JPS6362570B2 - - Google Patents

Info

Publication number
JPS6362570B2
JPS6362570B2 JP10411281A JP10411281A JPS6362570B2 JP S6362570 B2 JPS6362570 B2 JP S6362570B2 JP 10411281 A JP10411281 A JP 10411281A JP 10411281 A JP10411281 A JP 10411281A JP S6362570 B2 JPS6362570 B2 JP S6362570B2
Authority
JP
Japan
Prior art keywords
less
temperature
reduction rate
calculated
thickness reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10411281A
Other languages
Japanese (ja)
Other versions
JPS586928A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10411281A priority Critical patent/JPS586928A/en
Priority to US06/389,568 priority patent/US4421571A/en
Priority to GB08217860A priority patent/GB2104100B/en
Priority to SE8204121A priority patent/SE461986C/en
Priority to DE3224865A priority patent/DE3224865C2/en
Priority to FR8211645A priority patent/FR2508930A1/en
Publication of JPS586928A publication Critical patent/JPS586928A/en
Publication of JPS6362570B2 publication Critical patent/JPS6362570B2/ja
Priority to SE8901647A priority patent/SE502102C2/en
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、優れた耐応力腐食割れ性を有する
高強度油井管の製造法に関するものである。 近年、エネルギー事情の悪化から、油井および
天然ガス井は深井戸化の傾向が著しく、深さ:
6000m以上、なかには深さ:10000m以上の深井
戸が出現している。 また、同様な事情から、湿潤な硫化水素をはじ
め、炭酸ガスや塩素イオンなどの腐食性成分を含
有する苛酷な腐食環境下での石油および天然ガス
の採掘が予儀なくされつつある。 このような厳しい環境下での石油および天然ガ
スの掘削に伴い、これに使用される油井管にも高
強度、並びに優れた耐食性、特に耐応力腐食割れ
性が要求されるようになつてきている。 油井管の一般的腐食対策として、インヒビタと
呼ばれる腐食抑制剤を投入する方法が知られてい
るが、この方法は、例えば海上油井などには有効
に活用できない場合が多い。 かかる点から、最近では油井管の製造に、ステ
ンレス鋼はじめ、インコロイやハステロイ(いず
れも商品名)といつた高級な耐食性高合金鋼の採
用も検討されはじめているが、いまのところ、こ
れらの合金に関して、H2S―CO2―Cl-の油井環
境での腐食挙動についての詳細は十分に解明され
るに至つておらず、しかも深井戸用油井管に要求
される高強度をもつものではないのが現状であ
る。 そこで、本発明者等は、上述のような観点か
ら、深井戸や苛酷な腐食環境、特にH2S―CO2
Cl-の深井環境下での石油掘削に十分耐え得る高
強度とすぐれた耐応力腐食割れ性とを有する油井
管を製造すべく研究を行なつた結果、 (a) H2S―CO2―Cl-還境下における腐食の主た
るものは応力腐食割れであるが、この場合の応
力腐食割れ態様は、オーステナイトステンレス
鋼における一般的なそれとは挙動を全く異にす
るものであること。すなわち、一般の応力腐食
割れがCl-の存在と深く係わるものであるのに
対して、上記の油井環境によるものではCl-
さることながら、それ以上にH2Sの影響が大き
いこと。 (b) 油井管として実用に供される鋼管は一般に、
強度上の必要から冷間加工が施されるが、冷間
加工は上記応力腐食割れに対する抵抗性を著し
く減少させること。 (c) H2S―CO2―Cl-環境での鋼の溶出速度(腐
食速度)は、Cr,Ni,Mo,およびWの含有量
に依存し、これらの成分からなる表面皮膜によ
つて耐食性が保持され、かつこれらの成分は、
応力腐食割れに対してもその抵抗性を高め、特
にMoはCrに対し10倍の効果を、またMoはW
の2倍の効果をもつており、したがつて、この
MoおよびWが、 Cr(%)+10Mo(%)+5W(%)≧70%、 4%≦Mo(%)+1/2W(%)<8%、 の条件式を満足すると共に、Ni含有量を25〜
60%、Cr含有量を22.5〜30%とすると、冷間加
工材であつても、きわめて腐食性の強いH2S―
CO2―Cl-の油井環境下、特に200℃以下の悪還
境において、応力腐食割れに対して優れた抵抗
性を示す表面皮膜が得られること。 (d) Niについては表面皮膜に対する効果だけで
なく、組織的にも応力腐食割れ抵抗性を高める
効果があること。 (e) 合金成分としてNを0.05〜0.3%の範囲で含
有させると一段と管材強度が向上するようにな
ること。 (f) 不可避不純物としてのS含有量を0.0007%以
下に低減させると、管材の熱間加工性が著しく
改善されるようになること。 (g) 不可避不純物としてのP含有量を0.003%以
下に低減させると、水素割れ感受性が著しく低
下するようになること。 (h) 合金成分としてCu:2%以下およびCo:2
%以下のうちの1種または2種を含有させる
と、耐食性がさらに改善されるようになるこ
と。 (i) 合金成分として、希土類元素:0.10%以下、
Y:0.20%以下、Mg:0.10%以下、Ti:0.5%
以下、およびCa:0.10%以下のうちの1種また
は2種以上を含有させると、熱間加工性がさら
に一段と改善されるようになること。 (j) しかし、所望の高強度を確保するためには、
上記組成の合金に、まず、望ましくは1050〜
1250℃の温度範囲内の温度に加熱して金属間化
合物や炭化物を完全に固溶した状態で、再結晶
温度以下での肉厚減少率が10%以上の条件で熱
間加工を施し、この熱間加工は後工程の熱処理
で微細な再結晶粒を形成し、もつて高強度と良
好な延性を確保するためのものであり、ついで
経験式:260logC(%)+1300で算出された下限
温度(℃)と、同じく経験式:16Mo(%)+
10W(%)+10Cr(%)+777で算出された上限温
度(℃)の間の温度に2時間以下保持の条件で
熱処理を施して、上記のように微細な再結晶粒
を形成し、この場合耐食性を劣化させる未固溶
の炭化物が存在すれば、これが固溶されるもの
であり、最終的に上記熱処理後の管材に10〜60
%の肉厚減少率で冷間加工を施して、これを加
工強化する必要があること。 以上(a)〜(j)に示される知見を得たのである。 したがつて、この発明は上記知見にもとづいて
なされたものであつて、C:0.05%以下、Si:1.0
%以下、Mn:2.0%以下、P:0.030%以下、望
ましくは耐水素割れ性を一段と改善する目的で、
P:0.003%以下、S:0.005%以下、望ましくは
熱間加工性を一段と改善する目的でS:0.0007%
以下、sol.Al:0.5%以下、Ni:25〜60%、Cr:
22.5〜30%を含有し、Mo:8%未満およびW:
16%未満のうちの1種または2種を含有し、さら
に必要に応じて、N:0.05〜0.3%、Cu:2%以
下、Co:2%以下、希土類元素:0.10%以下、
Y:0.20%以下、Mg:0.10%以下、Ti:0.5%以
下、およびCa:0.10%以下のうちの1種または2
種以上を含有し、残りがFeと不可避不純物から
なる組成(以上重量%,以下%の表示はすべて重
量%を意味する)を有し、かつ、 Cr(%)+10Mo(%)+5W(%)≧70%、 4%≦Mo(%)+1/2(%)<8%、 の条件を満足する合金を、再結晶温度以下での肉
厚減少率を10%以上とした条件で熱間加工し、つ
いで260logC(%)+1300で算出された下限温度
(℃)と、16Mo(%)+10W(%)+10Cr(%)+777
で算出された上限温度(℃)の間の温度に、2時
間以下保持の条件で熱処理した後、10〜60%の肉
厚減少率で冷間加工することによつて、耐応力腐
食割れ性に優れた高強度油井管を製造する方法に
特徴を有するものである。 つぎに、この発明の油井管の製造法において、
成分組成、熱処理条件、熱間加工および冷間加工
における肉厚減少率を上記の通りに限定した理由
を以下に説明する。 A 成分組成 (a) C C含有量を低くすればするほど炭化物の析出が
抑制されるようになるので、熱間加工における加
熱温度および熱処理温度を低くでき、このことは
冷間加工後の強度上昇により有効に作用するもの
である。したがつて、C含有量はできるだけ低い
方が望ましいが、C含有量が0.05%を越えると、
粒界応力腐食割れが生じやすくなることから、そ
の上限値を0.05%と定めた。 (b) Si Siは脱酸成分として必要な成分であるが、その
含有量が1.0%を越えると熱間加工性が劣化する
ようになることから、その上限値を1.0%と定め
た。 (c) Mn Mn成分にはSiと同様に脱酸作用があり、しか
もこの成分は応力腐食割れ性にほとんど影響を及
ぼさない成分であることから、その上限値を高め
の2.0%と定めた。 (d) P 不可避不純物としてのP成分には、その含有量
が0.030%を越えると、応力腐食割れ感受性を高
める作用が現われるので、上限値を0.030%と定
めて応力腐食割れ感受性を低位の状態とする必要
がある。また、P含有量を低減してゆくと、
0.003%を境にして急激に耐水素割れ性が改善さ
れるようになることが判明しており、かかる点か
ら、特にすぐれた耐水素割れ性を必要とする場合
には、P含有量を0.0030%以下とするのが望まし
い。 (e) S 不可避不純物としてのS成分には、その含有量
が0.005%を越えると、熱間加工性を劣化させる
作用があるので、その上限値を0.005%と定めて
熱間加工性の劣化を防止する必要がある。このよ
うにS成分には、含有量が多くなると熱間加工性
を劣化させる作用があるが、その含有量を低めて
ゆき、0.0007%まで低減すると、逆に熱間加工性
が一段と改善されるようになることから、厳しい
条件での熱間加工を必要とする場合には、S含有
量を0.0007%以下とするのが望ましい。 (f) Al AlはSiおよびMnと同様に脱酸成分として有効
であり、sol.Al含有量で0.5%まで含有させても管
材の特性を何らそこなうものではないことから、
その含有量をsol.Al含有量で0.5%以下と定めた。 (g) Ni Ni成分には管材の耐応力腐食割れ性を向上さ
せる作用があるが、その含有量が25%未満では所
望のすぐれた耐応力腐食割れ性を確保することが
できず、一方60%を越えて含有させても耐応力腐
食割れ性にさらに一段の向上効果は現われず、経
済性をも考慮して、その含有量を25〜60%と定め
た。 (h) Cr Cr成分は、Ni,Mo,およびW成分との共存に
おいて、耐応力腐食割れ性を著しく改善する成分
であるが、その含有量を22.5%未満としても熱間
加工性が改善されるようになるものでもなく、逆
に所望の耐応力腐食割れ性を確保するためには、
MoやWの含有量をそれだけ増加させなければな
らず、経済的に不利となることから、その下限値
を22.5%と定めた。一方、その含有量が30%を越
えると、いくらS含有量を低減させても熱間加工
性の劣化は避けることができないことから、その
上限値を30%と定めた。 (i) MoおよびW 上記のように、これらの成分には、Niおよび
Crとの共存において耐応力腐食割れ性を改善す
る均等的作用があるが、それぞれMo:8%以
上、およびW:16%以上含有させても、環境温度
が200℃以下のH2S―CO2―Cl-の腐食環境では、
さらに一段の改善効果が現われず、経済性を考慮
して、それぞれの含有量を、Mo:8%未満、
W:16%未満と定めた。また、MoとWの含有量
に関して、条件式:Mo(%)+1/2W(%)で規定 するのは、WがMoに対し原子量が約2倍で、効
果の点では約1/2で均等となることからで、この
値が4%未満では特に200℃以下の上記悪環境下
で所望の耐応力腐食割れ性が得られず、一方、こ
の値を8%以上としても、上記の通り実質的に不
必要な量のMoおよびWの含有となり、経済的で
なく、かかる点から、Mo(%)+1/2W(%)の値 を4〜8%未満と定めた。 (j) N N成分には固溶強化による強度向上作用がある
ので、特に高強度が要求される場合に必要に応じ
て含有されるが、その含有量が0.05%未満では所
望の強度向上効果を得ることができず、一方0.3
%を越えて含有させると、溶製および造塊が困難
となることから、その含有量を0.05〜0.3%と定
めた。 (k) CuおよびCo これらの成分には管材の耐食性を向上させる均
等的作用があり、かつCoにはさらに固溶強化作
用があるので、特に一段とすぐれた耐食性が要求
される場合に必要に応じて含有されるが、Cuが
2%を越えると、熱間加工性が劣化するようにな
り、一方Coは2%を越えて含有させてもより一
層の改善効果は現われないことから、その上限値
をそれぞれCu:2%、Co:2%と定めた。 (l) 希土類元素、Y、Mg、Ti、およびCa これらの成分には、熱間加工性をさらに改善す
る均等的作用があるので、厳しい条件で熱間加工
が行なわれる場合に、必要に応じて含有される
が、それぞれ希土類元素:0.10%、Y:0.20%、
Mg:0.10%、Ti:0.5%、およびCa:0.10%を越
えて含有させても、熱間加工性に改善効果は見ら
れず、むしろ劣化現象さえ現われるようになるこ
とから、それぞれの含有量を、希土類元素:0.10
%以下、Y:0.20%以下、Mg:0.10%以下、
Ti:0.5%以下、およびCa:0.10%以下と定めた。 (m) Cr(%)+10Mo(%)+5W(%) 第1図は厳しい腐食環境下での耐応力腐食割れ
性に関し、Cr(%)+10Mo(%)+5W(%)とNi含
有量の関係を示したものである。すなわち、Cr、
Ni、Mo、およびWの含有量を種々変化させたCr
―Ni―Mo系、Cr―Ni―W系、およびCr―Ni―
Mo―W系の鋼を溶製し、鋳造し、鍛伸して板
厚:50mmのスラブとした後、これを1200℃に加熱
して熱間圧延を開始し、この熱間圧延において、
板厚が10mmとなつた時点、すなわち再結晶が進行
しない1000℃となつた時点からの加工率を30%と
して板厚:7mmまで熱延し、ついでこの板材に、
温度:1000℃に30分保持後水冷の熱処理を施し、
引続いて強度向上の目的で加工率:22%の冷間加
工を加え、この結果得られた鋼板から圧延方向と
直角に、厚さ:2mm×幅:10mm×長さ:75mmの試
験片を切り出し、この試験片について、第2図に
示す3点支持ビーム冶具を用い、前記試験片Sに
0.2%耐力に相当する引張応力を付加した状態で、
10気圧のH2Sおよび10気圧のCO2でH2Sおよび
CO2を飽和させた20%NaCl溶液(温度:200℃)
中に1000時間浸漬の応力腐食割れ試験を行ない、
試験後、前記試験片における割れ発生の有無を観
察した。これらの結果に基き、発明者等が独自に
設定した条件式:Cr(%)+10Mo(%)+5W(%)
とNi含有量との間には、耐応力腐食割れ性に関
して、第1図に示される関係があることが明確に
なつたのである。なお、第1図において、〇印は
割れ発生なし、×印は割れ発生をそれぞれ示すも
のである。第1図に示される結果から、Cr(%)
+10Mo(%)+5W(%)の値が70%未満にして、
Ni含有量が25%未満では所望のすぐれた耐応力
腐食割れ性は得られないことが明らかである。 なお、この発明の合金において、不可避不純物
としてB,Sn,Pb,およびZnをそれぞれ0.1%以
下の範囲で含有しても、この発明の合金の特性が
何らそこなわれるものではない。 B 熱間加工条件 熱間加工における再結晶温度以下での肉厚減少
率を10%以上としたのは、この肉厚減少率が10%
未満では後工程の熱処理で、管材に所望の高強度
とすぐれた延性を付与するのに不可欠な微細再結
晶粒を十分に形成することができないからであ
る。また、熱間加工に際しては、その加熱温度を
1050〜1250℃とするのが望ましく、これは、加熱
温度が1050℃未満では熱間加工時の変形抵抗が高
くなりすぎて加工自体が困難になるばかりでな
く、未固溶の金属間化合物や炭化物が残留して靭
性や耐食性を劣化させる原因となり、一方1250℃
を越えた加熱温度になると、熱間における変形能
の著しい低下をもたらし、熱間加工が難しくなる
という理由によるものである。 C 熱処理条件 上述のように、この熱処理は微細な再結晶粒を
