JPS6144125B2 - - Google Patents

Info

Publication number
JPS6144125B2
JPS6144125B2 JP56089104A JP8910481A JPS6144125B2 JP S6144125 B2 JPS6144125 B2 JP S6144125B2 JP 56089104 A JP56089104 A JP 56089104A JP 8910481 A JP8910481 A JP 8910481A JP S6144125 B2 JPS6144125 B2 JP S6144125B2
Authority
JP
Japan
Prior art keywords
less
stress corrosion
corrosion cracking
alloy
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56089104A
Other languages
Japanese (ja)
Other versions
JPS57203735A (en
Inventor
Takeo Kudo
Daiji Moroishi
Akio Ikeda
Yasuo Ootani
Yasutaka Okada
Kunihiko Yoshikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP8910481A priority Critical patent/JPS57203735A/en
Priority to US06/383,803 priority patent/US4400209A/en
Priority to GB08216703A priority patent/GB2103655B/en
Priority to DE3221878A priority patent/DE3221878A1/en
Priority to SE8203627A priority patent/SE452477B/en
Priority to FR8210116A priority patent/FR2507628A1/en
Publication of JPS57203735A publication Critical patent/JPS57203735A/en
Publication of JPS6144125B2 publication Critical patent/JPS6144125B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、高強度および優れた耐応力腐食割
れ性を有し、特に油井管の製造に用いるのに適し
た合金に関するものである。 近年、エネルギー事情の悪化から、油井および
天然ガス井は深井戸化の傾向が著しく、深さ:
6000m以上、なかには深さ:10000m以上の深井
戸が出現している。 また、同様な事情から、湿潤な硫化水素をはじ
め、炭酸ガスや塩素イオンなどの腐食性成分を含
有する苛酷な腐食環境下での石油および天然ガス
の採掘が予儀なくされつつある。 このような厳しい環境下での石油および天然ガ
スの掘削に伴い、これに使用される油井管にも高
強度、並びに優れた耐食性、特に耐応力腐食割れ
性が要求されるようになつてきている。 油井管の一般的腐食対策として、インヒビタと
呼ばれる腐食抑制剤を投入する方法が知られてい
るが、この方法は、例えば海上油井などには有効
に活用できない場合が多い。 かかる点から、最近では油井管の製造に、ステ
ンレス鋼はじめ、インコロイやハステロイ(いず
れも商品名)といつた高級な耐食性高合金鋼のの
採用も検討されはじめているが、いまのところ、
これらの合金に関して、H2S−CO2−Cl-の油井
環境での腐食挙動についての詳細は十分に解明さ
れるに至つていないのが現状である。 そこで、本発明者等は、上述のような観点か
ら、深井戸や苛酷な腐食環境、特にH2S−CO2
Cl-の油井環境下での石油掘削に十分耐え得る高
強度とすぐれた耐応力腐食割れ性とをもつた油井
管を得べく研究を行なつた結果、 (a) H2S−CO2−Cl-環境下における腐食の主た
るものは応力腐食割れであるが、この場合の応
力腐食割れ態様は、オーステナイトステンレス
鋼における一般的なそれとは挙動を全く異にす
るものであること。すなわち、一般の応力腐食
割れがCl-の存在と深く係わるものであるのに
対して、上記の油井環境によるものではCl-
さることながら、それ以上にH2Sの影響が大き
いこと。 (b) 油井管として実用に供される鋼管は一般に、
強度上の必要から冷間加工が施されるが、冷間
加工は上記応力腐食割れに対する抵抗性を著し
く減少させること。 (c) H2S−CO2−Cl-環境での鋼の溶出速度(腐
食速度)は、Cr,Ni,Mo,およびWの含有量
に依存し、これらの成分からなる表面皮膜によ
つて耐食性が保持され、かつこれらの成分は、
応力腐食割れに対してもその抵抗性を高め、特
にMoはCrに対し10倍の効果を、またMoはWの
2倍の効果をもつており、したがつて、この
MoおよびWが、 Cr(%)+10Mo(%)+5W(%) ≧50%, 1.0%≦Mo(%)+1/2W(%)<3.5%, の条件式を満足すると共に、Ni含有量を25〜60
%、Cr含有量を22.5〜40%とすると、冷間加工材
であつても環境温度が150℃以下であれば高濃度
H2S下でも、応力腐食割れに対して優れた抵抗性
を示す表面皮膜が得られること。 (d) Niについては表面皮膜に対する効果だけで
なく、組織的にも応力腐食割れ抵抗性を高める
効果があること。 (e) 合金成分としてNを0.05〜0.30%含有させる
と、一段と合金強度が向上するようになるこ
と。 (f) 不可避不純物としてのS含有量を0.0007%以
下に低減させると、合金の熱間加工性が著しく
改善されるようになること。 (g) 不可避不純物としてのP含有量を0.003%以
下に低減させると、水素割れ感受性が著しく低
下するようになること。 (h) 合金成分としてCuを2%以下含有させる
と、耐食性がさらに改善されるようになるこ
と。 (i) 合金成分として、希土類元素:0.10%以下,
Y:0.20%以下,Mg:0.10%以下,および
Ca:0.10%以下のうちの1種または2種以上
を含有させると、熱間加工性がさらに一段と改
善されるようになること。 以上(a)〜(i)に示される知見を得たのである。 したがつて、この発明は、上記知見にもとづい
てなされたものであつて、C:0.1%以下,Si:
1.0%以下、Mn:2.0%以下,P:0.030%以下,
望ましくは耐水素割れ感受性を改善する目的で
P:0.003%以下,S:0.005%以下,望ましくは
熱間加工性を改善する目的でS:0.0007%以下,
N:0.05〜0.30%,Ni:25〜60%,Cr:22.5〜40
%を含有し、Mo:3.5%未満およびW:7%未満
のうちの1種または2種を含有し、さらに必要に
応じてCu:2.0%以下と、希土類元素:0.10%以
下,Y:0.20%以下,Mg:0.10%以下,および
Ca:0.10%以下のうちの1種または2種以上と
のいずれか、または両方を含有し、残りがFeと
不可避不純物からなる組成(以上重量%,以下%
の表示はすべて重量%を表わす)を有すると共
に、 Cr(%)+10Mo(%)+5W(%)≧50%, 1.0%≦Mo+1/2W(%)<3.5%, の条件式を満足し、しかも高強度とすぐれた耐応
力腐食割れ性を有し、特にこれらの特性が要求さ
れる油井管の製造に用いるのに適した合金に特徴
を有するものである。 つぎに、この発明の合金において、成分組成範
囲を上記の通りに限定した理由を説明する。 (a) C その含有量が0.10%を越えると、粒界応力腐
食割れが生じやすくなることから、その上限値
を0.10%と定めた。 (b) Si Siは脱酸成分として必要な成分であるが、そ
の含有量が1.0%を越えると熱間加工性が劣化
するようになることから、その上限値を1.0%
と定めた。 (c) Mn Mn成分にはSiと同様に脱酸作用があり、し
かもこの成分は応力腐食割れ性にほとんど影響
を及ぼさない成分であることから、その上限値
を高めの2.0%と定めた。 (d) P 不可避不純物としてのP成分には、その含有
量が0.030%を越えると、応力腐食割れ感受性
を高める作用が現われるので、上限値を0.030
%と定めて応力腐食割れ感受性を低位の状態と
する必要がある。また、P含有量を低減してゆ
くと、0.003%を境にして急激に耐水素割れ感
受性が改善されるようになることが判明してお
り、かかる点から、特にすぐれた耐水素割れ感
受性を必要とする場合には、P含有量を0.003
