JPS6363608B2 - - Google Patents

Info

Publication number
JPS6363608B2
JPS6363608B2 JP56106915A JP10691581A JPS6363608B2 JP S6363608 B2 JPS6363608 B2 JP S6363608B2 JP 56106915 A JP56106915 A JP 56106915A JP 10691581 A JP10691581 A JP 10691581A JP S6363608 B2 JPS6363608 B2 JP S6363608B2
Authority
JP
Japan
Prior art keywords
less
calculated
limit temperature
temperature
stress corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56106915A
Other languages
Japanese (ja)
Other versions
JPS589924A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10691581A priority Critical patent/JPS589924A/en
Priority to US06/389,568 priority patent/US4421571A/en
Priority to GB08217860A priority patent/GB2104100B/en
Priority to SE8204121A priority patent/SE461986C/en
Priority to FR8211645A priority patent/FR2508930A1/en
Priority to DE3224865A priority patent/DE3224865C2/en
Publication of JPS589924A publication Critical patent/JPS589924A/en
Publication of JPS6363608B2 publication Critical patent/JPS6363608B2/ja
Priority to SE8901647A priority patent/SE502102C2/en
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、優れた耐応力腐食割れ性を有する
高強度油井管の製造法に関するものである。 近年、エネルギー事情の悪化から、油井および
天然ガス井は深井戸化の傾向が著しく、深さ:
6000m以上、なかには深さ:10000m以上の深井
戸が出現している。 また、同様な事情から、湿潤な硫化水素をはじ
め、炭酸ガス塩素イオンなどの腐食性成分を含有
する苛酷な腐食環境下での石油および天然ガスの
採掘が予義なくされつつある。 このような厳しい環境下での石油および天然ガ
スの掘削に伴い、これに使用される油井管にも高
強度、並びに優れた耐食性、特に耐応力腐食割れ
性が要求されるようになつてきている。 油井管の一般的腐食対策として、インヒビタと
呼ばれる腐食抑制剤を投入する方法が知られてい
るが、この方法は、例えば海上油井などには有効
に活用できない場合が多い。 かかる点から、最近では油井管の製造に、ステ
ンレス鋼はじめ、インコロイやハステロイ(いず
れも商品名)といつた高級な耐食性高合金鋼の採
用も検討されはじめているが、いまのところ、こ
れらの合金に関して、H2S―CO2―Cl-の油井環
境での腐食挙動についての詳細は十分に解明され
るに至つておらず、しかも深井戸用油井管に要求
される高強度をもつものではないのが現状であ
る。 そこで、本発明者等は、上述のような観点か
ら、深井戸や苛酷な腐食環境、特にH2S―CO2
Cl-の油井環境下での石油掘削に十分耐え得る高
強度とすぐれた耐応力腐食割れ性とを有する油井
管を製造すべく研究を行なつた結果、 (a) H2S―CO2―Cl-環境下における腐食の主た
るものは応力腐食割れであるが、この場合の応
力腐食割れ態様は、オーステナイトステンレス
鋼における一般的なそれとは挙動を全く異にす
るものであること。すなわち、一般の応力腐食
割れがCl-の存在と深く係わるものであるのに
対して、上記の油井環境によるものではCl-
さることながら、それ以上にH2Sの影響が大き
いこと。 (b) 油井管として実用に供される鋼管は一般に、
強度上の必要から冷間加工が施されるが、冷間
加工は上記応力腐食割れに対する抵抗性を著し
く減少させること。 (c) H2S―CO2―Cl-環境での鋼の溶出速度(腐
食速度)は、Cr、Ni、Mo、およびWの含有量
に依存し、これらの成分からなる表面皮膜によ
つて耐食性が保持され、かつこれらの成分は、
応力腐食割れに対してもその抵抗性を高め、特
にMoはCrに対し10倍の効果を、またMoはW
の2倍の効果をもつており、したがつて、この
MoおよびWが、 Cr(%)+10Mo(%)+5W(%)≧110%、 8%≦Mo(%)+1/2W(%)≦12%、 の条件を満足すると共に、Ni含有量を30〜60
%、Cr含有を15〜30%とすると、冷間加工材
であつても、きわめて腐食性の強いH2S―CO2
―Cl-の油井環境下、特に200℃以上の悪環境に
おいて、応力腐食割れに対して優れた抵抗性を
示す表面皮膜が得られること。 (d) Niについては表面皮膜に対する効果だけで
なく、組織的にも応力腐食割れ抵抗性を高める
効果があること。 (e) 合金成分としてNを0.05〜0.3%の範囲で含
有させると一段と管材強度が向上するようにな
ること。 (f) 不可避不純物としてのS含有量を0.0007%以
下に低減させると、管材の熱間加工性が著しく
改善されるようになること。 (g) 不可避不純物としてのP含有量を0.003%以
下に低減させると、水素割れ感受性が著しく低
下するようになること。 (h) 合金成分としてCu:2%以下およびCo:2
%以下のうちの1種または2種を含有させる
と、耐食性がさらに改善されるようになるこ
と。 (i) 合金成分として、希土類元素:0.10%以下、
Y:0.20%以下、Mg:0.10%以下、Ti:0.5%
以下、およびCa:0.10%以下のうちの1種また
は2種以上を含有させると、熱間加工性がさら
に一段と改善されるようになること。 (j) しかし、所望の高強度を確保するためには、
上記組成の合金を、経験式:260logC(%)+
1300で算出された下限温度(℃)と、同じく経
験式:16Mo(%)+10W(%)+10Cr(%)+777
で算出された上限温度(℃)の間の温度に2時
間以下保持の条件で熱処理して炭化物を完全に
固溶し、かつ固溶化後の合計に10〜60%の肉厚
減少率で冷間加工を施す必要があること。 以上(a)〜(j)に示される知見を得たのである。 したがつて、この発明は上記知見にもとづいて
なされたものであつて、C:0.05%以下、Si:1.0
%以下、Mn:2.0%以下、P:0.030%以下、望
ましくは耐水素割れ性を一段と改善する目的で、
P:0.003%以下、S:0.005%以下、望ましくは
熱間加工性を一段と改善する目的でS:0.0007%
以下、sol.al:0.5%以下、Ni:30〜60%、Cr:
15〜30%を含有し、Mo:12%以下およびW:24
%以下のうちの1種または2種を含有し、さらに
必要に応じて、N:0.05〜0.3%、Cu:2%以下、
Co:2%以下、希土類元素:0.10%以下、Y:
1.20%以下、Mg:0.10%以下、Ti:0.5%以下、
およびCa:0.10%以下のうちの1種または2種以
上を含有し、残りがFeと不可避不純物からなる
組成(以上重量%、以下%の表示はすべて重量%
を意味する)を有し、かつ、 Cr(%)+10Mo(%)+5W(%)≧110%、 8%≦Mo(%)+1/2W(%)≦12%、 の条件を満足する合金を、260logC(%)+1300で
算出された下限温度(℃)と、16Mo(%)+10W
(%)+10Cr(%)+777で算出された上限温度
(℃)の間の温度に、2時間以下保持の条件で固
溶化処理した後、10〜60%の肉厚減少率で冷間加
工することによつて、耐応力腐食割れ性に優れた
高強度油井管を製造する方法に特徴を有するもの
である。 つぎに、この発明の油井管の製造法において、
成分組成、溶体化処理条件、および冷間加工にお
ける肉厚減少率を上記の通りに限定した理由を以
下に説明する。 A 成分 (a) C C含有量を低くすればするほど炭化物の析
出が抑制されるようになるので、固溶化処理
をより低い温度で実施でき、このことは冷間
加工後の強度上昇により有効に作用するもの
である。したがつて、C含有量はできるだけ
低い方が望ましいが、C含有量が0.05%を越
えると、粒界応力腐食割れが生じやすくなる
ことから、その上限値を0.05%と定めた。 (b) Si Siは脱酸成分として必要な成分であるが、
その含有量が1.0%を越えると熱間加工性が
劣化するようになることから、その上限値を
1.0%と定めた。 (c) Mn Mn成分には、Siと同様に脱酸作用があり、
しかもこの成分は応力腐食割れ性にほとんど
影響を及ぼさない成分であることから、その
上限値を高めの2.0%と定めた。 (d) P 不可避不純物としてのP成分には、その含
有量が0.030%を越えると、応力腐食割れ感
受性を高める作用が現われるので、上限値を
0.030%と定めて応力腐食割れ感受性を位の
状態とする必要がある。また、P含有量を低
減してゆくと、0.003%を境にして急激に耐
水素割れ性が改善されるようになることが判
明しており、かかる点から、特にすぐれた耐
水素割れ性を必要とする場合には、P含有量
を0.0030%以下とするのが望ましい。 (e) S 不可避不純物としてのS成分には、その含
有量が0.005%を越えると、熱間加工性を劣
化させる作用があるので、その上限値を
0.005%と定めて熱間加工性の劣化を防止す
る必要がある。このようにS成分には、含有
量が多くなると熱間加工性を劣化させる作用
があるが、その含有量を低めてゆき、0.0007
%まで低減すると、逆に熱間加工性が一段と
改善されるようになることから、厳しい条件
での熱間加工性を必要とする場合には、S含
有量を0.0007%以下とするのが望ましい。 (f) Al AlはSiおよびMnと同様に脱酸成分として
有効であり、sol.Al含有量で0.5%まで含有さ
せても管材の特性を何らそこなうものではな
いことから、その含有量をsol.Al含有量で0.5
%以下と定めた。 (g) Ni Ni成分には管板の耐応力腐食割れ性を向
上させる作用があるが、その含有量が30%未
満では所望のすぐれた耐応力腐食割れ性を確
保することができず、一方60%を越えて含有
させても耐応力腐食割れ性にさらに一段の向
上効果は現われず、経済性をも考慮して、そ
の含有量を30〜60%と定めた。 (h) Cr Cr成分は、Ni、Mo、およびW成分との共
存において、耐応力腐食割れ性を著しく改善
する成分であるが、その含有量を15%未満と
しても熱間加工性が改善されるようになるも
のではなく、逆に所望の耐応力腐食割れ性を
確保するためには、MoやWの含有量をそれ
だけ増加させなければならず、経済的に不利
となることから、その下限値を15%と定め
た。一方、その含有量が30%を越えると、い
くらS含有量を低減させても熱間加工性の劣
化は避けることができないことから、その上
限値を30%と定めた。 (i) MoおよびW 上記のように、これらの成分には、Niお
よびCrとの共存において耐応力腐食割れ性
を改善する均等的作用があるが、それぞれ
Mo:12%、およびW:24%を越えて含有さ
せても、環境温度が200℃以上のH2S―CO2
―Cl-の腐食環境で、さらに一段の改善効果
が現われず、経済性を考慮して、それぞれの
含有量を、Mo:12%以下、W:24%以下と
定めた。また、MoとWの含有量に関して、
条件式:Mo(%)+1/2W(%)で規定するの は、WがMoに対し原子量が約2倍で、効果
の点では約1/2で均等となることからで、こ の値が8%未満では特に200℃以上の上記悪
環境下で所望の耐応力腐食割れ性が得られ
ず、一方、この値を12%を越えて高くして
も、上記の通り実質的に不必要な量のMoお
よびWの含有となり、経済的でなく、かかる
点から、Mo(%)+1/2W(%)の値を8〜12 %と定めた。 (j) N N成分には固溶強化による強度向上作用が
あるので、特に高強度が要求される場合に必
要に応じて含有されるが、その含有量が0.05
%未満では所望の強度向上効果を得ることが
できず、一方0.3%を越えて含有させると、
溶製および造塊が困難となることから、その
含有量を0.05〜0.3%と定めた。 (k) CuおよびCo これらの成分には管材の耐食性を向上させ
る均等的作用があり、かつCoにはさらに固
溶強化作用があるので、特に一段とすぐれた
耐食性が要求される場合に必要に応じて含有
されるが、Cuが2%を越えると、熱間加工
性が劣化するようになり、一方Coは2%を
越えて含有させてもより一層の改善効果は現
われないことから、その上限値をそれぞれ
Cu:2%、Co:2%と定めた。 (l) 希土類元素、Y、Mg、Ti、およびCa これらの成分には、熱間加工性をさらに改
善する均等的作用があるので、厳しい条件で
熱間加工が行なわれる場合に、必要に応じて
含有されるが、それぞれ希土類元素:0.10
%、Y:0.20%、Mg:0.10%、Ti:0.5%、
およびCa:0.10%を越えて含有させても、熱
間加工性に改善効果は見られず、むしろ劣化
現象さえ現われるようになることから、それ
ぞれの含有量を、希土類元素:0.10%以下、
Y:0.20%以下、Mg:0.10%以下、Ti:0.5
%以下、およびCa:0.10%以下と定めた。 (m) Cr(%)+10Mo(%)+5W(%) 第1図は厳しい腐食環境下での耐応力腐食
割れ性に関し、Cr(%)+10Mo(%)+5W
(%)とNi含有量の関係を示したものであ
る。すなわち、Cr、Ni、Mo、およびWの含
有量を種々変化させたCr―Ni―Mo系、Cr―
Ni―W系、およびCr―Ni―Mo―W系の鋼
を溶製し、鋳造し、鍛伸し、熱間圧延して板
厚:7mmの板材とし、ついでこの板材に、温
度:1000℃に30分保持後水冷の溶体化処理を
施した後、強度向上の目的で加工率:22%の
冷間加工を加え、この結果得られた鋼板から
圧延方向と直角に、厚さ:2mm×幅:10mm×
長さ:75mmの試験片を切り出し、この試験片
について、第2図に示す3点支持ビーム冶具
を用い、前記試験片Sに0.2%耐力に相当す
る引張応力を付加した状態で、10気圧のH2S
および10気圧のCO2でH2SおよびCO2を飽和
させた20%NaCl溶液(温度:300℃)中に
1000時間浸漬の応力腐食割れ試験を行ない、
試験後、前記試験片における割れ発生の有無
を観察した。これらの結果に基き、発明者等
が独自に設定した条件式:Cr(%)+10Mo
(%)+5W(%)とNi含有量との間には、耐
応力腐食割れ性に関して、第1図に示される
関係があることが明確になつたのである。な
お、第1図において、○印は割れ発生なし、
×印は割れ発生をそれぞれ示すものである。
第1図に示される結果から、Cr(%)+10Mo
(%)+5W(%)の値が110%未満にして、Ni
