at 0.10%. (b) Si Si is a necessary component as a deoxidizing component, but if its content exceeds 1.0%, hot workability will deteriorate, so the upper limit value should be set at 1.0%.
It was determined that (c) Mn The Mn component has a deoxidizing effect like Si, and since this component has little effect on stress corrosion cracking resistance, the upper limit was set at a rather high value of 2.0%. (d) P The P component as an unavoidable impurity has the effect of increasing stress corrosion cracking susceptibility when its content exceeds 0.030%, so the upper limit should be set at 0.030%.
It is necessary to set the stress corrosion cracking susceptibility to a low state by setting the %. It has also been found that as the P content is reduced, hydrogen cracking resistance rapidly improves after reaching 0.003%.
From this point of view, when particularly excellent hydrogen cracking resistance is required, it is desirable that the P content be 0.0030% or less. (e) S The S component as an unavoidable impurity has the effect of deteriorating hot workability when its content exceeds 0.005%, so the upper limit is set at 0.005% to reduce the deterioration of hot workability. It is necessary to prevent this. In this way, the S component has the effect of deteriorating hot workability when its content increases, but when its content is lowered to 0.0007%, hot workability is further improved. Therefore, if hot working under severe conditions is required, it is desirable to set the S content to 0.0007% or less. (f) N N has the effect of improving the strength of the alloy through solid solution strengthening, but if its content is less than 0.05%, the desired high strength cannot be obtained;
If the content exceeds 0.25%, nitrides will be formed during aging treatment and the corrosion resistance of the alloy will deteriorate, so the content was set at 0.05 to 0.25%. (g) Ni The Ni component has the effect of improving the stress corrosion cracking resistance of the alloy, but if its content is less than 30%, the desired excellent stress corrosion cracking resistance cannot be secured; Even if the content exceeds 30%, there is no further improvement in stress corrosion cracking resistance, and considering economic efficiency, the content is reduced to 30%.
~60%. (h) Cr The Cr component is a component that significantly improves stress corrosion cracking resistance when coexisting with Ni, Mo, and W components, but even if its content is less than 15%, hot workability is improved. On the contrary, in order to ensure the desired stress corrosion cracking resistance, the content of Mo and W must be increased by that amount, which is economically disadvantageous. The lower limit was set at 15%. On the other hand, if the S content exceeds 35%, deterioration of hot workability cannot be avoided no matter how much the S content is reduced, so the upper limit was set at 35%. (i) Nb and V These components mainly have the uniform effect of forming intermetallic compounds with Ni to strengthen the alloy by precipitation, but if their content is less than 0.5%, the desired high strength cannot be achieved. On the other hand, if the content exceeds 4%, the ductility and toughness will decrease, and the hot workability will also deteriorate. Therefore, the content was set at 0.5 to 4%. Therefore, when manufacturing oil country tubular goods from the alloy of the present invention, it is necessary to perform cold working at a working rate of 10 to 60% or after cold working at a temperature of 450 to 800°C at an appropriate point in the manufacturing process. It is necessary to perform aging treatment for 20 hours to strengthen the precipitation. (j) Mo and W As mentioned above, these components have an equal effect on improving stress corrosion cracking resistance when coexisting with Ni and Cr, but each Mo: 12
%, and W: Even if the content exceeds 24%, no further improvement effect will be obtained in a corrosive environment of H 2 S-CO 2 -Cl - where the environmental temperature is 200°C or higher, and it is difficult to consider economic efficiency. The content of each is Mo: 12
% or less, W: 24% or less. In addition, regarding the content of Mo and W, the conditional expression: Mo (%) + 1/2W (%) is specified because W has approximately twice the atomic weight of Mo, and is approximately 1/2 as effective in terms of effectiveness. Therefore, if this value is less than 7.5%, the desired stress corrosion cracking resistance cannot be obtained, especially in the adverse environment above 200℃, but on the other hand, even if this value is increased beyond 12%, As mentioned above, the content of substantially unnecessary amounts of Mo and W is uneconomical, and from this point of view, the value of Mo (%) + 1/2 W (%) was set to 7.5 to 12%. (k) Cu and Co These components have a uniform effect of improving the corrosion resistance of the alloy, and Co has a solid solution strengthening effect, so they can be used as necessary when these properties are especially required. It contains Cu, but Cu is 2