十分に形成するために施されるが、この場合の微
細再結晶粒の形成は、260logC(%)+1300で算出
された下限温度(℃)と、16Mo(%)+10W(%)
+10Cr(%)+777で算出された上限温度(℃)と
の間の温度に2時間以下保持することによつて行
なわれるものである。この下限温度の算出式:
260logC(%)+1300および上限温度の算出式:
16Mo(%)+10W(%)+10Cr(%)+777は多数の
試験結果にもとづいて経験的に定められたもので
あつて、上記の下限温度未満では所定の微細再結
晶の形成を十分にはかることができず、一方熱処
理温度が上記の上限温度を越えて高くなつたり、
保持時間が2時間を越えたりすると、結晶粒が粗
大化して熱間加工によつてもたらされる効果が消
減してしまつて所望の高強度並びに高靭性を確保
することができなくなることから、熱処理条件を
上記の通りに限定したのである。 なお、この場合未固溶の金属間化合物や炭化物
が残留すると耐食性劣化の原因となるが、熱処理
温度を上記の下限温度以上とすることによつて、
これを完全に固溶することができる。 D 冷間加工条件 また、この発明では、上記のように熱処理後に
冷間加工を施して強度向上をはかるが、この冷間
加工が肉厚減少率で10%未満では所望の強度を確
保することができず、一方同じく肉厚減少率で60
%を越えた冷間加工を施すと、延性および靭性の
劣化が著しくなることから、冷間加工を肉厚減少
率で10〜60%と定めたのである。 以上の成分組成および製造条件を適用すること
によつて0.2%耐力が85Kgf/mm2以上の高強度を
もち、かつ延性および靭性は勿論のこと、耐応力
腐食割れ性に優れた油井管を製造することができ
るのである。 つぎに、この発明の油井管製造法を実施例によ
り比較例と対比しながら具体的に説明する。 実施例 それぞれ第1表に示される成分組成をもつた溶
湯を通常の電気炉、および脱硫とN付加の目的で
Ar―酸素脱炭炉(AOD炉)を併用し、さらに必
要に応じて脱燐の目的でエレクトロスラグ溶解炉
(ESR炉)を使用して溶製した後、直径:500mm
φのインゴツトに鋳造し、ついでこのインゴツト
に温度:1200℃で熱間鍛造を施して直径:150mm
φのビレツトを成形し、この場合熱間加工性を評
価する目的でビレツトに割れの発生があるか否か
を観察し、引続いて前記ビレツトにそれぞれ第1
表に示される熱間加工条件にて熱間押出加工を施
して外径:60mmφ×肉厚:4mmの素管を成形し、
引続いて、同じくそれぞれ第1表に示される熱処
理条件(処理後の冷却はいずれも水冷)および肉
厚減少率で、熱処理と冷間加工を施すことによつ
て、本発明合金管材1〜27、比較合金管材1〜
9、および従来合金管材1〜4をそれぞれ製造し
た。 なお、比較合金管材1〜9は、構成成分のうち
のいずれかの成分の含有量、あるいは製造条件の
うちのいずれかの条件(第1表に※印を付して表
示)がこの発明の範囲から外れた条件で製造され
たものであり、また従来合金管材は、いずれも公
知の成分組成をもつものであつて、同管材1は、
JIS・SUS316に、同2はJIS・SUS310Sに、同3
はインコロイ800に、同4はJIS・SUS329J1にそ
れぞれ相当する組成をもつものである。 ついで、この結果得られた本発明合金管材1〜
27、比較合金管材1〜9、および従来合金管材1
〜4より長さ:20mmの試験片をそれぞれ切出し、
この試験片より長さ方向にそつて60゜に相当する
部分を切落し、この状態の試験片に第3図に正面
図で示されるようにボルトを貫通し、ナツトでし
めつけて管外表面に0.2%耐力に相当する引張応
力を付加し、この状態の試験片Sに対して、H2S
分圧をそれぞれ0.1気圧、1気圧、および20気圧
としたH2S―10気圧CO2―20%NaCl溶液(液
温:200℃)中に1000時間浸漬の応力腐食割れ試
験を行ない、試験後における応力腐食割れの有無
を調査した。この結果を、上記の熱間鍛造時の割
れ発生の有無、引張試験結果、および
The present invention relates to a method for manufacturing high-strength oil country tubular goods having excellent stress corrosion cracking resistance. In recent years, due to the deterioration of the energy situation, there has been a marked tendency for oil and natural gas wells to become deeper.
Deep wells have appeared that are over 6,000 meters deep, and some are over 10,000 meters deep. Furthermore, due to similar circumstances, it is becoming increasingly difficult to extract oil and natural gas in a harsh corrosive environment containing humid hydrogen sulfide, as well as corrosive components such as carbon dioxide gas and chloride ions. As oil and natural gas are drilled in such harsh environments, the oil country tubular goods used in this process are now required to have high strength and excellent corrosion resistance, especially stress corrosion cracking resistance. . As a general anti-corrosion measure for oil country tubular goods, it is known to introduce a corrosion suppressant called an inhibitor, but this method is often not effective for use in, for example, offshore oil wells. From this point of view, consideration has recently begun to be given to the use of high-grade corrosion-resistant high-alloy steels such as stainless steel and Incoloy and Hastelloy (both trade names) for the production of oil country tubular goods. Regarding the corrosion behavior of H 2 S―CO 2 ―Cl - in an oil well environment, the details have not yet been fully elucidated, and furthermore, it does not have the high strength required for oil country tubular goods for deep wells. is the current situation. Therefore, from the above-mentioned point of view, the present inventors investigated deep wells and severe corrosive environments, especially H 2 S―CO 2 -
As a result of conducting research to manufacture oil country tubular goods with high strength and excellent stress corrosion cracking resistance that can sufficiently withstand oil drilling in deep Cl - environments, we found that (a) H 2 S―CO 2 - The main type of corrosion in a Cl - environment is stress corrosion cracking, but the behavior of stress corrosion cracking in this case is completely different from that of general austenitic stainless steel. In other words, whereas general stress corrosion cracking is deeply related to the presence of Cl - , in the oil well environment mentioned above, the influence of H 2 S is greater than that of Cl - . (b) Steel pipes used for practical use as oil country tubular goods are generally
Cold working is performed to improve strength, but cold working significantly reduces the resistance to stress corrosion cracking. (c) The elution rate (corrosion rate) of steel in an H 2 S—CO 2 —Cl environment depends on the contents of Cr, Ni, Mo, and W, and is affected by the surface film made of these components. Corrosion resistance is maintained and these components are
It also increases its resistance to stress corrosion cracking, with Mo being 10 times more effective than Cr, and Mo being 10 times more effective than W.
It has twice the effect of
Mo and W satisfy the following conditional expressions: Cr (%) + 10Mo (%) + 5W (%) ≧ 70%, 4% ≦ Mo (%) + 1/2W (%) < 8%, and the Ni content twenty five~
60%, and the Cr content is 22.5 to 30%, H 2 S—, which is extremely corrosive, even if it is a cold-worked material.
It is possible to obtain a surface film that exhibits excellent resistance to stress corrosion cracking in a CO 2 - Cl - oil well environment, especially in adverse conditions below 200°C. (d) Ni has the effect of increasing stress corrosion cracking resistance not only on the surface film but also on the structure. (e) When N is included as an alloy component in the range of 0.05 to 0.3%, the strength of the pipe material is further improved. (f) If the S content as an unavoidable impurity is reduced to 0.0007% or less, the hot workability of the pipe material will be significantly improved. (g) When the P content as an unavoidable impurity is reduced to 0.003% or less, the susceptibility to hydrogen cracking significantly decreases. (h) Cu: 2% or less and Co: 2 as alloy components
% or less, the corrosion resistance is further improved. (i) Rare earth elements: 0.10% or less as alloy components;
Y: 0.20% or less, Mg: 0.10% or less, Ti: 0.5%
When one or more of the following and Ca: 0.10% or less is contained, hot workability is further improved. (j) However, in order to ensure the desired high strength,
First, to the alloy of the above composition, preferably 1050 ~
This material is heated to a temperature within the temperature range of 1250°C to completely dissolve intermetallic compounds and carbides, and then hot worked under conditions where the wall thickness reduction rate below the recrystallization temperature is 10% or more. Hot working is to form fine recrystallized grains in the post-process heat treatment to ensure high strength and good ductility. (℃) and the same empirical formula: 16Mo (%) +
Heat treatment is performed at a temperature between the upper limit temperature (°C) calculated by 10W (%) + 10Cr (%) + 777 for 2 hours or less to form fine recrystallized grains as described above, and in this case If there is undissolved carbide that degrades corrosion resistance, it will be dissolved in solid solution, and eventually the pipe material after the above heat treatment will contain 10 to 60% carbide.
It is necessary to perform cold working at a wall thickness reduction rate of % to strengthen the process. The findings shown in (a) to (j) above were obtained. Therefore, this invention was made based on the above knowledge, and includes C: 0.05% or less, Si: 1.0%.
% or less, Mn: 2.0% or less, P: 0.030% or less, preferably for the purpose of further improving hydrogen cracking resistance.