%以下とするのが望ましい。 (e) S 不可避不純物としてのS成分には、その含有
量が0.005%を越えると、熱間加工性を劣化さ
せる作用があるので、その上限値を0.005%と
定めて熱間加工性の劣化を防止する必要があ
る。このようにS成分には、含有量が多くなる
と熱間加工性を劣化させる作用があるが、その
含有量を低めてゆき、0.0007%まで低減する
と、逆に熱間加工性が一段と改善されるように
なることから、厳しい条件での熱間加工を必要
とする場合には、S含有量を0.0007%以下とす
るのが望ましい。 (f) N N成分には合金の強度を高める作用がある
が、その含有量が0.05%未満では所望の高強度
を確保することができず、一方0.30%を越えた
含有は固溶限の問題から困難であるばかりでな
く、たとえ固溶し得たとしても合金中に欠陥が
生じやすくなることから、その含有量を0.05〜
0.30%と定めた。 (g) Ni Ni成分には合金の耐応力腐食割れ性を向上
させる作用があるが、その含有量が25%未満で
は所望のすぐれた耐応力腐食割れ性を確保する
ことができず、一方60%を越えて含有させても
耐応力腐食割れ性にさらに一段の向上効果は現
われず、経済性をも考慮して、その含有量を25
〜60%と定めた。 (h) Cr Cr成分は、Ni,Mo,およびW成分との共存
において、耐応力腐食割れ性を著しく改善する
成分であるが、その含有量を22.5%未満として
も熱間加工性が改善されるようになるものでも
なく、逆に所望の耐応力腐食割れ性を確保する
ためには、MoやWの含有量をそれだけ増加さ
せなければならず、経済的に不利となることか
ら、その下限値を22.5%と定めた。一方、その
含有量が40%を越えると、いくらS含有量を低
減させても熱間加工性の劣化は避けることがで
きないことから、その上限値を40%と定めた。 (i) MoおよびW 上記のように、これらの成分には、Niおよ
びCrとの共存において耐応力腐食割れ性を改
善する均等的作用があるが、それぞれMo:3.5
%以上、およびW:7%以上含有させても、環
境温度が150℃以下のH2S−CO2−Cl-の腐食環
境では、さらに一段の改良効果が現われず、経
済性を考慮して、それぞれの含有量の上限値
を、Mo:3.5%未満,W:7%未満と定めた。
また、MoとWの含有量に関して、条件式:Mo
(%)+1/2W(%)で規定するのは、WがMoに対 し原子量が約2倍で、効果の点では約1/2で均等 となることからで、この値が1.0%未満では所望
の耐応力腐食割れ性が得られず、一方、この値を
3.5%以上としても、上記の通り実質的に不必要
な量のMoおよびWの含有となり、経済
的でなく、かかる点から、Mo(%)+1/2W (%)の値を1.0%〜3.5%未満と定めた。 (j) Cu Cu成分には合金の耐食性を向上させる作用
があるので、特に一段とすぐれた耐食性が要求
される場合に必要に応じて含有されるが、2%
を越えて含有させると、熱間加工性が劣化する
ようになることから、その上限値を2%と定め
た。 (k) 希土類,Y,Mg,およびCa これらの成分には、熱間加工性をさらに改善
する均等的作用があるので、厳しい条件で熱間
加工が行なわれる場合に、必要に応じて含有さ
れるが、それぞれ希土類元素:0.10%,Y:
0.20%,Mg:0.10%,およびCa:0.10%を越
えて含有させても、熱間加工性に改善効果は見
られず、むしろ劣化現象さえ現われるようにな
ることから、それぞれの含有量を、希土類元
素:0.10%以下,Y:0.20%以下,Mg:0.10%
以下,およびCa:0.10%以下と定めた。 (l) Cr(%)+10Mo(%)+5W(%) 第1図は厳しい腐食環境下での耐応力腐食割
れ性に関し、Cr(%)+10Mo(%)+5W(%)
とNi(%)との関係を示したものである。す
なわち、Cr,Ni,Mo,およびWの含有量を
種々変化させたCr−Ni−Mo系,Cr−Ni−W
系,およびCr−Ni−Mo−W系の鋼を溶製し、
鋳造し、鍛伸し、熱間圧延して板厚:7mmの板
材とし、ついでこの板材に、温度:1050℃に30
分保持後水冷の溶体化処理を施した後、強度向
上の目的で加工率:30%の冷間加工を加え、こ
の結果得られた鋼板から圧延方向と直角に、厚
さ:2mm×幅:10mm×長さ:75mmの試験片を切
り出し、この試験片について、第2図に示す3
点支持ビーム冶具を用い、前記試験片Sに0.2
%耐力に相当する引張応力を付加した状態で、
10気圧のH2Sおよび10気圧のCO2でH2Sおよび
CO2を飽和させた20%NaCl溶液(温度:150
℃)中に1000時間浸漬の応力腐食割れ試験を行
ない、試験後、前記試験片における割れ発生の
有無を観察した。これらの結果に基き、発明者
等が独自に設定した条件式:Cr(%)+10Mo
(%)+5W(%)とNi含有量との間には、耐応
力腐食割れに関して、第1図に示される関係が
あることが明確になつたのである。なお、第1
図において、〇印は割れ発生なし、×印は割れ
発生をそれぞれ示すものである。第1図に示さ
れる結果から、Cr(%)+10Mo(%)+5W
(%)の値が50%未満にして、Ni含有量が25%
未満では所望のすぐれた耐応力腐食割れ性は得
られないことが明らかである。 なお、この発明の合金において、不可避不純物
としてTiおよびAlをそれぞれ0.1%以下の範囲で
含有しても、この発明の合金の特性が何らそこな
われるものではない。 つぎに、この発明の合金を実施例により比較例
および従来例と対比しながら説明する。 実施例 それぞれ第1表に示される成分組成をもつた溶
湯を通常の電気炉および脱硫と窒素付加の目的で
Ar−酸素脱炭炉(AOD炉)を併用し、さらに必
要に応じて脱燐の目的でエレクトロスラグ溶解炉
(ESR炉)を使用して溶製した後、直径:500
The present invention relates to an alloy that has high strength and excellent stress corrosion cracking resistance and is particularly suitable for use in the manufacture of oil country tubular goods. In recent years, due to the deterioration of the energy situation, there has been a marked tendency for oil and natural gas wells to become deeper.
Deep wells have appeared that are over 6,000 meters deep, and some are over 10,000 meters deep. Furthermore, due to similar circumstances, it is becoming increasingly difficult to extract oil and natural gas in a harsh corrosive environment containing humid hydrogen sulfide, as well as corrosive components such as carbon dioxide gas and chloride ions. As oil and natural gas are drilled in such harsh environments, the oil country tubular goods used in this process are now required to have high strength and excellent corrosion resistance, especially stress corrosion cracking resistance. . As a general anti-corrosion measure for oil country tubular goods, it is known to introduce a corrosion suppressant called an inhibitor, but this method is often not effective for use in, for example, offshore oil wells. From this point of view, consideration has recently begun to be given to the use of high-grade corrosion-resistant high-alloy steels such as stainless steel and Incoloy and Hastelloy (all trade names) for the production of oil country tubular goods, but so far,