含有量が30%未満では所望のすぐれた耐応力
腐食割れ性は得られないことが明らかであ
る。 なお、この発明の合金において、不可避不純
物としてB、Sn、Pb、およびZnをそれぞれ0.1
%以下の範囲で含有しても、この発明の合金の
特性が何らそこなわれるものではない。 B 固溶化処理条件および冷間加工条件 この発明の油井管における高強度は、合金成
分の含有のほかに、炭化物を完全に固溶化した
後で、冷間加工を施すことによつて確保される
ものである。この場合炭化物の完全固溶化は、
260logC(%)+1300で算出された下限温度
(℃)と、16Mo(%)+10W(%)+10Cr(%)+
777で算出された上限温度(℃)との間の温度
に2時間以下保持することによつてはかられる
が、上記の下限温度の算出式:260logC(%)
および上限温度の算出式:16Mo(%)+10W
(%)+10Cr(%)+777は多数の試験結果にもと
づいて経験的に定めたものであつて、上記の下
限温度未満では、炭化物を完全に固溶すること
ができず、未固溶の炭化物が残存するようにな
つて応力腐食割れ感受性が高なり、一方、固溶
化処理温度が上記の上限温度を越えて高くなつ
たり、保持時間が2時間を越えて長くなつたり
すると、結晶粒が粗大化するようになつて、そ
の後の冷間加工で所望の高強度を得ることはで
きないことから、固溶化処理温度および保持時
間を上記の通りに定めた。 また、この発明では、上記のように固溶化処
理後に冷間加工を施して強度向上をはかるが、
この冷間加工が肉厚減少率で10%未満では所望
の強度を確保することができず、一方同じく肉
厚減少率で60%を越えた冷間加工を施すと、延
性および靭性の劣化が著しくなることから、冷
間加工を肉厚減少率で10〜60%と定めたのであ
る。 以上の成分組成および製造条件を適用すること
によつて0.2%耐力が85Kgf/mm2以上の高強度を
もち、かつ延性および靭性は勿論のこと、耐応力
腐食割れ性に優れた油井管を製造することができ
るのである。 つぎに、この発明の油井管製造法を実施例によ
り比較例と対比しながら具体的に説明する。 実施例 それぞれ第1表に示される成分組成をもつた溶
湯を通常の電気炉、および脱硫とN付加の目的で
Ar―酸素脱炭炉(AOD炉)を併用し、さらに必
要に応じて脱燐の目的でエレクトロスラグ溶解炉
(ESR炉)を使用して溶製した後、直径:500mm
φのインゴツトに鋳造し、ついでこのインゴツト
に温度:1200℃で熱間鍛造を施して直径:150mm
φのビレツトを成形し、この場合熱間加工性を評
価する目的でビレツトに割れの発生があるか否か
を観察し、引続いて前記ビレツトより熱間押出加
工により直径:60mmφ×肉厚:4mmの素管を成形
し、引続いて、同じくそれぞれ第1表に示される
固溶化条件(処理後の冷却はいずれも水冷)およ
び肉厚減少率で、固溶化処理と冷間加工を施すこ
とによつて、本発明合金管材1〜29、比較合金管
材1〜8、および従来合金管材1〜4をそれぞれ
製造した。 なお、比較合金管材1〜8は、構成成分のうち
のいずれかの成分の含有量、あるいは製造条件の
うちのいずれかの条件(第1表に※印を付して表
示)がこの発明の範囲から外れた条件で製造され
たものであり、また従来合金管材は、いずれも公
知の成分組成をもつものであつて、同管材1は、
JIS・SUS316に、同2はJIS・SUS310Sに、同3
はインコロイ800に、同4はJIS・SUS329J1にそ
れぞれ相当する組成をもつものである。 ついで、この結果得られた本発明合金管材1〜
29、比較合金管材1〜8、および従来合金管材1
〜4より長さ:20mmの試験片をそれぞれ切出し、
この試験片より長さ方向にそつて60゜に相当する
部分を切落し、この状態の試験片に第3図に正面
図で示されるようにボルトを貫通し、ナツトでし
めつけて管外表面に0.2%耐力に相当する引張応
力を付加し、この状態の試験片Sに対して、H2S
分圧をそれぞれ0.1気圧、1気圧、および20気圧
としたH2S―10気圧CO2―20%NaCl溶液(液
温:300℃)中に1000時間浸漬の応力腐食割れ試
験を行ない、試験後における応力腐食割れの有無
を調査した。この結果を、上記の熱間鍛造時の割
れ発生の有無、引張試験結果、および
The present invention relates to a method for manufacturing high-strength oil country tubular goods having excellent stress corrosion cracking resistance. In recent years, due to the deterioration of the energy situation, there has been a marked tendency for oil and natural gas wells to become deeper.
Deep wells over 6000m deep, some over 10000m deep, have appeared. Furthermore, due to similar circumstances, mining of oil and natural gas in a harsh corrosive environment containing corrosive components such as humid hydrogen sulfide, carbon dioxide, and chlorine ions is becoming untenable. As oil and natural gas are drilled in such harsh environments, the oil country tubular goods used in this process are now required to have high strength and excellent corrosion resistance, especially stress corrosion cracking resistance. . As a general anti-corrosion measure for oil country tubular goods, it is known to introduce a corrosion suppressant called an inhibitor, but this method is often not effective for use in, for example, offshore oil wells. From this point of view, consideration has recently begun to be given to the use of high-grade corrosion-resistant high-alloy steels such as stainless steel and Incoloy and Hastelloy (both trade names) for the production of oil country tubular goods. Regarding the corrosion behavior of H 2 S―CO 2 ―Cl - in an oil well environment, the details have not yet been fully elucidated, and furthermore, it does not have the high strength required for oil country tubular goods for deep wells. is the current situation. Therefore, from the above-mentioned point of view, the present inventors investigated deep wells and severe corrosive environments, especially H 2 S―CO 2 -
As a result of conducting research to manufacture oil country tubular goods with high strength and excellent stress corrosion cracking resistance that can sufficiently withstand oil drilling in the Cl - oil well environment, we found that (a) H 2 S―CO 2 - The main type of corrosion in a Cl - environment is stress corrosion cracking, but the behavior of stress corrosion cracking in this case is completely different from that of general austenitic stainless steel. In other words, whereas general stress corrosion cracking is deeply related to the presence of Cl - , in the oil well environment mentioned above, the influence of H 2 S is greater than that of Cl - . (b) Steel pipes used for practical use as oil country tubular goods are generally
Cold working is performed to improve strength, but cold working significantly reduces the resistance to stress corrosion cracking. (c) The elution rate (corrosion rate) of steel in an H 2 S—CO 2 —Cl environment depends on the contents of Cr, Ni, Mo, and W, and is affected by the surface film made of these components. Corrosion resistance is maintained and these components are
It also increases its resistance to stress corrosion cracking, with Mo being 10 times more effective than Cr, and Mo being 10 times more effective than W.
It has twice the effect of
Mo and W satisfy the following conditions: Cr (%) + 10Mo (%) + 5W (%) ≧110%, 8%≦Mo (%) + 1/2W (%)≦12%, and the Ni content is reduced to 30%. ~60
%, and when the Cr content is 15 to 30%, H2S - CO2 , which is extremely corrosive, even if it is a cold-worked material.
- A surface film that exhibits excellent resistance to stress corrosion cracking in a Cl - oil well environment, especially in a harsh environment of 200°C or higher, can be obtained. (d) Ni has the effect of increasing stress corrosion cracking resistance not only on the surface film but also on the structure. (e) When N is included as an alloy component in the range of 0.05 to 0.3%, the strength of the pipe material is further improved. (f) If the S content as an unavoidable impurity is reduced to 0.0007% or less, the hot workability of the pipe material will be significantly improved. (g) When the P content as an unavoidable impurity is reduced to 0.003% or less, the susceptibility to hydrogen cracking significantly decreases. (h) Cu: 2% or less and Co: 2 as alloy components
% or less, the corrosion resistance is further improved. (i) Rare earth elements: 0.10% or less as alloy components;
Y: 0.20% or less, Mg: 0.10% or less, Ti: 0.5%
When one or more of the following and Ca: 0.10% or less is contained, hot workability is further improved. (j) However, in order to ensure the desired high strength,
Empirical formula: 260logC (%) +
The lower limit temperature (℃) calculated at 1300 and the same empirical formula: 16Mo (%) + 10W (%) + 10Cr (%) + 777
The carbide is completely dissolved by heat treatment at a temperature between the upper limit temperature (℃) calculated for 2 hours or less, and the total thickness is reduced by 10 to 60% after solid solution. It is necessary to perform temporary processing. The findings shown in (a) to (j) above were obtained. Therefore, this invention was made based on the above knowledge, and includes C: 0.05% or less, Si: 1.0%.