P: 0.003% or less, S: 0.005% or less, preferably S: 0.0007% for the purpose of further improving hot workability.
Below, sol.Al: 0.5% or less, Ni: 25-60%, Cr:
Contains 22.5-30%, Mo: less than 8% and W:
Contains one or two of less than 16%, and further includes N: 0.05 to 0.3%, Cu: 2% or less, Co: 2% or less, rare earth elements: 0.10% or less,
One or two of Y: 0.20% or less, Mg: 0.10% or less, Ti: 0.5% or less, and Ca: 0.10% or less
Cr(%)+10Mo(%)+5W(%) ≧70%, 4%≦Mo(%)+1/2(%)<8%, Alloys that satisfy the following conditions are hot worked under conditions where the wall thickness reduction rate below the recrystallization temperature is 10% or more. Then, the lower limit temperature (℃) calculated by 260logC (%) + 1300 and 16Mo (%) + 10W (%) + 10Cr (%) + 777
After heat treatment at a temperature between the upper limit temperature (℃) calculated for 2 hours or less, cold working at a wall thickness reduction rate of 10 to 60% improves stress corrosion cracking resistance. This method is characterized by a method for manufacturing high-strength oil country tubular goods with excellent properties. Next, in the method for manufacturing oil country tubular goods of this invention,
The reason why the component composition, heat treatment conditions, and wall thickness reduction rates in hot working and cold working are limited as described above will be explained below. A Component composition (a) C The lower the C content, the more the precipitation of carbides will be suppressed, so the heating temperature and heat treatment temperature during hot working can be lowered, and this will improve the strength after cold working. It works more effectively as the temperature rises. Therefore, it is desirable that the C content be as low as possible, but if the C content exceeds 0.05%,
Since intergranular stress corrosion cracking is likely to occur, the upper limit was set at 0.05%. (b) Si Si is a necessary component as a deoxidizing component, but if its content exceeds 1.0%, hot workability deteriorates, so its upper limit was set at 1.0%. (c) Mn The Mn component has a deoxidizing effect like Si, and since this component has little effect on stress corrosion cracking resistance, the upper limit was set at a rather high value of 2.0%. (d) P The P component as an unavoidable impurity has the effect of increasing stress corrosion cracking susceptibility when its content exceeds 0.030%, so the upper limit is set at 0.030% and the stress corrosion cracking susceptibility is kept in a low state. It is necessary to do so. Also, as the P content is reduced,
It has been found that hydrogen cracking resistance rapidly improves when the P content reaches 0.003%.From this point of view, when particularly excellent hydrogen cracking resistance is required, the P content should be reduced to 0.0030%. % or less. (e) S The S component as an unavoidable impurity has the effect of deteriorating hot workability when its content exceeds 0.005%, so the upper limit is set at 0.005% to reduce the deterioration of hot workability. It is necessary to prevent this. In this way, the S component has the effect of deteriorating hot workability when its content increases, but when its content is lowered to 0.0007%, hot workability is further improved. Therefore, if hot working under severe conditions is required, it is desirable to set the S content to 0.0007% or less. (f) Al Al is effective as a deoxidizing component like Si and Mn, and even if it is included up to 0.5% in sol.Al content, it will not impair the characteristics of the pipe material.
Its content was determined to be 0.5% or less in terms of sol.Al content. (g) Ni Ni has the effect of improving the stress corrosion cracking resistance of pipe materials, but if its content is less than 25%, the desired excellent stress corrosion cracking resistance cannot be secured; Even if the content exceeds 25%, no further improvement effect on stress corrosion cracking resistance appears, and the content was set at 25% to 60%, taking economic efficiency into consideration. (h) Cr The Cr component is a component that significantly improves stress corrosion cracking resistance when coexisting with Ni, Mo, and W components, but hot workability is not improved even if its content is less than 22.5%. On the contrary, in order to ensure the desired stress corrosion cracking resistance,
The lower limit was set at 22.5% because it would be economically disadvantageous to have to increase the content of Mo and W by that much. On the other hand, if the S content exceeds 30%, deterioration of hot workability cannot be avoided no matter how much the S content is reduced, so the upper limit was set at 30%. (i) Mo and W As mentioned above, these components include Ni and
Coexistence with Cr has a uniform effect of improving stress corrosion cracking resistance, but even if Mo: 8% or more and W: 16% or more are contained, H 2 S—CO at an environmental temperature of 200°C or less 2 - In a corrosive environment of Cl - ,
Furthermore, since no further improvement effect appeared, the respective contents were reduced to Mo: less than 8%, considering economic efficiency.
W: Set as less than 16%. In addition, regarding the content of Mo and W, the conditional expression: Mo (%) + 1/2 W (%) specifies that W has about twice the atomic weight of Mo, and is about 1/2 as effective in terms of effectiveness. If this value is less than 4%, the desired stress corrosion cracking resistance cannot be obtained, especially in the above-mentioned adverse environment of 200℃ or less.On the other hand, even if this value is 8% or more, as mentioned above, This results in substantially unnecessary amounts of Mo and W being contained, which is uneconomical.From this point of view, the value of Mo (%) + 1/2 W (%) was set at 4 to less than 8%. (j) N Since the N component has a strength-improving effect through solid solution strengthening, it is included as necessary when particularly high strength is required, but if its content is less than 0.05%, the desired strength-improving effect may not be achieved. while 0.3
If the content exceeds 0.0%, melting and ingot making become difficult, so the content was set at 0.05 to 0.3%. (k) Cu and Co These components have a uniform effect of improving the corrosion resistance of pipe materials, and Co has a solid solution strengthening effect. However, if Cu exceeds 2%, hot workability will deteriorate, while Co content will not improve further even if it exceeds 2%. The values were set as Cu: 2% and Co: 2%, respectively. (l) Rare earth elements, Y, Mg, Ti, and Ca These components have a uniform effect to further improve hot workability, so they can be used as needed when hot working is carried out under severe conditions. Rare earth elements: 0.10%, Y: 0.20%,
Even if the content exceeds Mg: 0.10%, Ti: 0.5%, and Ca: 0.10%, there is no improvement effect on hot workability, and in fact, deterioration phenomenon appears. , rare earth elements: 0.10
% or less, Y: 0.20% or less, Mg: 0.10% or less,
Ti: 0.5% or less and Ca: 0.10% or less. (m) Cr (%) + 10Mo (%) + 5W (%) Figure 1 shows the relationship between Cr (%) + 10Mo (%) + 5W (%) and Ni content regarding stress corrosion cracking resistance under severe corrosive environments. This is what is shown. That is, Cr,
Cr with various contents of Ni, Mo, and W
-Ni-Mo series, Cr-Ni-W series, and Cr-Ni-
After melting Mo-W steel, casting, and forging to form a slab with a thickness of 50 mm, this is heated to 1200°C to start hot rolling.
When the plate thickness reaches 10 mm, that is, when the temperature reaches 1000℃ at which recrystallization does not proceed, the processing rate is set to 30%, and the plate is hot rolled to a thickness of 7 mm.