If the Co content exceeds 2%, the hot workability will deteriorate, while if the Co content exceeds 2%, there will be no further improvement effect.
Each content is Cu: 2% or less, Co: 2%
It was determined as follows. (l) Rare earth elements, Y, Mg, and Ca These components have the uniform effect of further improving hot workability, so they may be added as necessary when hot working is performed under severe conditions. However, rare earth elements: 0.10%, Y:
Even if the content exceeds 0.20%, Mg: 0.10%, and Ca: 0.10%, there is no improvement effect on hot workability, and in fact, deterioration phenomenon appears. Rare earth elements: 0.10% or less, Y: 0.20% or less, Mg: 0.10%
and Ca: 0.10% or less. (m) Cr (%) + 10Mo (%) + 5W (%) Figure 1 shows stress corrosion cracking resistance under severe corrosive environments. Cr (%) + 10Mo (%) + 5W (%)
This shows the relationship between Ni (%) and Ni (%). That is, Cr-Ni-Mo system, Cr-Ni-W system with various contents of Cr, Ni, Mo, and W
system, and Cr-Ni-Mo-W system steel,
It is cast, forged and hot rolled into a plate with a thickness of 7mm, and then heated to 1050°C for 30 minutes.
After holding for 30 minutes, water-cooling solution treatment was applied, cold working was applied at a processing rate of 22% for the purpose of improving strength, and then aging treatment was performed at a temperature of 650°C for 15 hours. A test piece of thickness: 2 mm x width: 10 mm x length: 75 mm was cut out from the steel plate perpendicular to the rolling direction, and the test piece S
H2S at 10 atm H2S and 10 atm CO2 with an applied tensile stress corresponding to 0.2% yield strength.
A stress corrosion cracking test was conducted by immersing the specimen in a 20% NaCl solution (temperature: 300°C) saturated with CO 2 for 1000 hours, and after the test, the presence or absence of cracking in the test piece was observed. Based on these results, the inventors independently set a conditional expression: Cr
It has become clear that there is a relationship between (%) + 10Mo (%) + 5W (%) and Ni content with respect to stress corrosion cracking resistance, as shown in Figure 1. In FIG. 1, the ◯ mark indicates no cracking, and the x mark indicates cracking. From the results shown in Figure 1, Cr (%) +
It is clear that the desired excellent stress corrosion cracking resistance cannot be obtained when the value of 10Mo (%) + 5W (%) is less than 110% and the Ni content is less than 30%. Furthermore, even if the alloy of the present invention contains Ti, Al, B, Sn, Pb, and Zn as unavoidable impurities within a range of 0.1% or less, the properties of the alloy of the present invention will not be impaired in any way. . Next, the alloy of the present invention will be explained using examples while comparing with comparative examples and conventional examples. Example Molten metal having the composition shown in Table 1 is heated in a normal electric furnace, an Ar-oxygen decarburization furnace (AOD furnace) for the purpose of nitrogen inclusion and desulfurization, and, if necessary, for the purpose of dephosphorization. Diameter: 500mm after melting using electroslag melting furnace (ESR furnace)
It is cast into a φ ingot, and then hot forged at a temperature of 1200°C to create a diameter of 150mm.
A billet of φ is formed, and in this case, for the purpose of evaluating hot workability, it is observed whether or not cracks occur in the billet, and then the billet is hot extruded to form a billet with a diameter of 60 mmφ x wall thickness: After forming a 4 mm raw tube, it is further subjected to 2% cold working by drawing processing to obtain dimensions of diameter: 55 mmφ x wall thickness: 3.1 mm, thereby producing alloy tube materials 1 to 22 of the present invention. , comparative alloy tube materials 1 to 8, and conventional alloy tube materials 1 to 3 were manufactured, respectively, and subsequently, the present invention alloy tube materials 1 to 22 and comparative alloy tube materials 1 to 8 were subjected to aging treatment at a temperature of 650°C for 15 hours. was applied. In addition, Comparative Alloy Tube Materials 1 to 8 all have compositions in which the content of one of the constituent components (indicated with an asterisk in Table 1) is outside the scope of this invention. And, the conventional alloy tube material 1 is
According to JIS 316, the conventional alloy tube material 2 is Incoloy 800.
Furthermore, the conventional alloy tube material 3 has a composition corresponding to JIS and SUS329J1. Next, the resulting alloy tube materials 1 to 1 of the present invention
22, comparative alloy pipe materials 1 to 8, and conventional alloy pipe material 1
From ~3, cut out a test piece with a length of 20 mm,
A section corresponding to 60° was cut off from this test piece in the length direction, and a bolt was passed through the test piece in this state as shown in the front view in Figure 3, and a nut was inserted into the test piece.