Regarding these alloys, the details of the corrosion behavior of H2S - CO2 - Cl- in an oil well environment have not yet been fully elucidated. Therefore, from the above-mentioned point of view, the present inventors investigated deep wells and severe corrosive environments, especially H 2 S−CO 2
As a result of research aimed at obtaining oil country tubular goods with high strength and excellent stress corrosion cracking resistance that can withstand oil drilling in a Cl - oil well environment, we found that (a) H 2 S−CO 2 − The main type of corrosion in a Cl - environment is stress corrosion cracking, but the behavior of stress corrosion cracking in this case is completely different from that of general austenitic stainless steel. In other words, whereas general stress corrosion cracking is deeply related to the presence of Cl - , in the oil well environment mentioned above, the influence of H 2 S is greater than that of Cl - . (b) Steel pipes used for practical use as oil country tubular goods are generally
Cold working is performed to improve strength, but cold working significantly reduces the resistance to stress corrosion cracking. (c) The elution rate (corrosion rate) of steel in an H 2 S−CO 2 −Cl environment depends on the contents of Cr, Ni, Mo, and W, and is affected by the surface film made of these components. Corrosion resistance is maintained and these components are
It also increases its resistance to stress corrosion cracking, and in particular, Mo is 10 times more effective than Cr and twice as effective as W.
Mo and W satisfy the following conditional expressions: Cr (%) + 10Mo (%) + 5W (%) ≧50%, 1.0%≦Mo (%) + 1/2W (%) <3.5%, and the Ni content is 25-60
%, and the Cr content is 22.5 to 40%, even if it is a cold-worked material, if the environmental temperature is below 150℃, the concentration will be high.
A surface film that exhibits excellent resistance to stress corrosion cracking even under H 2 S can be obtained. (d) Ni has the effect of increasing stress corrosion cracking resistance not only on the surface film but also on the structure. (e) When 0.05 to 0.30% of N is contained as an alloy component, the alloy strength is further improved. (f) When the S content as an unavoidable impurity is reduced to 0.0007% or less, the hot workability of the alloy will be significantly improved. (g) When the P content as an unavoidable impurity is reduced to 0.003% or less, the susceptibility to hydrogen cracking significantly decreases. (h) Corrosion resistance is further improved by containing 2% or less of Cu as an alloy component. (i) Rare earth elements as alloy components: 0.10% or less,
Y: 0.20% or less, Mg: 0.10% or less, and
Ca: When one or more of 0.10% or less is contained, hot workability is further improved. The findings shown in (a) to (i) above were obtained. Therefore, this invention was made based on the above findings, and includes C: 0.1% or less, Si:
1.0% or less, Mn: 2.0% or less, P: 0.030% or less,
Preferably, P: 0.003% or less, S: 0.005% or less, preferably S: 0.0007% or less, for the purpose of improving hot workability.
N: 0.05-0.30%, Ni: 25-60%, Cr: 22.5-40
%, contains one or two of Mo: less than 3.5% and W: less than 7%, and further contains Cu: 2.0% or less, rare earth elements: 0.10% or less, Y: 0.20. % or less, Mg: 0.10% or less, and
Ca: 0.10% or less of one or more of the following, or both, with the remainder consisting of Fe and unavoidable impurities (more than 0.10% by weight, less than %)