Temperature: After holding at 1000℃ for 30 minutes, heat treatment with water cooling is performed.
Subsequently, cold working was applied at a processing rate of 22% for the purpose of improving strength, and test pieces with a thickness of 2 mm x width of 10 mm x length of 75 mm were cut from the resulting steel plate at right angles to the rolling direction. Cut out the test piece, and use the three-point support beam jig shown in FIG.
When a tensile stress equivalent to 0.2% proof stress is applied,
H2S and 10 atm H2S and 10 atm CO2
20% NaCl solution saturated with CO2 (temperature: 200℃)
We conducted a stress corrosion cracking test by immersing it in water for 1000 hours.
After the test, the presence or absence of cracks in the test piece was observed. Based on these results, the inventors independently set a conditional expression: Cr (%) + 10Mo (%) + 5W (%)
It has become clear that there is a relationship between the stress corrosion cracking resistance and the Ni content as shown in Figure 1. In FIG. 1, the ◯ mark indicates no cracking, and the x mark indicates cracking. From the results shown in Figure 1, Cr (%)
+10Mo (%) +5W (%) value is less than 70%,
It is clear that if the Ni content is less than 25%, the desired excellent stress corrosion cracking resistance cannot be obtained. Note that even if the alloy of the present invention contains B, Sn, Pb, and Zn as unavoidable impurities in a range of 0.1% or less, the properties of the alloy of the present invention will not be impaired in any way. B. Hot working conditions The reason why the wall thickness reduction rate below the recrystallization temperature during hot working is set to 10% or more is that this wall thickness reduction rate is 10%.
This is because if it is less than that, fine recrystallized grains, which are essential for imparting the desired high strength and excellent ductility to the pipe material, cannot be sufficiently formed in the heat treatment in the post-process. In addition, during hot processing, the heating temperature should be
It is desirable to set the temperature to 1050-1250°C, because if the heating temperature is less than 1050°C, the deformation resistance during hot working becomes too high and the working itself becomes difficult, and also undissolved intermetallic compounds and Carbides remain and cause deterioration of toughness and corrosion resistance.
This is because if the heating temperature exceeds 100, the deformability during hot deformation will be significantly reduced, making hot working difficult. C Heat treatment conditions As mentioned above, this heat treatment is performed to sufficiently form fine recrystallized grains, but in this case, the formation of fine recrystallized grains is achieved at the lower limit temperature calculated by 260logC (%) + 1300. (℃) and 16Mo (%) + 10W (%)
This is carried out by maintaining the temperature between the upper limit temperature (°C) calculated by +10Cr (%) +777 for 2 hours or less. Calculation formula for this lower limit temperature:
Calculation formula for 260logC (%) + 1300 and upper limit temperature:
16Mo (%) + 10W (%) + 10Cr (%) + 777 is determined empirically based on the results of numerous tests, and below the lower limit temperature above, the formation of the specified fine recrystallization must be sufficiently ensured. On the other hand, if the heat treatment temperature exceeds the upper limit temperature above,
If the holding time exceeds 2 hours, the crystal grains will become coarse and the effects brought about by hot working will disappear, making it impossible to secure the desired high strength and high toughness. was limited as above. In this case, if undissolved intermetallic compounds and carbides remain, it will cause corrosion resistance deterioration, but by setting the heat treatment temperature to the above lower limit temperature or higher,
This can be completely dissolved. D. Cold working conditions In addition, in this invention, as described above, cold working is performed after heat treatment to improve the strength, but if the cold working is less than 10% in wall thickness reduction rate, the desired strength cannot be secured. On the other hand, the wall thickness reduction rate is 60
If cold working exceeds 10%, the deterioration of ductility and toughness will be significant, so cold working was set at a wall thickness reduction rate of 10 to 60%. By applying the above component composition and manufacturing conditions, we manufacture oil country tubular goods that have high strength with a 0.2% proof stress of 85 Kgf/mm 2 or more, as well as excellent ductility and toughness, as well as excellent stress corrosion cracking resistance. It is possible to do so. Next, the method for manufacturing oil country tubular goods of the present invention will be specifically explained using examples and comparing with comparative examples. Example Molten metal having the composition shown in Table 1 was heated in a normal electric furnace and for the purpose of desulfurization and N addition.
Diameter: 500 mm after melting using an Ar-oxygen decarburization furnace (AOD furnace) and, if necessary, an electroslag melting furnace (ESR furnace) for the purpose of dephosphorization.
It is cast into a φ ingot, and then hot forged at a temperature of 1200°C to create a diameter of 150mm.
A billet of φ is formed, and in this case, for the purpose of evaluating hot workability, it is observed whether or not cracks occur in the billet.
Hot extrusion processing is performed under the hot processing conditions shown in the table to form a raw tube with an outer diameter of 60 mmφ and a wall thickness of 4 mm.
Subsequently, the alloy tube materials 1 to 27 of the present invention were obtained by heat treatment and cold working under the heat treatment conditions (cooling after treatment was all water cooling) and wall thickness reduction rate shown in Table 1, respectively. , Comparative alloy tube material 1~
9 and conventional alloy tube materials 1 to 4 were manufactured, respectively. In addition, Comparative Alloy Tube Materials 1 to 9 have the content of any one of the constituent components or any of the manufacturing conditions (indicated with an asterisk in Table 1) of the present invention. The tube material 1 was manufactured under conditions outside the range, and all conventional alloy tube materials have known compositions.
For JIS/SUS316, same 2 for JIS/SUS310S, same 3
The composition is equivalent to Incoloy 800, and the composition corresponding to Incoloy 4 is JIS/SUS329J1. Next, the resulting alloy tube materials 1 to 1 of the present invention
27, comparative alloy pipe materials 1 to 9, and conventional alloy pipe material 1
From ~4, cut out a test piece with a length of 20 mm,
Cut off a section corresponding to 60° along the length of this test piece, pass a bolt through this test piece as shown in the front view in Figure 3, tighten it with a nut, and attach it to the outside surface of the tube. A tensile stress equivalent to 0.2% proof stress is applied to the specimen S in this state, and H 2 S
A stress corrosion cracking test was conducted by immersion in H 2 S - 10 atm CO 2 - 20% NaCl solution (liquid temperature: 200°C) at partial pressures of 0.1 atm, 1 atm, and 20 atm, respectively, for 1000 hours. The presence or absence of stress corrosion cracking was investigated. This result is compared to the presence or absence of cracking during hot forging, the tensile test results, and