【表】【table】

【表】【table】

【表】【table】

【表】 でしめつけて管外表面に0.2%耐力に相当する引
張応力を付加し、この状態の試験片Sに対して、
H2S分圧をそれぞれ0.1気圧、1気圧、および15
気圧としたH2S−10気圧CO2−20%NaCl溶液(液
温:300℃)中に1000時間浸漬の応力腐食割れ試
験を行ない、試験後における応力腐食割れの有無
を調査した。この結果を、上記の熱間鍛造時の割
れ発生の有無、引張試験結果、および衝撃試験結
果と共に、第2表に合せて示した。なお、第2表
において、〇印はいずれも割れ発生のないものを
示し、一方×印は割れ発生のあつたものを示す。 第2表に示される結果から、比較合金管材1〜
8は、熱間加工性、耐応力腐食割れ性、および強
度のうちの少くともいずれかの性質が劣つたもの
であるのに対して、本発明合金管材1〜22は、い
ずれもすぐれた熱間加工性および耐応力腐食割れ
性を有し、さらに高強度を有し、かつ熱間加工性
は良好であるが、相対的に強度が低く、しかも耐
応力腐食割れ性に劣る従来合金管材1〜3と比較
しても一段とすぐれた特性を有することが明らか
である。 上述のように、この発明の合金は、特に高強度
および優れた耐応力腐食割れ性を有しているの
で、これらの特性が要求される苛酷な環境下での
石油および天然ガス採掘に用いられる油井管とし
て、さらに地熱井管として使用した場合にきわめ
て優れた性能を発揮するのである。
[Table] A tensile stress equivalent to 0.2% proof stress was applied to the outer surface of the tube by tightening it, and for the test piece S in this state,
H2S partial pressures are 0.1 atm, 1 atm, and 15, respectively.
A stress corrosion cracking test was carried out by immersion in H 2 S - 10 atm CO 2 - 20% NaCl solution (liquid temperature: 300°C) for 1000 hours, and the presence or absence of stress corrosion cracking after the test was investigated. The results are shown in Table 2 together with the presence or absence of cracking during hot forging, the tensile test results, and the impact test results. In Table 2, the ○ marks indicate those with no cracks, while the x marks indicate those with cracks. From the results shown in Table 2, comparative alloy tube materials 1 to
Alloy tube materials 1 to 22 of the present invention have excellent heat workability, stress corrosion cracking resistance, and strength. Conventional alloy tube material 1 that has good workability and stress corrosion cracking resistance, has high strength, and has good hot workability, but has relatively low strength and poor stress corrosion cracking resistance. It is clear that it has even better characteristics when compared to 3. As mentioned above, the alloy of the present invention has particularly high strength and excellent resistance to stress corrosion cracking, making it suitable for use in oil and natural gas extraction in harsh environments where these properties are required. It exhibits extremely excellent performance when used as oil country tubular goods and geothermal country tubular goods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は合金の耐応力腐食割れ性に関し、Ni
含有量とCr(%)+10Mo(%)+5W(%)との関
係を示した図、第2図および第3図はそれぞれ板
状および管状試験片に対する応力腐食割れ試験の
態様を示す図である。
Figure 1 shows the stress corrosion cracking resistance of alloys.
A diagram showing the relationship between content and Cr (%) + 10Mo (%) + 5W (%), Figures 2 and 3 are diagrams showing the mode of stress corrosion cracking tests on plate-shaped and tubular specimens, respectively. .