Cr (%) + 10Mo (%) + 5W (%) ≧ 50%, 1.0% ≦ Mo + 1/2W (%) < 3.5%, and satisfies the following conditional expressions: The alloy has high strength and excellent resistance to stress corrosion cracking, making it particularly suitable for use in the production of oil country tubular goods, which require these properties. Next, the reason why the composition range of the alloy of the present invention is limited as described above will be explained. (a) C If its content exceeds 0.10%, intergranular stress corrosion cracking is likely to occur, so the upper limit was set at 0.10%. (b) Si Si is a necessary component as a deoxidizing component, but if its content exceeds 1.0%, hot workability will deteriorate, so the upper limit value should be set at 1.0%.
It was determined that (c) Mn The Mn component has a deoxidizing effect like Si, and since this component has little effect on stress corrosion cracking resistance, the upper limit was set at a rather high value of 2.0%. (d) P The P component as an unavoidable impurity has the effect of increasing stress corrosion cracking susceptibility when its content exceeds 0.030%, so the upper limit should be set at 0.030%.
It is necessary to set the stress corrosion cracking susceptibility to a low state by setting the value as %. Furthermore, it has been found that as the P content is reduced, hydrogen cracking resistance and susceptibility rapidly improves after reaching 0.003%. If required, increase P content to 0.003
% or less. (e) S The S component as an unavoidable impurity has the effect of deteriorating hot workability when its content exceeds 0.005%, so the upper limit is set at 0.005% to reduce the deterioration of hot workability. It is necessary to prevent this. In this way, the S component has the effect of deteriorating hot workability when its content increases, but when its content is lowered to 0.0007%, hot workability is further improved. Therefore, if hot working under severe conditions is required, it is desirable to set the S content to 0.0007% or less. (f) N The N component has the effect of increasing the strength of the alloy, but if the content is less than 0.05%, the desired high strength cannot be achieved, while if the content exceeds 0.30%, the solid solubility limit is reached. Not only is it difficult to solve the problem, but even if solid solution is possible, defects are likely to occur in the alloy, so the content should be reduced to 0.05~
It was set at 0.30%. (g) Ni The Ni component has the effect of improving the stress corrosion cracking resistance of the alloy, but if its content is less than 25%, the desired excellent stress corrosion cracking resistance cannot be secured; Even if the content exceeds 25%, no further improvement in stress corrosion cracking resistance will be obtained, and considering economic efficiency, the content should be reduced to 25%.
~60%. (h) Cr The Cr component is a component that significantly improves stress corrosion cracking resistance when coexisting with Ni, Mo, and W components, but hot workability is not improved even if its content is less than 22.5%. On the contrary, in order to secure the desired stress corrosion cracking resistance, the content of Mo and W must be increased by that amount, which is economically disadvantageous, so the lower limit The value was set at 22.5%. On the other hand, if the S content exceeds 40%, deterioration of hot workability cannot be avoided no matter how much the S content is reduced, so the upper limit was set at 40%. (i) Mo and W As mentioned above, these components have an equal effect on improving stress corrosion cracking resistance when coexisting with Ni and Cr, but each Mo: 3.5
% or more and W: 7% or more, in a corrosive environment of H 2 S - CO 2 - Cl - where the environmental temperature is 150°C or less, further improvement effects do not appear, and in consideration of economic efficiency, The upper limit values of each content were set as less than 3.5% for Mo and less than 7% for W.
In addition, regarding the content of Mo and W, the conditional expression: Mo