【表】【table】

【表】【table】

【表】【table】

【表】 衝撃試験結果と共に、第2表に合せて示した。な
お、第2表において、〇印はいずれも割れ発生の
ないものを示し、一方×印は割れ発生のあつたも
のを示す。 第2表に示される結果から、比較合金管材1〜
9は、熱間加工性、耐応力腐食割れ性、および強
度のうちの少なくともいずれかの性質が劣つたも
のであるのに対して、本発明合金管材1〜27は、
いずれもすぐれた熱間加工性および耐応力腐食割
れ性を有し、さらに高強度を有し、かつ熱間加工
性は良好であるが、相対的に強度が低く、しかも
耐応力腐食割れ性に劣る従来合金管材1〜4と比
較しても一段とすぐれた特性を有することが明ら
かである。 上述のように、この発明の方法によつて製造さ
れた油井管は、特に高強度および優れた耐応力腐
食割れ性を有するので、これらの特性が要求され
る苛酷な環境下での石油並びに天然ガス採掘は勿
論のこと、地熱井管として用いた場合にもきわめ
て優れた性能を発揮するのである。
[Table] The results are shown in Table 2 along with the impact test results. In Table 2, the ○ marks indicate those with no cracks, while the x marks indicate those with cracks. From the results shown in Table 2, comparative alloy tube materials 1 to
No. 9 is inferior in at least one of hot workability, stress corrosion cracking resistance, and strength, whereas alloy tube materials 1 to 27 of the present invention are
Both have excellent hot workability and stress corrosion cracking resistance, and also have high strength and good hot workability, but have relatively low strength and poor stress corrosion cracking resistance. It is clear that this material has even better characteristics than conventional alloy tube materials 1 to 4, which are inferior. As mentioned above, oil country tubular goods manufactured by the method of the present invention have particularly high strength and excellent stress corrosion cracking resistance, so they can be used in petroleum and natural products in harsh environments where these properties are required. It exhibits extremely excellent performance not only in gas extraction, but also when used as geothermal well pipes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は合金の耐応力腐食割れ性に関し、Ni
含有量とCr(%)+10Mo(%)+5W(%)との関係
を示した図、第2図および第3図はそれぞれ板状
および管状試験片に対する応力腐食割れ試験の態
様を示す図である。
Figure 1 shows the stress corrosion cracking resistance of alloys.
A diagram showing the relationship between content and Cr (%) + 10Mo (%) + 5W (%), Figures 2 and 3 are diagrams showing the mode of stress corrosion cracking tests on plate-shaped and tubular specimens, respectively. .

Claims (1)