% or less, Mn: 2.0% or less, P: 0.030% or less, preferably for the purpose of further improving hydrogen cracking resistance.
P: 0.003% or less, S: 0.005% or less, preferably S: 0.0007% for the purpose of further improving hot workability.
Below, sol.al: 0.5% or less, Ni: 30-60%, Cr:
Contains 15-30%, Mo: 12% or less and W: 24
% or less, and if necessary, N: 0.05 to 0.3%, Cu: 2% or less,
Co: 2% or less, rare earth elements: 0.10% or less, Y:
1.20% or less, Mg: 0.10% or less, Ti: 0.5% or less,
and Ca: 0.10% or less, and the remainder is Fe and unavoidable impurities.
) and satisfies the following conditions: Cr (%) + 10Mo (%) + 5W (%) ≧110%, 8%≦Mo (%) + 1/2W (%)≦12%. , the lower limit temperature (℃) calculated by 260logC (%) + 1300 and 16Mo (%) + 10W
(%) + 10Cr (%) + 777 After solution treatment at a temperature between the upper limit temperature (℃) calculated by holding for 2 hours or less, cold working at a wall thickness reduction rate of 10 to 60%. In particular, the present invention is characterized by a method for manufacturing high-strength oil country tubular goods having excellent stress corrosion cracking resistance. Next, in the method for manufacturing oil country tubular goods of this invention,
The reason why the component composition, solution treatment conditions, and wall thickness reduction rate during cold working are limited as described above will be explained below. A Component (a) C The lower the C content, the more the precipitation of carbides will be suppressed, so solution treatment can be carried out at a lower temperature, which is more effective in increasing the strength after cold working. It acts on Therefore, it is desirable that the C content be as low as possible, but if the C content exceeds 0.05%, intergranular stress corrosion cracking tends to occur, so the upper limit was set at 0.05%. (b) Si Si is a necessary component as a deoxidizing component, but
If the content exceeds 1.0%, hot workability will deteriorate, so the upper limit value should be set.
It was set at 1.0%. (c) Mn Mn component has a deoxidizing effect like Si,
Furthermore, since this component has almost no effect on stress corrosion cracking resistance, its upper limit was set at a rather high value of 2.0%. (d) P The P component as an unavoidable impurity has the effect of increasing stress corrosion cracking susceptibility when its content exceeds 0.030%.
It is necessary to set it at 0.030% to maintain stress corrosion cracking susceptibility to a certain level. It has also been found that as the P content is reduced, hydrogen cracking resistance rapidly improves after reaching 0.003%. If necessary, the P content is preferably 0.0030% or less. (e) S The S component as an unavoidable impurity has the effect of deteriorating hot workability when its content exceeds 0.005%, so the upper limit value must be set.
It is necessary to set it at 0.005% to prevent deterioration of hot workability. In this way, the S component has the effect of deteriorating hot workability when its content increases, but by decreasing its content, 0.0007
On the contrary, if the S content is reduced to 0.0007% or less, hot workability will be further improved, so if hot workability under severe conditions is required, it is desirable to reduce the S content to 0.0007% or less. . (f) Al Al is effective as a deoxidizing component like Si and Mn, and even if it is included up to 0.5% in sol.Al content, it will not impair the properties of the pipe material. .0.5 in Al content
% or less. (g) Ni Although the Ni component has the effect of improving the stress corrosion cracking resistance of tube sheets, if its content is less than 30%, the desired excellent stress corrosion cracking resistance cannot be secured; Even if the content exceeds 60%, no further improvement effect on stress corrosion cracking resistance appears, so the content was determined to be 30 to 60%, taking economic efficiency into consideration. (h) Cr The Cr component is a component that significantly improves stress corrosion cracking resistance when coexisting with Ni, Mo, and W components, but hot workability is not improved even if its content is less than 15%. On the contrary, in order to secure the desired stress corrosion cracking resistance, the content of Mo and W must be increased by that amount, which is economically disadvantageous, so the lower limit The value was set at 15%. On the other hand, if the S content exceeds 30%, deterioration of hot workability cannot be avoided no matter how much the S content is reduced, so the upper limit was set at 30%. (i) Mo and W As mentioned above, these components have an equal effect on improving stress corrosion cracking resistance when coexisting with Ni and Cr, but each
Even if Mo: 12% and W: 24% are contained, the environmental temperature is 200℃ or higher H 2 S—CO 2
- In the corrosive environment of Cl - , no further improvement effect appeared, and in consideration of economic efficiency, the respective contents were determined to be Mo: 12% or less and W: 24% or less. Also, regarding the content of Mo and W,
The conditional expression: Mo (%) + 1/2W (%) is specified because the atomic weight of W is about twice that of Mo, and the effect is about 1/2, which is equal. If it is less than 8%, the desired stress corrosion cracking resistance cannot be obtained, especially under the above-mentioned adverse environment of 200°C or higher.On the other hand, even if this value is increased beyond 12%, as mentioned above, it is substantially unnecessary. Since the amount of Mo and W contained is uneconomical, the value of Mo (%) + 1/2 W (%) was set at 8 to 12%. (j) N Since the N component has the effect of improving strength through solid solution strengthening, it is included as necessary when particularly high strength is required, but if the content is 0.05
If the content is less than 0.3%, the desired strength improvement effect cannot be obtained; on the other hand, if the content exceeds 0.3%,
Since melting and ingot making are difficult, its content was set at 0.05 to 0.3%. (k) Cu and Co These components have a uniform effect of improving the corrosion resistance of pipe materials, and Co has a solid solution strengthening effect. However, if Cu exceeds 2%, hot workability will deteriorate, while Co content will not improve further even if it exceeds 2%. each value
Cu: 2% and Co: 2% were set. (l) Rare earth elements, Y, Mg, Ti, and Ca These components have a uniform effect to further improve hot workability, so they can be used as needed when hot working is carried out under severe conditions. Rare earth elements: 0.10
%, Y: 0.20%, Mg: 0.10%, Ti: 0.5%,
If the content exceeds 0.10% of rare earth elements and