Claims (1)

【特許請求の範囲】 1 C:0.1%以下、Si:1.0%以下、Mn:2.0%
以下、P:0.030%以下、S:0.005%以下、N:
0.05〜0.25%、Ni:30〜60%、Cr:15〜35%を含
有し、NbおよびVのうちの1種または2種:0.5
〜4%を含有し、さらにMo:12%以下および
W:24%以下のうちの1種または2種を含有し、
残りがFeと不可避不純物からなる組成(以上重
量%)を有し、かつ、 Cr(%)+10Mo(%) +5W(%)≧110%, 7.5%≦Mo(%)+1/2W(%)≦12%, の条件を満足することを特徴とする耐応力腐食割
れ性に優れた高強度油井管用析出強化型合金。 2 C:0.1%以下、Si:1.0%以下、Mn:2.0%
以下、P:0.030%以下、S:0.005%以下、N:
0.05〜0.25%、Ni:30〜60%、Cr:15〜35%を含
有し、NbおよびVのうちの1種または2種:0.5
〜4%を含有し、Mo:12%以下およびW:24%
以下のうちの1種または2種を含有し、さらに
Cu:2%以下およびCo:2%以下のうちの1種
または2種を含有し、残りがFeと不可避不純物
からなる組成(以上重量%)を有し、かつ、 Cr(%)+10Mo(%) +5W(%)≧110%, 7.5%≦Mo(%)+1/2W(%)≦12%, の条件を満足することを特徴とする耐応力腐食割
れ性に優れた高強度油井管用析出強化型合金。 3 C:0.1%以下、Si:1.0%以下、Mn:2.0%
以下、P:0.030%以下、S:0.005%以下、N:
0.05〜0.25%、Ni:30〜60%、Cr:15〜35%を含
有し、NbおよびVのうちの1種または2種:0.5
〜4%を含有し、Mo:12%以下およびW:24%
以下のうちの1種または2種を含有し、さらに希
土類元素:0.10%以下、Y:0.20%以下、Mg:
0.10%以下、およびCa:0.10%以下のうちの1種
または2種以上を含有し、残りがFeと不可避不
純物からなる組成(以上重量%)を有し、かつ、 Cr(%)+10Mo(%) +5W(%)≧110%, 7.5%≦Mo(%)+1/2W(%)≦12%, の条件を満足することを特徴とする耐応力腐食割
れ性に優れた高強度油井管用析出強化型合金。 4 C:0.1%以下、Si:1.0%以下、Mn:2.0%
以下、P:0.030%以下、S:0.005%以下、N:
0.05〜0.25%、Ni:30〜60%、Cr:15〜35%を含
有し、NbおよびVのうちの1種または2種:0.5
〜4%を含有し、Mo:12%以下およびW:24%
以下のうちの1種または2種を含有し、さらに
Cu:2%以下およびCo:2%以下のうちの1種
または2種と、希土類元素:0.10%以下、Y:
0.20%以下、Mg:0.10%以下、およびCa:0.10
%以下のうちの1種または2種以上を含有し、残
りがFeと不可避不純物からなる組成(以上重量
%)を有し、かつ、 Cr(%)+10Mo(%) +5W(%)≧110%, 7.5%≦Mo(%)+1/2W(%)≦12%, の条件を満足することを特徴とする耐応力腐食割
れ性に優れた高強度油井管用析出強化型合金。
[Claims] 1 C: 0.1% or less, Si: 1.0% or less, Mn: 2.0%
Below, P: 0.030% or less, S: 0.005% or less, N:
Contains 0.05 to 0.25%, Ni: 30 to 60%, Cr: 15 to 35%, and one or two of Nb and V: 0.5
-4%, and further contains one or two of Mo: 12% or less and W: 24% or less,
The remainder has a composition (weight%) consisting of Fe and unavoidable impurities, and Cr (%) + 10Mo (%) + 5W (%) ≧ 110%, 7.5% ≦ Mo (%) + 1/2W (%) ≦ A precipitation-strengthened alloy for high-strength oil country tubular goods with excellent stress corrosion cracking resistance that satisfies the conditions of 12%. 2 C: 0.1% or less, Si: 1.0% or less, Mn: 2.0%
Below, P: 0.030% or less, S: 0.005% or less, N:
Contains 0.05 to 0.25%, Ni: 30 to 60%, Cr: 15 to 35%, and one or two of Nb and V: 0.5
Contains ~4%, Mo: 12% or less and W: 24%
Contains one or two of the following, and further
Contains one or two of Cu: 2% or less and Co: 2% or less, with the remainder consisting of Fe and unavoidable impurities (weight%), and Cr (%) + 10Mo (%) ) +5W (%)≧110%, 7.5%≦Mo (%) + 1/2W (%)≦12%, precipitation strengthening for high-strength oil country tubular goods with excellent stress corrosion cracking resistance. mold alloy. 3 C: 0.1% or less, Si: 1.0% or less, Mn: 2.0%
Below, P: 0.030% or less, S: 0.005% or less, N:
Contains 0.05 to 0.25%, Ni: 30 to 60%, Cr: 15 to 35%, and one or two of Nb and V: 0.5
Contains ~4%, Mo: 12% or less and W: 24%
Contains one or two of the following, and further includes rare earth elements: 0.10% or less, Y: 0.20% or less, Mg:
0.10% or less and Ca: 0.10% or less, and has a composition (weight %) with the remainder consisting of Fe and unavoidable impurities, and Cr (%) + 10Mo (%) ) +5W (%)≧110%, 7.5%≦Mo (%) + 1/2W (%)≦12%, precipitation strengthening for high-strength oil country tubular goods with excellent stress corrosion cracking resistance. mold alloy. 4 C: 0.1% or less, Si: 1.0% or less, Mn: 2.0%
Below, P: 0.030% or less, S: 0.005% or less, N:
Contains 0.05 to 0.25%, Ni: 30 to 60%, Cr: 15 to 35%, and one or two of Nb and V: 0.5
Contains ~4%, Mo: 12% or less and W: 24%
Contains one or two of the following, and further
One or two of Cu: 2% or less and Co: 2% or less, rare earth element: 0.10% or less, Y:
0.20% or less, Mg: 0.10% or less, and Ca: 0.10
% or less, with the remainder consisting of Fe and unavoidable impurities (weight %), and Cr (%) + 10Mo (%) + 5W (%) ≧ 110% , 7.5%≦Mo(%)+1/2W(%)≦12%, A precipitation-strengthened alloy for high-strength oil country tubular goods with excellent stress corrosion cracking resistance.
JP9317481A 1981-06-10 1981-06-17 Precipitation hardening type alloy for high strength oil well pipe with superior stress corrosion cracking resistance Granted JPS57210938A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP9317481A JPS57210938A (en) 1981-06-17 1981-06-17 Precipitation hardening type alloy for high strength oil well pipe with superior stress corrosion cracking resistance
US06/383,630 US4400211A (en) 1981-06-10 1982-06-01 Alloy for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking
GB08216701A GB2102834B (en) 1981-06-10 1982-06-09 Alloy for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking
DE3221857A DE3221857C2 (en) 1981-06-10 1982-06-09 Iron alloy with increased resistance to stress corrosion cracking
SE8203629A SE454360C (en) 1981-06-10 1982-06-10 Alloy for deep drilling and use of this for feeding and stirring for deep drilling
FR8210117A FR2507629B1 (en) 1981-06-10 1982-06-10 HIGH-STRENGTH ALLOY TO TENSIO N CORROSION CRACKING, ESPECIALLY FOR THE REALIZATION OF TUBULAR PRODUCTS FOR DEEP WELLS
GB8506639A GB2154611B (en) 1981-06-10 1985-03-14 Alloy for high strength deep well casing and tubing having improved resistance to stress-corrosion cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9317481A JPS57210938A (en) 1981-06-17 1981-06-17 Precipitation hardening type alloy for high strength oil well pipe with superior stress corrosion cracking resistance