【特許請求の範囲】 1 C:0.05%以下、Si:1.0%以下、Mn:2.0%
以下、P:0.030%以下、S:0.005%以下、sol.
Al:0.5%以下、Ni:25〜60%、Cr:22.5〜30%
を含有し、Mo:8%未満およびW:16%未満の
うちの1種または2種を含有し、残りがFeと不
可避不純物からなる組成(以上重量%)を有し、
かつ、 Cr(%)+10Mo(%)+5W(%)≧70%、 4%≦Mo(%)+1/2W(%)<8%、 の条件を満足する合金を、再結晶温度以下での肉
厚減少率を10%以上とした条件で熱間加工し、つ
いで260logC(%)+1300で算出された下限温度
(℃)と、16Mo(%)+10W(%)+10Cr(%)+777
で算出された上限温度(℃)の間の温度に2時間
以下保持の条件で熱処理した後、10〜60%の肉厚
減少率で冷間加工することを特徴とする耐応力腐
食割れ性に優れた高強度油井管の製造法。 2 C:0.05%、Si:1.0%以下、Mn:2.0%以
下、P:0.030%以下、S:0.005%以下、sol.
Al:0.5%以下、Ni:25〜60%、Cr:22.5〜30%
を含有し、Mo:8%未満およびW:16%未満の
うちの1種または2種を含有し、さらにCu:2
%以下およびCo:2%以下のうちの1種または
2種を含有し、残りがFeと不可避不純物からな
る組成(以上重量%)を有し、かつ、 Cr(%)+10Mo(%)+5W(%)≧70%、 4%≦Mo(%)+1/2W(%)<8%、 の条件を満足する合金を、再結晶温度以下での肉
厚減少率を10%以上とした条件で熱間加工し、つ
いで260logC(%)+1300で算出された下限温度
(℃)と、16Mo(%)+10W(%)+10Cr(%)+777
で算出された上限温度(℃)の間の温度に、2時
間以下保持の条件で熱処理した後、10〜60%の肉
厚減少率で冷間加工することを特徴とする耐応力
腐食割れ性に優れた高強度油井管の製造法。 3 C:0.05%以下、Si:1.0%以下、Mn:2.0%
以下、P:0.030%以下、S:0.005%以下、sol.
Al:0.5%以下、Ni:25〜60%、Cr:22.5〜30%
を含有し、Mo:8%未満およびW:16%未満の
うちの1種または2種を含有し、さらに希土類元
素:0.10%以下、Y:0.20%以下、Mg:0.10%以
下、Ti:0.5%以下、およびCa:0.10%以下のう
ちの1種または2種以上を含有し、残りがFeと
不可避不純物からなる組成(以上重量%)を有
し、かつ、 Cr(%)+10Mo(%)+5W(%)≧70%、 4%≦Mo(%)+1/2W(%)<8%、 の条件を満足する合金を、再結晶温度以下での肉
厚減少率を10%以上とした条件で熱間加工し、つ
いで260logC(%)+1300で算出された下限温度
(℃)と、16Mo(%)+10W(%)+10Cr(%)+777
で算出された上限温度(℃)の間の温度に、2時
間以下保持の条件で熱処理した後、10〜60%の肉
厚減少率で冷間加工することを特徴とする耐応力
腐食割れ性に優れた高強度油井管の製造法。 4 C:0.05%以下、Si:1.0%以下、Mn:2.0%
以下、P:0.030%以下、S:0.005%以下、sol.
Al:0.5%以下、Ni:25〜60%、Cr:22.5〜30%
を含有し、Mo:8%未満およびW:16%未満の
うちの1種または2種を含有し、さらにCu:2
%以下およびCo:2%以下のうちの1種または
2種と、希土類元素:0.10%以下、Y:0.20%以
下、Mg:0.10%以下、Ti:0.5%以下、および
Ca:0.10%以下のうちの1種または2種以上とを
含有し、残りがFeと不可避不純物からなる組成
(以上重量%)を有し、かつ、 Cr(%)+10Mo(%)+5W(%)≧70%、 4%≦Mo(%)+1/2W(%)<8%、 の条件を満足する合金を、再結晶温度以下での肉
厚減少率を10%以上とした条件で熱間加工し、つ
いで260logC(%)+1300で算出された下限温度
(℃)と、16Mo(%)+10W(%)+10Cr(%)+777
で算出された上限温度(℃)の間の温度に、2時
間以下保持の条件で熱処理した後、10〜60%の肉
厚減少率で冷間加工することを特徴とする耐応力
腐食割れ性に優れた高強度油井管の製造法。 5 C:0.05%以下、Si:1.0%以下、Mn:2.0%
以下、P:0.030%以下、S:0.005%以下、sol.
Al:0.5%以下、N:0.05〜0.3%、Ni:25〜60
%、Cr:22.5〜30%を含有し、Mo:8%未満お
よびW:16%未満のうちの1種または2種を含有
し、残りがFeと不可避不純物からなる組成(以
上重量%)を有し、かつ、 Cr(%)+10Mo(%)+5W(%)≧70%、 4%≦Mo(%)+1/2W(%)<8%、 の条件を満足する合金を、再結晶温度以下での肉
厚減少率を10%以上とした条件で熱間加工し、つ
いで260logC(%)+1300で算出された下限温度
(℃)と、16Mo(%)+10W(%)+10Cr(%)+777
で算出された上限温度(℃)の間の温度に、2時
間以下保持の条件で熱処理した後、10〜60%の肉
厚減少率で冷間加工することを特徴とする耐応力
腐食割れ性に優れた高強度油井管の製造法。 6 C:0.05%以下、Si:1.0%以下、Mn:2.0%
以下、P:0.030%以下、S:0.005%以下、sol.
Al:0.5%以下、N:0.05〜0.3%、Ni:25〜60
%、Cr:22.5〜30%を含有し、Mo:8%未満お
よびW:16%未満のうちの1種または2種を含有
し、さらにCu:2%以下およびCo:2%以下の
うちの1種または2種を含有し、残りがFeと不
可避不純物からなる組成(以上重量%)を有し、
かつ、 Cr(%)+10Mo(%)+5W(%)≧70%、 4%≦Mo(%)+1/2W(%)<8%、 の条件を満足する合金を、再結晶温度以下での肉
厚減少率を10%以上とした条件で熱間加工し、つ
いで260logC(%)+1300で算出された下限温度
(℃)と、16Mo(%)+10W(%)+10Cr(%)+777
で算出された上限温度(℃)の間の温度に、2時
間以下保持の条件で熱処理した後、10〜60%の肉
厚減少率で冷間加工することを特徴とする耐応力
腐食割れ性に優れた高強度油井管の製造法。 7 C:0.05%以下、Si:1.0%以下、Mn:2.0%
以下、P:0.030%以下、S:0.005%以下、sol.
Al:0.5%以下、N:0.05〜0.3%、Ni:25〜60
%、Cr:22.5〜30%を含有し、Mo:8%未満お
よびW:16%未満のうちの1種または2種を含有
し、さらに希土類元素:0.10%以下、Y:0.20%
以下、Mg:0.10%以下、Ti:0.5%以下、および
Ca:0.10%以下のうちの1種または2種以上を含
有し、残りがFeと不可避不純物からなる組成
(以上重量%)を有し、かつ、 Cr(%)+10Mo(%)+5W(%)≧70%、 4%≦Mo(%)+1/2W(%)<8%、 の条件を満足する合金を、再結晶温度以下での肉
厚減少率を10%以上とした条件で熱間加工し、つ
いで260logC(%)+1300で算出された下限温度
(℃)と、16Mo(%)+10W(%)+10Cr(%)+777
で算出された上限温度(℃)の間の温度に、2時
間以下保持の条件で熱処理した後、10〜60%の肉
厚減少率で冷間加工することを特徴とする耐応力
腐食割れ性に優れた高強度油井管の製造法。 8 C:0.05%以下、Si:1.0%以下、Mn:2.0%
以下、P:0.030%以下、S:0.005%以下、sol.
Al:0.5%以下、N:0.05〜0.3%、Ni:25〜60
%、Cr:22.5〜30%を含有し、Mo:8%未満お
よびW:16%未満のうちの1種または2種を含有
し、さらにCu:2%以下およびCo:2%以下の
うちの1種または2種と、希土類元素:0.10%以
下、Y:0.20%以下、Mg:0.10%以下、Ti:0.5
%以下、およびCa:0.10%以下のうちの1種また
は2種以上とを含有し、残りがFeと不可避不純
物からなる組成(以上重量%)を有し、かつ、 Cr(%)+10Mo(%)+5W(%)≧70%、 4%≦Mo(%)+1/2W(%)<8%、 の条件を満足する合金を、再結晶温度以下での肉
厚減少率を10%以上とした条件で熱間加工し、つ
いで260logC(%)+1300で算出された下限温度
(℃)と、16Mo(%)+10W(%)+10Cr(%)+777
で算出された上限温度(℃)の間の温度に、2時
間以下保持の条件で熱処理した後、10〜60%の肉
厚減少率で冷間加工することを特徴とする耐応力
腐食割れ性に優れた高強度油井管の製造法。
[Claims] 1 C: 0.05% or less, Si: 1.0% or less, Mn: 2.0%
Below, P: 0.030% or less, S: 0.005% or less, sol.
Al: 0.5% or less, Ni: 25-60%, Cr: 22.5-30%
containing one or two of Mo: less than 8% and W: less than 16%, with the remainder consisting of Fe and unavoidable impurities (wt%),
And, Cr (%) + 10Mo (%) + 5W (%) ≧ 70%, 4% ≦ Mo (%) + 1/2W (%) < 8%. Hot working is performed under the condition that the thickness reduction rate is 10% or more, and then the lower limit temperature (℃) calculated from 260logC (%) + 1300 and 16Mo (%) + 10W (%) + 10Cr (%) + 777
The stress corrosion cracking resistance is characterized by heat treatment at a temperature between the upper limit temperature (℃) calculated for 2 hours or less, and then cold working at a wall thickness reduction rate of 10 to 60%. A manufacturing method for superior high-strength oil country tubular goods. 2 C: 0.05%, Si: 1.0% or less, Mn: 2.0% or less, P: 0.030% or less, S: 0.005% or less, sol.
Al: 0.5% or less, Ni: 25-60%, Cr: 22.5-30%
Contains one or two of Mo: less than 8% and W: less than 16%, and further contains Cu: 2
% or less and Co: 2% or less, with the remainder consisting of Fe and unavoidable impurities (wt%), and Cr (%) + 10Mo (%) + 5W ( %)≧70%, 4%≦Mo(%)+1/2W(%)<8%, An alloy that satisfies the following conditions is heated under conditions where the wall thickness reduction rate below the recrystallization temperature is 10% or more. After processing, the lower limit temperature (℃) calculated by 260logC (%) + 1300 and 16Mo (%) + 10W (%) + 10Cr (%) + 777
Stress corrosion cracking resistance characterized by heat treatment at a temperature between the upper limit temperature (°C) calculated for 2 hours or less, and then cold working at a wall thickness reduction rate of 10 to 60%. A manufacturing method for high-strength oil country tubular goods with excellent properties. 3 C: 0.05% or less, Si: 1.0% or less, Mn: 2.0%
Below, P: 0.030% or less, S: 0.005% or less, sol.
Al: 0.5% or less, Ni: 25-60%, Cr: 22.5-30%
Contains one or two of Mo: less than 8% and W: less than 16%, further rare earth elements: 0.10% or less, Y: 0.20% or less, Mg: 0.10% or less, Ti: 0.5 % or less, and Ca: 0.10% or less, with the remainder consisting of Fe and unavoidable impurities (weight %), and Cr (%) + 10Mo (%) +5W (%) ≧ 70%, 4% ≦ Mo (%) + 1/2W (%) < 8%, conditions where the wall thickness reduction rate below the recrystallization temperature is 10% or more. Then, the lower limit temperature (℃) calculated by 260logC (%) + 1300 and 16Mo (%) + 10W (%) + 10Cr (%) + 777
Stress corrosion cracking resistance characterized by heat treatment at a temperature between the upper limit temperature (°C) calculated for 2 hours or less, and then cold working at a wall thickness reduction rate of 10 to 60%. A manufacturing method for high-strength oil country tubular goods with excellent properties. 4 C: 0.05% or less, Si: 1.0% or less, Mn: 2.0%