(%) + 1/2 W (%) is specified because the atomic weight of W is about twice that of Mo, and the effect is about 1/2, which is equal, so if this value is less than 1.0%, The desired stress corrosion cracking resistance cannot be obtained, and on the other hand, this value
Even if it is 3.5% or more, as mentioned above, it will contain substantially unnecessary amounts of Mo and W, which is not economical.From this point of view, the value of Mo (%) + 1/2 W (%) is set from 1.0% to 3.5. It was set as less than %. (j) Cu Since the Cu component has the effect of improving the corrosion resistance of the alloy, it is included as necessary especially when even better corrosion resistance is required, but 2%
If the content exceeds 2%, hot workability deteriorates, so the upper limit was set at 2%. (k) Rare earths, Y, Mg, and Ca These components have the uniform effect of further improving hot workability, so they may be included as necessary when hot working is performed under severe conditions. Rare earth elements: 0.10%, Y:
Even if the content exceeds 0.20%, Mg: 0.10%, and Ca: 0.10%, there is no improvement effect on hot workability, and even deterioration phenomenon appears. Rare earth elements: 0.10% or less, Y: 0.20% or less, Mg: 0.10%
and Ca: 0.10% or less. (l) Cr (%) + 10Mo (%) + 5W (%) Figure 1 shows stress corrosion cracking resistance under severe corrosive environments. Cr (%) + 10Mo (%) + 5W (%)
This shows the relationship between Ni (%) and Ni (%). That is, Cr-Ni-Mo system, Cr-Ni-W system with various contents of Cr, Ni, Mo, and W
system, and Cr-Ni-Mo-W system steel,
It is cast, forged and hot rolled into a plate with a thickness of 7mm, and then heated to 1050°C for 30 minutes.
After holding for 30 minutes, water-cooling solution treatment was applied, and cold working was applied to the steel plate at a processing rate of 30% to improve strength.The resulting steel plate was then processed perpendicularly to the rolling direction to a thickness of 2 mm x width: A test piece of 10 mm x length: 75 mm was cut out, and the test piece shown in Figure 2 was
Using a point support beam jig, the test piece S was
With a tensile stress equivalent to % proof stress added,
H2S and 10 atm H2S and 10 atm CO2
20% NaCl solution saturated with CO2 (temperature: 150
A stress corrosion cracking test was carried out by immersing the test pieces in 1,000 hours of immersion in 1000°C (°C), and after the test, the presence or absence of cracking in the test pieces was observed. Based on these results, the inventors independently set a conditional expression: Cr (%) + 10Mo
It has become clear that there is a relationship between (%) + 5W (%) and Ni content with respect to stress corrosion cracking resistance, as shown in Figure 1. In addition, the first
In the figure, the mark ◯ indicates no cracking, and the mark x indicates cracking. From the results shown in Figure 1, Cr (%) + 10Mo (%) + 5W
(%) value is less than 50%, Ni content is 25%
It is clear that the desired excellent stress corrosion cracking resistance cannot be obtained if it is less than that. Note that even if the alloy of the present invention contains Ti and Al as unavoidable impurities in a range of 0.1% or less, the properties of the alloy of the present invention will not be impaired in any way. Next, the alloy of the present invention will be explained using examples while comparing it with comparative examples and conventional examples. Example Molten metal having the composition shown in Table 1 was heated in a normal electric furnace for the purpose of desulfurization and nitrogen addition.
After melting using an Ar-oxygen decarburization furnace (AOD furnace) and, if necessary, an electroslag melting furnace (ESR furnace) for the purpose of dephosphorization, the diameter: 500.