Y: 0.20% or less, Mg: 0.10% or less, Ti: 0.5
% or less, and Ca: 0.10% or less. (m) Cr (%) + 10Mo (%) + 5W (%) Figure 1 shows stress corrosion cracking resistance under severe corrosive environments. Cr (%) + 10Mo (%) + 5W
(%) and the relationship between Ni content. That is, Cr-Ni-Mo system, Cr-
Ni-W series and Cr-Ni-Mo-W series steels are melted, cast, forged and hot-rolled into a plate with a thickness of 7 mm, and then this plate is heated at a temperature of 1000°C. After being held for 30 minutes and subjected to water-cooling solution treatment, cold working was applied at a processing rate of 22% to improve strength. Width: 10mm×
A test piece with a length of 75 mm was cut out, and this test piece was heated at 10 atm using the three-point support beam jig shown in Figure 2, with a tensile stress equivalent to 0.2% proof stress being applied to the test piece S. H2S
and in a 20% NaCl solution (temperature: 300 °C) saturated with H2S and CO2 with 10 atm of CO2 .
A stress corrosion cracking test of 1000 hours immersion was carried out.
After the test, the presence or absence of cracks in the test piece was observed. Based on these results, the inventors independently set a conditional expression: Cr (%) + 10Mo
It has become clear that there is a relationship between (%) + 5W (%) and Ni content with respect to stress corrosion cracking resistance, as shown in Figure 1. In addition, in Figure 1, ○ marks indicate no cracking;
The x marks indicate the occurrence of cracks.
From the results shown in Figure 1, Cr (%) + 10Mo
(%) + 5W (%) value is less than 110%, and Ni
It is clear that if the content is less than 30%, the desired excellent stress corrosion cracking resistance cannot be obtained. In addition, in the alloy of this invention, B, Sn, Pb, and Zn are each contained at 0.1 as unavoidable impurities.
Even if the content is within the range of % or less, the properties of the alloy of the present invention will not be impaired in any way. B. Solution Treatment Conditions and Cold Working Conditions The high strength of the oil country tubular goods of this invention is ensured not only by the inclusion of alloy components but also by performing cold working after completely solutionizing carbides. It is something. In this case, complete solid solution of carbide is
Lower limit temperature (℃) calculated by 260logC (%) + 1300 and 16Mo (%) + 10W (%) + 10Cr (%) +
It is measured by holding the temperature between the upper limit temperature (℃) calculated by 777 for 2 hours or less, but the formula for calculating the lower limit temperature above is: 260logC (%)
And upper limit temperature calculation formula: 16Mo (%) + 10W
(%) + 10Cr (%) + 777 was determined empirically based on numerous test results. Below the above lower limit temperature, carbides cannot be completely dissolved, and undissolved carbides remain. remains and stress corrosion cracking susceptibility increases.On the other hand, if the solution treatment temperature is increased beyond the above upper limit temperature or the holding time is extended beyond 2 hours, the crystal grains become coarse. The solution treatment temperature and holding time were determined as described above because the desired high strength could not be obtained by subsequent cold working. In addition, in this invention, as described above, cold working is performed after the solution treatment to improve the strength.
If this cold working is performed with a wall thickness reduction rate of less than 10%, the desired strength cannot be secured, whereas if cold working is performed with a wall thickness reduction rate of more than 60%, ductility and toughness will deteriorate. Because of this, the wall thickness reduction rate for cold working was set at 10 to 60%. By applying the above component composition and manufacturing conditions, we manufacture oil country tubular goods that have high strength with a 0.2% proof stress of 85 Kgf/mm 2 or more, as well as excellent ductility and toughness, as well as excellent stress corrosion cracking resistance. It is possible to do so. Next, the method for manufacturing oil country tubular goods of the present invention will be specifically explained using examples and comparing with comparative examples. Example Molten metal having the composition shown in Table 1 was heated in a normal electric furnace and for the purpose of desulfurization and N addition.
Diameter: 500 mm after melting using an Ar-oxygen decarburization furnace (AOD furnace) and, if necessary, an electroslag melting furnace (ESR furnace) for the purpose of dephosphorization.
It is cast into a φ ingot, and then hot forged at a temperature of 1200°C to create a diameter of 150mm.
A billet of φ is formed, and in this case, for the purpose of evaluating hot workability, it is observed whether or not cracks occur in the billet, and then the billet is hot extruded to form a billet with a diameter of 60 mmφ x wall thickness: A 4 mm raw tube is formed, and then subjected to solution treatment and cold working under the solution treatment conditions (cooling after treatment is water cooling in both cases) and wall thickness reduction rate shown in Table 1. Inventive alloy tube materials 1 to 29, comparative alloy tube materials 1 to 8, and conventional alloy tube materials 1 to 4 were manufactured, respectively. Comparative alloy tube materials 1 to 8 have a content of any one of the constituent components or one of the manufacturing conditions (indicated with an asterisk in Table 1) of the present invention. The tube material 1 was manufactured under conditions outside the range, and all conventional alloy tube materials have known compositions.
For JIS/SUS316, same 2 for JIS/SUS310S, same 3
The composition is equivalent to Incoloy 800, and the composition corresponding to Incoloy 4 is JIS/SUS329J1. Next, the resulting alloy tube materials 1 to 1 of the present invention
29, comparative alloy pipe materials 1 to 8, and conventional alloy pipe material 1
From ~4, cut out a test piece with a length of 20 mm,
Cut off a section corresponding to 60° along the length of this test piece, pass a bolt through this test piece as shown in the front view in Figure 3, tighten it with a nut, and attach it to the outside surface of the tube. A tensile stress equivalent to 0.2% proof stress is applied to the specimen S in this state, and H 2 S
A stress corrosion cracking test was conducted by immersion in H 2 S - 10 atm CO 2 - 20% NaCl solution (liquid temperature: 300°C) at partial pressures of 0.1 atm, 1 atm, and 20 atm, respectively, for 1000 hours. The presence or absence of stress corrosion cracking was investigated. This result is compared to the presence or absence of cracking during hot forging, the tensile test results, and