Below, P: 0.030% or less, S: 0.005% or less, sol.
Al: 0.5% or less, Ni: 25-60%, Cr: 22.5-30%
Contains one or two of Mo: less than 8% and W: less than 16%, and further contains Cu: 2
% or less and Co: 2% or less, rare earth elements: 0.10% or less, Y: 0.20% or less, Mg: 0.10% or less, Ti: 0.5% or less, and
Contains one or more of Ca: 0.10% or less, with the remainder consisting of Fe and unavoidable impurities (weight%), and Cr (%) + 10Mo (%) + 5W (%) )≧70%, 4%≦Mo(%)+1/2W(%)<8%, An alloy that satisfies the following conditions is hot-heated under the condition that the wall thickness reduction rate below the recrystallization temperature is 10% or more. After processing, the lower limit temperature (℃) calculated by 260logC (%) + 1300 and 16Mo (%) + 10W (%) + 10Cr (%) + 777
Stress corrosion cracking resistance characterized by heat treatment at a temperature between the upper limit temperature (°C) calculated for 2 hours or less, and then cold working at a wall thickness reduction rate of 10 to 60%. A manufacturing method for high-strength oil country tubular goods with excellent properties. 5 C: 0.05% or less, Si: 1.0% or less, Mn: 2.0%
Below, P: 0.030% or less, S: 0.005% or less, sol.
Al: 0.5% or less, N: 0.05-0.3%, Ni: 25-60
%, Cr: 22.5 to 30%, Mo: less than 8% and W: less than 16%, and the remainder is Fe and unavoidable impurities (weight%). Cr (%) + 10Mo (%) + 5W (%) ≧ 70%, 4% ≦ Mo (%) + 1/2W (%) < 8%, below the recrystallization temperature. Hot working is performed under the condition that the wall thickness reduction rate is 10% or more, and then the lower limit temperature (℃) calculated from 260logC (%) + 1300 and 16Mo (%) + 10W (%) + 10Cr (%) + 777
Stress corrosion cracking resistance characterized by heat treatment at a temperature between the upper limit temperature (℃) calculated by 2 hours or less, and then cold working at a wall thickness reduction rate of 10 to 60%. A manufacturing method for high-strength oil country tubular goods with excellent properties. 6 C: 0.05% or less, Si: 1.0% or less, Mn: 2.0%
Below, P: 0.030% or less, S: 0.005% or less, sol.
Al: 0.5% or less, N: 0.05-0.3%, Ni: 25-60
%, Cr: 22.5 to 30%, Mo: less than 8% and W: less than 16%, and further contains Cu: 2% or less and Co: 2% or less. Contains one or two types, with the remainder consisting of Fe and unavoidable impurities (weight %),
And, Cr (%) + 10Mo (%) + 5W (%) ≧ 70%, 4% ≦ Mo (%) + 1/2W (%) < 8%. Hot working is performed under the condition that the thickness reduction rate is 10% or more, and then the lower limit temperature (℃) calculated from 260logC (%) + 1300 and 16Mo (%) + 10W (%) + 10Cr (%) + 777
Stress corrosion cracking resistance characterized by heat treatment at a temperature between the upper limit temperature (°C) calculated for 2 hours or less, and then cold working at a wall thickness reduction rate of 10 to 60%. A manufacturing method for high-strength oil country tubular goods with excellent properties. 7 C: 0.05% or less, Si: 1.0% or less, Mn: 2.0%
Below, P: 0.030% or less, S: 0.005% or less, sol.
Al: 0.5% or less, N: 0.05-0.3%, Ni: 25-60
%, Cr: 22.5 to 30%, Mo: less than 8% and W: less than 16%, and further contains rare earth elements: 0.10% or less, Y: 0.20%
Below, Mg: 0.10% or less, Ti: 0.5% or less, and
Contains one or more of Ca: 0.10% or less, with the remainder consisting of Fe and unavoidable impurities (weight%), and Cr (%) + 10Mo (%) + 5W (%) ≧70%, 4%≦Mo(%)+1/2W(%)<8%, Alloys that satisfy the following conditions are hot worked under conditions where the wall thickness reduction rate below the recrystallization temperature is 10% or more. Then, the lower limit temperature (℃) calculated by 260logC (%) + 1300 and 16Mo (%) + 10W (%) + 10Cr (%) + 777
Stress corrosion cracking resistance characterized by heat treatment at a temperature between the upper limit temperature (°C) calculated for 2 hours or less, and then cold working at a wall thickness reduction rate of 10 to 60%. A manufacturing method for high-strength oil country tubular goods with excellent properties. 8 C: 0.05% or less, Si: 1.0% or less, Mn: 2.0%
Below, P: 0.030% or less, S: 0.005% or less, sol.
Al: 0.5% or less, N: 0.05-0.3%, Ni: 25-60
%, Cr: 22.5 to 30%, Mo: less than 8% and W: less than 16%, and further contains Cu: 2% or less and Co: 2% or less. 1 or 2 types, rare earth elements: 0.10% or less, Y: 0.20% or less, Mg: 0.10% or less, Ti: 0.5
% or less, and one or more of Ca: 0.10% or less, with the remainder consisting of Fe and unavoidable impurities (wt%), and Cr (%) + 10Mo (%) ) + 5W (%) ≧ 70%, 4% ≦ Mo (%) + 1/2W (%) < 8%, The alloy that satisfies the following conditions has a wall thickness reduction rate of 10% or more below the recrystallization temperature. After hot working under the following conditions, the lower limit temperature (℃) calculated from 260logC (%) + 1300 and 16Mo (%) + 10W (%) + 10Cr (%) + 777
Stress corrosion cracking resistance characterized by heat treatment at a temperature between the upper limit temperature (°C) calculated for 2 hours or less, and then cold working at a wall thickness reduction rate of 10 to 60%. A manufacturing method for high-strength oil country tubular goods with excellent properties.
JP10411281A 1981-07-03 1981-07-03 Production of high strength oil well pipe of high stress corrosion cracking resistance Granted JPS586928A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP10411281A JPS586928A (en) 1981-07-03 1981-07-03 Production of high strength oil well pipe of high stress corrosion cracking resistance
US06/389,568 US4421571A (en) 1981-07-03 1982-06-17 Process for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking
GB08217860A GB2104100B (en) 1981-07-03 1982-06-21 High strength deep well casing and tubing having improved resistance to stress-corrosion cracking
SE8204121A SE461986C (en) 1981-07-03 1982-07-02 PROCEDURES FOR PREPARING HOEGHAALLFASTA DEEP BORROWS WITH RESISTANCE TO TENSION CORROSION
DE3224865A DE3224865C2 (en) 1981-07-03 1982-07-02 Process for the production of heavy-duty casing for deep boreholes or the like
FR8211645A FR2508930A1 (en) 1981-07-03 1982-07-02 PROCESS FOR MANUFACTURING HIGH MECHANICAL RESISTANCE PIPES AND PIPES FOR DEEP WELLS
SE8901647A SE502102C2 (en) 1981-07-03 1989-05-09 Process for the manufacture of high strength deep drill pipes with resistance to stress corrosion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10411281A JPS586928A (en) 1981-07-03 1981-07-03 Production of high strength oil well pipe of high stress corrosion cracking resistance