【表】【table】

【表】【table】

【表】【table】

【表】 mmφのインゴツトに鋳造し、ついでこのインゴツ
トに温度:1200℃で熱間鍛造を施して直径:150
mmφのビレツトを成形し、この場合熱間加工性を
評価する目的でビレツトに割れの発生があるか否
かを観察し、引続いて前記ビレツトより熱間押出
加工により直径:60mmφ×肉厚:4mmの素管を成
形した後、さらにこれに抽伸加工にて22%の冷間
加工を施して直径:55mmφ×肉厚:3.1mmの寸法
とすることによつて、本発明合金管材1〜22,比
較合金管材1〜5,および従来合金管材1〜3を
それぞれ製造した。 なお、比較合金管材1〜5は、いずれも構成成
分のうちのいずれかの成分の含有量(第1表には
※印を付して表示)がこの発明の範囲から外れた
組成をもつものであり、また従来合金管材1は、
JIS・SUS316に、従来合金管材2はインコロイ
800に、さらに従来合金管材3はJIS・SUS329J1
にそれぞれ相当する組成をもつものである。 ついで、この結果得られた本発明合金管材1〜
22,比較合金管材1〜5,および従来合金管材1
〜3より長さ:20mmの試験片をそれぞれ切出し、
この試験片より長さ方向にそつて60゜に相当する
部分を切落し、この状態の試験片に第3図に正面
図で示されるようにボルトを貫通し、ナツトでし
めつけて管外表面に0.2%耐力に相当する引張応
力を付加し、この状態の試験片に対して、H2S分
圧をそれぞれ0.1気圧,1気圧,および15気圧と
したH2S−10気圧CO2−20%MaCl溶液(液温:
150℃)中に1000時間浸漬の応力腐食割れ試験を
行ない、試験後における応力腐食割れの有無を調
査した。この結果を、上記の熱間鍛造時の割れ発
生の有無および0.2%耐力と共に、第1表に合せ
て示した。なお、第1表において、〇印はいずれ
も割れ発生のないものを示し、一方×印は割れ発
生のあつたものを示す。 第1表に示される結果から、比較合金管材1〜
5は、熱間加工性、強度および耐応力腐食割れ性
のうちの少なくともいずれかの性質が劣つたもの
であるのに対して、本発明合金管材1〜22は、い
ずれも高強度およびすぐれた耐応力腐食割れ性、
さらに良好な熱間加工性を有し、かつ熱間加工性
は良好であるが、相対的に強度が低く、しかも耐
応力腐食割れ性に劣る従来合金管材1〜3と比較
しても一段とすぐれた特性を有することが明らか
である。 上述のように、この発明の合金は、特に高強度
とすぐれた耐応力腐食割れ性を有しているので、
これらの特性が要求される苛酷な環境下での石油
および天然ガス採掘に用いられる油井管として、
さらに地熱井管として使用した場合にきわめて優
れた性能を発揮するのである。
[Table] Cast into mmφ ingot, then hot forged at 1200℃ to diameter: 150.
A billet of mmφ is formed, and in this case, for the purpose of evaluating hot workability, it is observed whether or not cracks occur in the billet, and then the billet is hot extruded to a diameter of 60 mmφ x wall thickness: After forming a 4 mm raw tube, it was further subjected to 22% cold working through drawing processing to obtain dimensions of diameter: 55 mmφ x wall thickness: 3.1 mm, thereby producing alloy tube materials 1 to 22 of the present invention. , Comparative Alloy Tube Materials 1 to 5, and Conventional Alloy Tube Materials 1 to 3 were manufactured, respectively. In addition, Comparative Alloy Tube Materials 1 to 5 all have compositions in which the content of one of the constituent components (indicated with an asterisk in Table 1) is outside the scope of this invention. And, the conventional alloy tube material 1 is
JIS/SUS316, conventional alloy tube material 2 is Incoloy
800, and the conventional alloy pipe material 3 is JIS/SUS329J1
The compositions correspond to the respective compositions. Next, the resulting alloy tube materials 1 to 1 of the present invention
22, Comparative alloy tube materials 1 to 5, and conventional alloy tube materials 1
From ~3, cut out a test piece with a length of 20 mm,
Cut off a section corresponding to 60° along the length of this test piece, pass a bolt through this test piece as shown in the front view in Figure 3, tighten it with a nut, and attach it to the outside surface of the tube. A tensile stress equivalent to 0.2% proof stress was applied to the specimen in this state, and the H2S partial pressures were set to 0.1 atm, 1 atm, and 15 atm, respectively.H2S - 10 atm CO2 -20 % MaCl solution (solution temperature:
A stress corrosion cracking test was conducted by immersing the steel in a water temperature (150°C) for 1000 hours, and the presence or absence of stress corrosion cracking after the test was investigated. The results are shown in Table 1 along with the presence or absence of cracking during hot forging and 0.2% proof stress. In Table 1, the marks ◯ indicate those with no cracks, while the marks x indicate those with cracks. From the results shown in Table 1, comparative alloy pipe materials 1 to
Alloy tube materials 1 to 22 of the present invention have high strength and excellent Stress corrosion cracking resistance,
Furthermore, it has good hot workability, and is even better than conventional alloy tube materials 1 to 3, which have good hot workability but relatively low strength and poor stress corrosion cracking resistance. It is clear that it has certain characteristics. As mentioned above, the alloy of the present invention has particularly high strength and excellent stress corrosion cracking resistance.
As oil country tubular goods used in oil and natural gas extraction under harsh environments where these characteristics are required,
Furthermore, it exhibits extremely excellent performance when used as geothermal well pipes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は合金の耐応力腐食割れ性に関し、Ni
含有量とCr(%)+10Mo(%)+5W(%)との関
係を示した図、第2図および第3図はそれぞれ板
状および管状試験片に対する応力腐食割れ試験の
態様を示す図である。
Figure 1 shows the stress corrosion cracking resistance of alloys.
A diagram showing the relationship between content and Cr (%) + 10Mo (%) + 5W (%), Figures 2 and 3 are diagrams showing the mode of stress corrosion cracking tests on plate-shaped and tubular specimens, respectively. .