【表】【table】

【表】【table】

【表】【table】

【表】 衝撃試験結果と共に、第2表に合せて示した。な
お、第2表において、○印はいずれも割れ発生の
ないものを示し、一方×印は割れ発生のあつたも
のを示す。 第2表に示される結果から、比較合金管材1〜
8は、熱間加工性、耐応力腐食割れ性、および強
度のうちの少なくともいずれかの性質が劣つたも
のであるのに対して、本発明合金管材1〜29は、
いずれもすぐれた熱間加工性および耐応力腐食割
れ性を有し、さらに高強度を有し、かつ熱間加工
性は良好であるが、相対的に強度が低く、しかも
耐応力腐食割れ性に劣る従来合金管材1〜4と比
較しても一段とすぐれた特性を有することが明ら
かである。 上述のように、この発明の方法によつて製造さ
れた油井管は、特に高強度および優れた耐応力腐
食割れ性を有するので、これらの特性が要求され
る苛酷な環境下での石油並びに天然ガス採掘は勿
論のこと、地熱井管として用いた場合にもきわめ
て優れた性能を発揮するのである。
[Table] The results are shown in Table 2 along with the impact test results. In Table 2, the ○ mark indicates that no cracking occurred, while the x mark indicates that cracking occurred. From the results shown in Table 2, comparative alloy tube materials 1 to
No. 8 is inferior in at least one of hot workability, stress corrosion cracking resistance, and strength, whereas alloy tube materials 1 to 29 of the present invention are
Both have excellent hot workability and stress corrosion cracking resistance, and also have high strength and good hot workability, but have relatively low strength and poor stress corrosion cracking resistance. It is clear that this material has even better characteristics than conventional alloy tube materials 1 to 4, which are inferior. As mentioned above, oil country tubular goods manufactured by the method of the present invention have particularly high strength and excellent stress corrosion cracking resistance, so they can be used in petroleum and natural products in harsh environments where these properties are required. It exhibits extremely excellent performance not only in gas extraction, but also when used as geothermal well pipes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は合金の耐応力腐食割れ性に関し、Ni
含有量とCr(%)+10Mo(%)+5W(%)との関係
を示した図、第2図および第3図はそれぞれ板状
および管状試験片に対する応力腐食割れ試験の態
様を示す図である。
Figure 1 shows the stress corrosion cracking resistance of alloys.
A diagram showing the relationship between content and Cr (%) + 10Mo (%) + 5W (%), Figures 2 and 3 are diagrams showing the mode of stress corrosion cracking tests on plate-shaped and tubular specimens, respectively. .