Publications (2)

Publication Number Publication Date
JPS57210938A JPS57210938A (en) 1982-12-24
JPS6144135B2 true JPS6144135B2 (en) 1986-10-01

Family

ID=14075200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9317481A Granted JPS57210938A (en) 1981-06-10 1981-06-17 Precipitation hardening type alloy for high strength oil well pipe with superior stress corrosion cracking resistance

Country Status (1)

Country Link
JP (1) JPS57210938A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224764A (en) * 1984-04-24 1985-11-09 Sumitomo Metal Ind Ltd Austenite stainless steel containing n for high temperature
JPH0674472B2 (en) * 1986-01-07 1994-09-21 住友金属工業株式会社 High-strength Ni-based alloy with excellent corrosion resistance
JPH0674474B2 (en) * 1986-01-07 1994-09-21 住友金属工業株式会社 High-strength Ni-based alloy with excellent corrosion resistance
JPS63100152A (en) * 1986-10-15 1988-05-02 Kubota Ltd Highly corrosion-resistant casting alloy
JPS63137133A (en) * 1986-11-28 1988-06-09 Sumitomo Metal Ind Ltd Highly corrosion-resistant precipitation hardening-type ni-base alloy
EP2455504A1 (en) * 2010-11-19 2012-05-23 Schmidt + Clemens GmbH + Co. KG Nickel-chromium-iron-molybdenum alloy
WO2019224287A1 (en) * 2018-05-23 2019-11-28 Ab Sandvik Materials Technology New austenitic alloy
US20220411906A1 (en) * 2019-10-10 2022-12-29 Nippon Steel Corporation Alloy material and oil-well seamless pipe

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54110918A (en) * 1978-02-21 1979-08-30 Cabot Corp Anticorrosion nickel alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54110918A (en) * 1978-02-21 1979-08-30 Cabot Corp Anticorrosion nickel alloy

Also Published As

Publication number Publication date
JPS57210938A (en) 1982-12-24

Similar Documents

Publication Publication Date Title
JP2500162B2 (en) High strength duplex stainless steel with excellent corrosion resistance
US4400211A (en) Alloy for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking
JPS625977B2 (en)
JP2003525354A (en) Duplex stainless steel
JPS625976B2 (en)
JPS6144133B2 (en)
JPS6144135B2 (en)
JPS6363608B2 (en)
JPS6362569B2 (en)
JPS6363610B2 (en)
JPS6144128B2 (en)
JPS6144126B2 (en)
JPS6144134B2 (en)
JPS6363609B2 (en)
JPS6199660A (en) High strength welded steel pipe for line pipe
JPS581044A (en) High strength alloy having superior stress corrosion cracking resistance for oil well pipe
JPS6144125B2 (en)
JPH0372698B2 (en)
JPS6363606B2 (en)
JPH0371506B2 (en)
JPS6144132B2 (en)
JPS6144127B2 (en)
JPS6363611B2 (en)
JP3470418B2 (en) High strength austenitic alloy with excellent seawater corrosion resistance and hydrogen sulfide corrosion resistance
JPH0372699B2 (en)