Claims (1)

【特許請求の範囲】 1 C:0.1%以下、Si:1.0%以下、Mn:2.0%
以下、P:0.030%以下、S:0.005%以下、N:
0.05〜0.30%、Ni:25〜60%、Cr:22.5〜40%を
含有し、Mo:3.5%未満およびW:7%未満のう
ちの1種または2種を含有し残りがFeと不可避
不純物からなる組成(以上重量%)を有し、か
つ、 Cr(%)+10Mo(%)+5W(%)≧50%, 1.0%≦Mo(%)+1/2W(%)<3.5%, の条件を満足することを特徴とする耐応力腐食割
れ性に優れた高強度油井管用合金。 2 C:0.1%以下、Si:1.0%以下、Mn:2.0%
以下、P:0.030%以下、S:0.005%以下、N:
0.05〜0.30%、Ni:25〜60%、Cr:22.5〜40%を
含有し、Mo:3.5%未満およびW:7%未満のう
ちの1種または2種を含有し、さらにCu:2%
以下を含有し、残りがFeと不可避不純物からな
る組成(以上重量%)を有し、かつ、 Cr(%)+10Mo(%)+5W(%)≧50%, 1.0%≦Mo(%)+1/2W(%)<3.5%, の条件を満足することを特徴とする耐応力腐食割
れ性に優れた高強度油井管用合金。 3 C:0.1%以下、Si:1.0%以下、Mn:2.0%
以下、P:0.030%以下、S:0.005%以下、N:
0.05〜0.30%、Ni:25〜60%、Cr:22.5〜40%を
含有し、Mo:3.5%未満およびW:7%未満のう
ちの1種または2種を含有し、さらに希土類元
素:0.10%以下、Y:0.20%以下、Mg:0.10%以
下、およびCa:0.10%以下のうちの1種または
2種以上を含有し、残りがFeと不可避不純物か
らなる組成(以上重量%)を有し、かつ、 Cr(%)+10Mo(%)+5W(%)≧50%, 1.0%≦Mo(%)+1/2W(%)<3.5%, の条件を満足することを特徴とする耐応力腐食割
れ性に優れた高強度油井管用合金。 4 C:0.1%以下、Si:1.0%以下、Mn:2.0%
以下、P:0.030%以下、S:0.005%以下、N:
0.05〜0.30%、Ni:25〜60%、Cr:22.5〜40%を
含有し、Mo:3.5%未満およびW:7%未満のう
ちの1種または2種を含有し、さらにCu:2%
以下と、希土類元素:0.10%以下、Y:0.20%以
下、Mg:0.10%以下、およびCa:0.10%以下の
うちの1種または2種以上とを含有し、残りが
Feと不可避不純物からなる組成(以上重量%)
を有し、かつ、 Cr(%)+10Mo(%)+5W(%)≧50%, 1.0%≦Mo(%)+1/2W(%)<3.5%, の条件を満足することを特徴とする耐応力腐食割
れ性に優れた高強度油井管用合金。
[Claims] 1 C: 0.1% or less, Si: 1.0% or less, Mn: 2.0%
Below, P: 0.030% or less, S: 0.005% or less, N:
Contains 0.05 to 0.30%, Ni: 25 to 60%, Cr: 22.5 to 40%, and one or two of Mo: less than 3.5% and W: less than 7%, with the remainder being Fe and unavoidable impurities. It has a composition (weight%) consisting of Cr (%) + 10Mo (%) + 5W (%) ≧ 50%, 1.0% ≦ Mo (%) + 1/2W (%) < 3.5%. A high-strength oil country tubular alloy with excellent stress corrosion cracking resistance. 2 C: 0.1% or less, Si: 1.0% or less, Mn: 2.0%
Below, P: 0.030% or less, S: 0.005% or less, N:
Contains 0.05 to 0.30%, Ni: 25 to 60%, Cr: 22.5 to 40%, contains one or two of Mo: less than 3.5% and W: less than 7%, and further Cu: 2%
Contains the following, with the remainder consisting of Fe and unavoidable impurities (weight%), and Cr (%) + 10Mo (%) + 5W (%) ≧50%, 1.0%≦Mo (%) + 1/ A high-strength oil country tubular alloy with excellent stress corrosion cracking resistance that satisfies the following conditions: 2W (%) < 3.5%. 3 C: 0.1% or less, Si: 1.0% or less, Mn: 2.0%
Below, P: 0.030% or less, S: 0.005% or less, N:
Contains 0.05 to 0.30%, Ni: 25 to 60%, Cr: 22.5 to 40%, one or two of Mo: less than 3.5% and W: less than 7%, and rare earth element: 0.10. % or less, Y: 0.20% or less, Mg: 0.10% or less, and Ca: 0.10% or less, with the remainder consisting of Fe and unavoidable impurities (weight% or more). and satisfies the following conditions: Cr (%) + 10Mo (%) + 5W (%) ≧ 50%, 1.0% ≦ Mo (%) + 1/2W (%) < 3.5%. A high-strength oil country tubular alloy with excellent crack resistance. 4 C: 0.1% or less, Si: 1.0% or less, Mn: 2.0%
Below, P: 0.030% or less, S: 0.005% or less, N:
Contains 0.05 to 0.30%, Ni: 25 to 60%, Cr: 22.5 to 40%, contains one or two of Mo: less than 3.5% and W: less than 7%, and further Cu: 2%
Contains the following and one or more of the following: rare earth elements: 0.10% or less, Y: 0.20% or less, Mg: 0.10% or less, and Ca: 0.10% or less, and the remaining
Composition consisting of Fe and unavoidable impurities (more than % by weight)
and satisfies the following conditions: Cr(%)+10Mo(%)+5W(%)≧50%, 1.0%≦Mo(%)+1/2W(%)<3.5%. A high-strength oil country tubular alloy with excellent stress corrosion cracking resistance.
JP8910481A 1981-06-10 1981-06-10 Alloy of high stress corrosion cracking resistance for high-strength oil well pipe Granted JPS57203735A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP8910481A JPS57203735A (en) 1981-06-10 1981-06-10 Alloy of high stress corrosion cracking resistance for high-strength oil well pipe
US06/383,803 US4400209A (en) 1981-06-10 1982-06-01 Alloy for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking
GB08216703A GB2103655B (en) 1981-06-10 1982-06-09 Alloy for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking
DE3221878A DE3221878A1 (en) 1981-06-10 1982-06-09 ALLOY, ESPECIALLY FOR THE PRODUCTION OF HIGHLY RESILIENT PIPING OF DEEP HOLES OR THE LIKE
SE8203627A SE452477B (en) 1981-06-10 1982-06-10 ALLOY FOR MANUFACTURE OF HOGHALL SOLID FOODS AND PIPES FOR DEEP DRILLS, APPLICATION OF THE ALLOY AND HOGHALLFAST RODS MADE BY THIS ALLOY
FR8210116A FR2507628A1 (en) 1981-06-10 1982-06-10 ALLOY FOR MAKING PITCHES AND TUBES FOR DEEP WELLS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8910481A JPS57203735A (en) 1981-06-10 1981-06-10 Alloy of high stress corrosion cracking resistance for high-strength oil well pipe