Claims (1)

【特許請求の範囲】 1 C:0.05%以下、Si:1.0%以下、Mn:2.0%
以下、P:0.030%以下、S:0.005%以下、sol.
Al:0.5%以下、Ni:30〜60%、Cr:15〜30%を
含有し、Mo:12%以下およびW:24%以下のう
ちの1種または2種を含有し、残りがFeと不可
避不純物からなる組成(以上重量%)を有し、か
つ、 Cr(%)+10Mo(%)+5W(%)≧110%、 8%≦Mo(%)+1/2W(%)≦12%、 の条件を満足する合金を、260logC(%)+1300で
算出された下限温度(℃)と、16Mo(%)+10W
(%)+10Cr(%)+777で算出された上限温度
(℃)の間の温度に、2時間以下保持の条件で固
溶化処理した後、10〜60%の肉厚減少率で冷間加
工することを特徴とする耐応力腐食割れ性に優れ
た高強度油井管の製造法。 2 C:0.05%以下、Si:1.0%以下、Mn:2.0%
以下、P:0.030%以下、S:0.005%以下、sol.
Al:0.5%以下、Ni:30〜60%、Cr:15〜30%を
含有し、Mo:12%以下およびW:24%以下のう
ちの1種または2種を含有し、さらにCu:2%
以下およびCo:2%以下のうちの1種または2
種を含有し、残りがFeと不可避不純物からなる
組成(以上重量%)を有し、かつ、 Cr(%)+10Mo(%)+5W(%)≧110%、 8%≦Mo(%)+1/2W(%)≦12%、 の条件を満足する合金を、260logC(%)+1300で
算出された下限温度(℃)と、16Mo(%)+10W
(%)+10Cr(%)+777で算出された上限温度
(℃)の間の温度に、2時間以下保持の条件で固
溶化処理した後、10〜60%の肉厚減少率で冷間加
工することを特徴とする耐応力腐食割れ性に優れ
た高強度油井管の製造法。 3 C:0.05%以下、Si:1.0%以下、Mn:2.0%
以下、P:0.030%以下、S:0.005%以下、sol.
Al:0.5%以下、Ni:30〜60%、Cr:15〜30%を
含有し、Mo:12%以下およびW:24%以下のう
ちの1種または2種を含有し、さらに希土類元
素:0.10%以下、Y:0.20%以下、Mg:0.10%以
下、Ti:0.5%以下、およびCa:0.10%以下のう
ちの1種または2種以上を含有し、残りがFeと
不可避不純物からなる組成(以上重量%)を有
し、かつ、 Cr(%)+10Mo(%)+5W(%)≧110%、 8%≦Mo(%)+1/2W(%)≦12%、 の条件を満足する合金を、260logC(%)+1300で
算出された下限温度(℃)と、16Mo(%)+10W
(%)+10Cr(%)+777で算出された上限温度
(℃)の間の温度に、2時間以下保持の条件で固
溶化処理した後、10〜60%の肉厚減少率で冷間加
工することを特徴とする耐応力腐食割れ性に優れ
た高強度油井管の製造法。 4 C:0.05%以下、Si:1.0%以下、Mn:2.0%
以下、P:0.030%以下、S:0.005%以下、sol.
Al:0.5%以下、Ni:30〜60%、Cr:15〜30%を
含有し、Mo:12%以下およびW:24%以下のう
ちの1種または2種を含有し、さらにCu:2%
以下およびCo:2%以下のうちの1種または2
種と、希土類元素:0.10%以下、Y:0.20%以
下、Mg:0.10%以下、Ti:0.5%以下、および
Ca:0.10%以下のうちの1種または2種以上を含
有し、残りがFeと不可避不純物からなる組成
(以上重量%)を有し、かつ、 Cr(%)+10Mo(%)+5W(%)≧110%、 8%≦Mo(%)+1/2W(%)≦12%、 の条件を満足する合金を、260logC(%)+1300で
算出された下限温度(℃)と、16Mo(%)+10W
(%)+10Cr(%)+777で算出された上限温度
(℃)の間の温度に、2時間以下保持の条件で固
溶化処理した後、10〜60%の肉厚減少率で冷間加
工することを特徴とする耐応力腐食割れ性に優れ
た高強度油井管の製造法。 5 C:0.05%以下、Si:1.0%以下、Mn:2.0%
以下、P:0.030%以下、S:0.005%以下、sol.
Al:0.5%以下、N:0.05〜0.3%、Ni:30〜60
%、Cr:15〜30%を含有し、Mo:12%以下およ
びW:24%以下のうちの1種または2種を含有
し、残りがFeと不可避不純物からなる組成(以
上重量%)を有し、かつ、 Cr(%)+10Mo(%)+5W(%)≧110%、 8%≦Mo(%)+1/2W(%)≦12%、 の条件を満足する合金を、260logC(%)+1300で
算出された下限温度(℃)と、16Mo(%)+10W
(%)+10Cr(%)+777で算出された上限温度
(℃)の間の温度に、2時間以下保持の条件で固
溶化処理した後、10〜60%の肉厚減少率で冷間加
工することを特徴とする耐応力腐食割れ性に優れ
た高強度油井管の製造法。 6 C:0.05%以下、Si:1.0%以下、Mn:2.0%
以下、P:0.030%以下、S:0.005%以下、sol.
Al:0.5%以下、N:0.05〜0.3%、Ni:30〜60
%、Cr:15〜30%を含有し、Mo:12%以下およ
びW:24%以下のうちの1種または2種を含有
し、さらにCu:2%以下およびCo:2%以下の
うちの1種または2種を含有し、残りがFeと不
可避不純物からなる組成(以上重量%)を有し、
かつ、 Cr(%)+10Mo(%)+5W(%)≧110%、 8%≦Mo(%)+1/2W(%)≦12%、 の条件を満足する合金を、260logC(%)+1300で
算出された下限温度(℃)と、16Mo(%)+10W
(%)+10Cr(%)+777で算出された上限温度
(℃)の間の温度に、2時間以下保持の条件で固
溶化処理した後、10〜60%の肉厚減少率で冷間加
工することを特徴とする耐応力腐食割れ性に優れ
た高強度油井管の製造法。 7 C:0.05%以下、Si:1.0%以下、Mn:2.0%
以下、P:0.030%以下、S:0.005%以下、sol.
Al:0.5%以下、N:0.05〜0.3%、Ni:30〜60
%、Cr:15〜30%を含有し、Mo:12%以下およ
びW:24%以下のうちの1種または2種を含有
し、さらに希土類元素:0.10%以下、Y:0.20%
以下、Mg:0.10%以下、Ti:0.5%以下、および
Ca:0.10%以下のうちの1種または2種以上を含
有し、残りがFeと不可避不純物からなる組成
(以上重量%)を有し、かつ、 Cr(%)+10Mo(%)+5W(%)≧110%、 8%≦Mo(%)+1/2W(%)≦12%、 の条件を満足する合金を、260logC(%)+1300で
算出された下限温度(℃)と、16Mo(%)+10W
(%)+10Cr(%)+777で算出された上限温度
(℃)の間の温度に、2時間以下保持の条件で固
溶化処理した後、10〜60%の肉厚減少率で冷間加
工することを特徴とする耐応力腐食割れ性に優れ
た高強度油井管の製造法。 8 C:0.05%以下、Si:1.0%以下、Mn:2.0%
以下、P:0.030%以下、S:0.005%以下、sol.
Al:0.5%以下、N:0.05〜0.3%、Ni:30〜60
%、Cr:15〜30%を含有し、Mo:12%以下およ
びW:24%以下のうちの1種または2種を含有
し、さらにCu:2%以下およびCo:2%以下の
うちの1種または2種と、希土類元素:0.10%以
下、Y:0.20%以下、Mg:0.10%以下、Ti:0.5
%以下、およびCa:0.10%以下のうちの1種また
は2種以上とを含有し、残りがFeと不可避不純
物からなる組成(以上重量%)を有し、かつ、 Cr(%)+10Mo(%)+5W(%)≧110%、 8%≦Mo(%)+1/2W(%)≦12%、 の条件を満足する合金を、260logC(%)+1300で
算出された下限温度(℃)と、16Mo(%)+10W
(%)+10Cr(%)+777で算出された上限温度
(℃)の間の温度に2時間以下保持の条件で固溶
化処理した後、10〜60%の肉厚減少率で冷間加工
することを特徴とする耐応力腐食割れ性に優れた
高強度油井管の製造法。
[Claims] 1 C: 0.05% or less, Si: 1.0% or less, Mn: 2.0%
Below, P: 0.030% or less, S: 0.005% or less, sol.
Contains Al: 0.5% or less, Ni: 30 to 60%, Cr: 15 to 30%, one or two of Mo: 12% or less and W: 24% or less, and the rest is Fe. It has a composition (weight% or more) consisting of unavoidable impurities, and Cr (%) + 10Mo (%) + 5W (%) ≧110%, 8%≦Mo (%) + 1/2W (%)≦12%, For alloys that satisfy the conditions, the lower limit temperature (℃) calculated by 260logC (%) + 1300 and 16Mo (%) + 10W
(%) + 10Cr (%) + 777 After solution treatment at a temperature between the upper limit temperature (℃) calculated by holding for 2 hours or less, cold working at a wall thickness reduction rate of 10 to 60%. A method for manufacturing high-strength oil country tubular goods with excellent stress corrosion cracking resistance. 2 C: 0.05% or less, Si: 1.0% or less, Mn: 2.0%
Below, P: 0.030% or less, S: 0.005% or less, sol.
Contains Al: 0.5% or less, Ni: 30 to 60%, Cr: 15 to 30%, one or two of Mo: 12% or less and W: 24% or less, and further Cu: 2 %
One or two of the following and Co: 2% or less
It has a composition (more than % by weight) containing seeds and the rest is Fe and unavoidable impurities, and Cr (%) + 10Mo (%) + 5W (%) ≧110%, 8%≦Mo (%) + 1/ 2W (%) ≦ 12%, the lower limit temperature (℃) calculated by 260logC (%) + 1300 and 16Mo (%) + 10W
(%) + 10Cr (%) + 777 After solution treatment at a temperature between the upper limit temperature (℃) calculated by holding for 2 hours or less, cold working at a wall thickness reduction rate of 10 to 60%. A method for manufacturing high-strength oil country tubular goods with excellent stress corrosion cracking resistance. 3 C: 0.05% or less, Si: 1.0% or less, Mn: 2.0%
Below, P: 0.030% or less, S: 0.005% or less, sol.
Contains Al: 0.5% or less, Ni: 30 to 60%, Cr: 15 to 30%, one or two of Mo: 12% or less and W: 24% or less, and further rare earth elements: A composition containing one or more of the following: 0.10% or less, Y: 0.20% or less, Mg: 0.10% or less, Ti: 0.5% or less, and Ca: 0.10% or less, with the remainder consisting of Fe and inevitable impurities. (more than weight%) and satisfies the following conditions: Cr (%) + 10Mo (%) + 5W (%) ≧110%, 8%≦Mo (%) + 1/2W (%)≦12% , the lower limit temperature (℃) calculated by 260logC (%) + 1300 and 16Mo (%) + 10W