Publications (2)

Publication Number Publication Date
JPS586928A JPS586928A (en) 1983-01-14
JPS6362570B2 true JPS6362570B2 (en) 1988-12-02

Family

ID=14372039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10411281A Granted JPS586928A (en) 1981-07-03 1981-07-03 Production of high strength oil well pipe of high stress corrosion cracking resistance

Country Status (1)

Country Link
JP (1) JPS586928A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5176561B2 (en) * 2007-07-02 2013-04-03 新日鐵住金株式会社 Manufacturing method of high alloy pipe
US10557574B2 (en) 2013-11-12 2020-02-11 Nippon Steel Corporation Ni—Cr alloy material and seamless oil country tubular goods using the same
BR112019025658B1 (en) 2017-06-09 2023-04-11 Nippon Steel Corporation AUSTENITIC ALLOY TUBE AND METHOD FOR ITS PRODUCTION

Also Published As

Publication number Publication date
JPS586928A (en) 1983-01-14

Similar Documents

Publication Publication Date Title
US4421571A (en) Process for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking
JPS625977B2 (en)
JPS625976B2 (en)
KR20210069097A (en) Welded structure and its manufacturing method
JPS6144133B2 (en)
JPS6362569B2 (en)
JPH10121202A (en) High strength steel used in environment requiring sulfides stress creaking resistance and its production
JPS6363608B2 (en)
JPS6144135B2 (en)
JPS6363610B2 (en)
JPS6363609B2 (en)
JPS6363606B2 (en)
JPS6199660A (en) High strength welded steel pipe for line pipe
JPS6144126B2 (en)
JPS581044A (en) High strength alloy having superior stress corrosion cracking resistance for oil well pipe
JPS6144128B2 (en)
JPS6362570B2 (en)
JPH0371506B2 (en)
JPH0372698B2 (en)
JPS6144134B2 (en)
JPS6144125B2 (en)
CA3086462C (en) Cr-ni alloy and seamless steel pipe made of cr-ni alloy
JP3470418B2 (en) High strength austenitic alloy with excellent seawater corrosion resistance and hydrogen sulfide corrosion resistance
JPS6363611B2 (en)
JPS6363605B2 (en)