Publications (2)

Publication Number Publication Date
JPS57203735A JPS57203735A (en) 1982-12-14
JPS6144125B2 true JPS6144125B2 (en) 1986-10-01

Family

ID=13961575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8910481A Granted JPS57203735A (en) 1981-06-10 1981-06-10 Alloy of high stress corrosion cracking resistance for high-strength oil well pipe

Country Status (1)

Country Link
JP (1) JPS57203735A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114554A (en) * 1983-11-24 1985-06-21 Kawasaki Steel Corp High-ni austenitic stainless steel for seamless steel pipe
JP4288528B2 (en) 2007-10-03 2009-07-01 住友金属工業株式会社 High strength Cr-Ni alloy material and oil well seamless pipe using the same
ES2714371T3 (en) 2009-04-01 2019-05-28 Nippon Steel & Sumitomo Metal Corp Method to produce a heavy duty seamless Cr-Ni alloy pipe
WO2015072458A1 (en) 2013-11-12 2015-05-21 新日鐵住金株式会社 Ni-Cr ALLOY MATERIAL AND OIL WELL SEAMLESS PIPE USING SAME
EP4043590A4 (en) 2019-10-10 2023-05-03 Nippon Steel Corporation Alloy material and seamless pipe for oil well

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ALLOYS FOR EIGHTIES=1980 *
JOURNAL OF METALS=1951 *
PROCEEDINGS OF MATERIALS AND CORROSION PROBLEMS IN ENERGY SYSTEMS=1980 *

Also Published As

Publication number Publication date
JPS57203735A (en) 1982-12-14

Similar Documents

Publication Publication Date Title
JP2500162B2 (en) High strength duplex stainless steel with excellent corrosion resistance
US4400211A (en) Alloy for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking
JP2003525354A (en) Duplex stainless steel
JPS625977B2 (en)
JPS625976B2 (en)
JPS6144133B2 (en)
JPS6144135B2 (en)
JPS6363608B2 (en)
JPS6362569B2 (en)
JPS6144126B2 (en)
JPS6144125B2 (en)
JPS6363610B2 (en)
JPS6144134B2 (en)
JPS6363609B2 (en)
JPS6144128B2 (en)
JPS6363606B2 (en)
JPS581044A (en) High strength alloy having superior stress corrosion cracking resistance for oil well pipe
JPS6144127B2 (en)
JPS6144132B2 (en)
JPH0371506B2 (en)
JPH0372698B2 (en)
JP3470418B2 (en) High strength austenitic alloy with excellent seawater corrosion resistance and hydrogen sulfide corrosion resistance
JPS6363611B2 (en)
JPS6362570B2 (en)
JPS6144130B2 (en)