(%) + 10Cr (%) + 777 After solution treatment at a temperature between the upper limit temperature (℃) calculated by holding for 2 hours or less, cold working at a wall thickness reduction rate of 10 to 60%. A method for manufacturing high-strength oil country tubular goods with excellent stress corrosion cracking resistance. 4 C: 0.05% or less, Si: 1.0% or less, Mn: 2.0%
Below, P: 0.030% or less, S: 0.005% or less, sol.
Contains Al: 0.5% or less, Ni: 30 to 60%, Cr: 15 to 30%, one or two of Mo: 12% or less and W: 24% or less, and further Cu: 2 %
One or two of the following and Co: 2% or less
Species, rare earth elements: 0.10% or less, Y: 0.20% or less, Mg: 0.10% or less, Ti: 0.5% or less, and
Contains one or more of Ca: 0.10% or less, with the remainder consisting of Fe and unavoidable impurities (weight%), and Cr (%) + 10Mo (%) + 5W (%) ≧110%, 8%≦Mo (%) + 1/2W (%)≦12%, the lower limit temperature (℃) calculated by 260logC (%) + 1300 and 16Mo (%) + 10W
(%) + 10Cr (%) + 777 After solution treatment at a temperature between the upper limit temperature (℃) calculated by holding for 2 hours or less, cold working at a wall thickness reduction rate of 10 to 60%. A method for manufacturing high-strength oil country tubular goods with excellent stress corrosion cracking resistance. 5 C: 0.05% or less, Si: 1.0% or less, Mn: 2.0%
Below, P: 0.030% or less, S: 0.005% or less, sol.
Al: 0.5% or less, N: 0.05-0.3%, Ni: 30-60
%, Cr: 15 to 30%, Mo: 12% or less, W: 24% or less, and the remainder is Fe and unavoidable impurities (weight%). Cr (%) + 10Mo (%) + 5W (%) ≧110%, 8%≦Mo (%) + 1/2W (%)≦12%, 260logC (%) Lower limit temperature (℃) calculated by +1300 and 16Mo (%) +10W
(%) + 10Cr (%) + 777 After solution treatment at a temperature between the upper limit temperature (℃) calculated by holding for 2 hours or less, cold working at a wall thickness reduction rate of 10 to 60%. A method for manufacturing high-strength oil country tubular goods with excellent stress corrosion cracking resistance. 6 C: 0.05% or less, Si: 1.0% or less, Mn: 2.0%
Below, P: 0.030% or less, S: 0.005% or less, sol.
Al: 0.5% or less, N: 0.05-0.3%, Ni: 30-60
%, Cr: 15 to 30%, Mo: 12% or less and W: 24% or less, and Cu: 2% or less and Co: 2% or less. Contains one or two types, with the remainder consisting of Fe and unavoidable impurities (weight %),
And, calculate the alloy that satisfies the following conditions: Cr (%) + 10Mo (%) + 5W (%) ≧110%, 8%≦Mo (%) + 1/2W (%)≦12%, using 260logC (%) + 1300 lower limit temperature (℃) and 16Mo (%) + 10W
(%) + 10Cr (%) + 777 After solution treatment at a temperature between the upper limit temperature (℃) calculated by holding for 2 hours or less, cold working at a wall thickness reduction rate of 10 to 60%. A method for manufacturing high-strength oil country tubular goods with excellent stress corrosion cracking resistance. 7 C: 0.05% or less, Si: 1.0% or less, Mn: 2.0%
Below, P: 0.030% or less, S: 0.005% or less, sol.
Al: 0.5% or less, N: 0.05-0.3%, Ni: 30-60
%, Cr: 15 to 30%, Mo: 12% or less and W: 24% or less, further containing rare earth elements: 0.10% or less, Y: 0.20%
Below, Mg: 0.10% or less, Ti: 0.5% or less, and
Contains one or more of Ca: 0.10% or less, with the remainder consisting of Fe and unavoidable impurities (weight%), and Cr (%) + 10Mo (%) + 5W (%) ≧110%, 8%≦Mo (%) + 1/2W (%)≦12%, the lower limit temperature (℃) calculated by 260logC (%) + 1300 and 16Mo (%) + 10W
(%) + 10Cr (%) + 777 After solution treatment at a temperature between the upper limit temperature (℃) calculated by holding for 2 hours or less, cold working at a wall thickness reduction rate of 10 to 60%. A method for manufacturing high-strength oil country tubular goods with excellent stress corrosion cracking resistance. 8 C: 0.05% or less, Si: 1.0% or less, Mn: 2.0%
Below, P: 0.030% or less, S: 0.005% or less, sol.
Al: 0.5% or less, N: 0.05-0.3%, Ni: 30-60
%, Cr: 15 to 30%, Mo: 12% or less and W: 24% or less, and Cu: 2% or less and Co: 2% or less. 1 or 2 types, rare earth elements: 0.10% or less, Y: 0.20% or less, Mg: 0.10% or less, Ti: 0.5
% or less, and one or more of Ca: 0.10% or less, with the remainder consisting of Fe and unavoidable impurities (wt%), and Cr (%) + 10Mo (%) ) + 5W (%) ≧ 110%, 8% ≦ Mo (%) + 1/2W (%) ≦ 12%, the lower limit temperature (℃) calculated by 260logC (%) + 1300, 16Mo (%) + 10W
(%) + 10 Cr (%) + 777 After solution treatment at a temperature between the upper limit temperature (°C) calculated by holding for 2 hours or less, cold working at a wall thickness reduction rate of 10 to 60%. A method for manufacturing high-strength oil country tubular goods with excellent stress corrosion cracking resistance.
JP10691581A 1981-07-03 1981-07-10 Production of high strength oil well pipe of high stress corrosion cracking resistance Granted JPS589924A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP10691581A JPS589924A (en) 1981-07-10 1981-07-10 Production of high strength oil well pipe of high stress corrosion cracking resistance
US06/389,568 US4421571A (en) 1981-07-03 1982-06-17 Process for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking
GB08217860A GB2104100B (en) 1981-07-03 1982-06-21 High strength deep well casing and tubing having improved resistance to stress-corrosion cracking
SE8204121A SE461986C (en) 1981-07-03 1982-07-02 PROCEDURES FOR PREPARING HOEGHAALLFASTA DEEP BORROWS WITH RESISTANCE TO TENSION CORROSION
FR8211645A FR2508930A1 (en) 1981-07-03 1982-07-02 PROCESS FOR MANUFACTURING HIGH MECHANICAL RESISTANCE PIPES AND PIPES FOR DEEP WELLS
DE3224865A DE3224865C2 (en) 1981-07-03 1982-07-02 Process for the production of heavy-duty casing for deep boreholes or the like
SE8901647A SE502102C2 (en) 1981-07-03 1989-05-09 Process for the manufacture of high strength deep drill pipes with resistance to stress corrosion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10691581A JPS589924A (en) 1981-07-10 1981-07-10 Production of high strength oil well pipe of high stress corrosion cracking resistance

Publications (2)

Publication Number Publication Date
JPS589924A JPS589924A (en) 1983-01-20
JPS6363608B2 true JPS6363608B2 (en) 1988-12-08

Family

ID=14445717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10691581A Granted JPS589924A (en) 1981-07-03 1981-07-10 Production of high strength oil well pipe of high stress corrosion cracking resistance

Country Status (1)

Country Link
JP (1) JPS589924A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6050134A (en) * 1983-08-29 1985-03-19 Sumitomo Metal Ind Ltd Alloy for heat exchanger tube
JPS6017973A (en) * 1983-07-11 1985-01-29 Mitsubishi Electric Corp Laser oscillator
JPS6142181A (en) * 1984-08-06 1986-02-28 Agency Of Ind Science & Technol Laser generating apparatus
JPS6159366U (en) * 1984-09-26 1986-04-21
JPS6187855A (en) * 1984-10-05 1986-05-06 Sumitomo Metal Ind Ltd Stainless steel having superior corrosion resistance and hot workability
JPS61276948A (en) * 1985-05-30 1986-12-06 Nippon Kokan Kk <Nkk> High-chromium alloy steel having superior hot workability
US6576068B2 (en) * 2001-04-24 2003-06-10 Ati Properties, Inc. Method of producing stainless steels having improved corrosion resistance
WO2019146504A1 (en) 2018-01-26 2019-08-01 日本製鉄株式会社 Cr-Ni ALLOY AND SEAMLESS STEEL PIPE FORMED OF Cr-Ni ALLOY

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54110918A (en) * 1978-02-21 1979-08-30 Cabot Corp Anticorrosion nickel alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54110918A (en) * 1978-02-21 1979-08-30 Cabot Corp Anticorrosion nickel alloy

Also Published As

Publication number Publication date
JPS589924A (en) 1983-01-20

Similar Documents

Publication Publication Date Title
US4400349A (en) Alloy for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking
US4788036A (en) Corrosion resistant high-strength nickel-base alloy
JPS625977B2 (en)
JPS625976B2 (en)
JP4502131B2 (en) Duplex stainless steel with excellent hot workability
JPS6144133B2 (en)
JPS6363608B2 (en)
JPS6362569B2 (en)
JPS6144135B2 (en)
JPS6363610B2 (en)
JPS6363609B2 (en)
JPS6363606B2 (en)
JPS6199660A (en) High strength welded steel pipe for line pipe
JPS6144126B2 (en)
JPS6144128B2 (en)
JPS581044A (en) High strength alloy having superior stress corrosion cracking resistance for oil well pipe
JPH0372698B2 (en)
JPS6144134B2 (en)
JPS6144125B2 (en)
JP3470418B2 (en) High strength austenitic alloy with excellent seawater corrosion resistance and hydrogen sulfide corrosion resistance
JPS6363611B2 (en)
JPS6363607B2 (en)
JPS6362570B2 (en)
JPS6144132B2 (en)
JPS6363605B2 (en)