JPS6363605B2 - - Google Patents

Info

Publication number
JPS6363605B2
JPS6363605B2 JP56104113A JP10411381A JPS6363605B2 JP S6363605 B2 JPS6363605 B2 JP S6363605B2 JP 56104113 A JP56104113 A JP 56104113A JP 10411381 A JP10411381 A JP 10411381A JP S6363605 B2 JPS6363605 B2 JP S6363605B2
Authority
JP
Japan
Prior art keywords
less
temperature
calculated
reduction rate
wall thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56104113A
Other languages
Japanese (ja)
Other versions
JPS586929A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10411381A priority Critical patent/JPS586929A/en
Priority to US06/389,568 priority patent/US4421571A/en
Priority to GB08217860A priority patent/GB2104100B/en
Priority to SE8204121A priority patent/SE461986C/en
Priority to FR8211645A priority patent/FR2508930A1/en
Priority to DE3224865A priority patent/DE3224865C2/en
Publication of JPS586929A publication Critical patent/JPS586929A/en
Publication of JPS6363605B2 publication Critical patent/JPS6363605B2/ja
Priority to SE8901647A priority patent/SE502102C2/en
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、優れた耐応力腐食割れ性を有する
高強度油井管の製造法に関するものである。 近年、エネルギー事情の悪化から、油井および
天然ガス井は深井戸化の傾向が著しく、深さ:
6000m以上、なかには深さ:10000m以上の深井
戸が出現している。 また、同様な事情から、湿潤な硫化水素をはじ
め、炭酸ガスや塩素イオンなどの腐食性成分を含
有する苛酷な腐食環境下での石油および天然ガス
の採掘が予儀なくされつつある。 このような厳しい環境下での石油および天然ガ
スの掘削に伴い、これに使用される油井管にも高
強度、並びに優れた耐食性、特に耐応力腐食割れ
性が要求されるようになつてきている。 油井管の一般的腐食対策として、インヒビタと
呼ばれる腐食抑制剤を投入する方法が知られてい
るが、この方法は、例えば海上油井などには有効
に活用できない場合が多い。 かかる点から、最近では油井管の製造に、ステ
ンレス鋼はじめ、インコロイやハステロイ(いず
れも商品名)といつた高級な耐食性高合金鋼の採
用も検討されはじめているが、いまのところ、こ
れらの合金に関して、H2S―CO2―Cl-の油井環
境での腐食挙動についての詳細は十分に解明され
るに至つておらず、しかも深井戸用油井管に要求
される高強度をもつものではないのが現状であ
る。 そこで、本発明者等は、上述のような観点か
ら、深井戸や苛酷な腐食環境、特にH2S―CO2
Cl-の油井環境下での石油掘削に十分耐え得る高
強度とすぐれた耐応力腐食割れ性とを有する油井
管を製造すべく研究を行なつた結果、 (a) H2S―CO2―Cl-環境下における腐食の主た
るものは応力腐食割れであるが、この場合の応
力腐食割れ態様は、オーステナイトステンレス
鋼における一般的なそれとは挙動を全く異にす
るものであること。すなわち、一般の応力腐食
割れがCl-の存在と深く係わるものであるのに
対して、上記の油井環境によるものではCl-
さることながら、それ以上にH2Sの影響が大き
いこと。 (b) 油井管として実用に供される鋼管は一般に、
強度上の必要から冷間加工が施されるが、冷間
加工は上記応力腐食割れに対する抵抗性を著し
く減少させること。 (c) H2S―CO2―Cl-環境での鋼の溶出速度(腐
食速度)は、Cr、Ni、Mo、およびWの含有量
に依存し、これらの成分からなる表面皮膜によ
つて耐食性が保持され、かつこれらの成分は、
応力腐食割れに対してもその抵抗性を高め、特
にMoはCrに対し10倍の効果を、またMoはW
の2倍の効果をもつており、したがつて、この
MoおよびWが、 Cr(%)+10Mo(%)+5W(%)≧110%、 8%≦Mo(%)+1/2W(%)≦12%、 の条件式を満足すると共に、Ni含有量を30〜
60%、Cr含有量を15〜30%とすると、冷間加
工材であつても、きわめて腐食性の強いH2S―
CO2―Cl-の油井環境下、特に200℃以上の悪環
境において、応力腐食割れに対して優れた抵抗
性を示す表面皮膜が得られること。 (d) Niについては表面皮膜に対する効果だけで
なく、組織的にも応力腐食割れ抵抗性を高める
効果があること。 (e) 合金成分としてNを0.05〜0.3%の範囲で含
有させると一段と管材強度が向上するようにな
ること。 (f) 不可避不純物としてのS含有量を0.0007%以
下に低減させると、管材の熱間加工性が著しく
改善されるようになること。 (g) 不可避不純物としてのP含有量を0.003%以
下に低減させると、水素割れ感受性が著しく低
下するようになること。 (h) 合金成分としてCu:2%以下およびCo:2
%以下のうちの1種または2種を含有させる
と、耐食性がさらに改善されるようになるこ
と。 (i) 合金成分として、希土類元素:0.10%以下、
Y:0.20%以下、Mg:0.10%以下、Ti:0.5%
以下、およびCa:0.10%以下のうちの1種また
は2種以上を含有させると、熱間加工性がさら
に一段と改善されるようになること。 (j) しかし、所望の高強度を確保するためには、
上記組成の合金に、まず、望ましくは1050〜
1250℃の温度範囲内の温度に加熱して金属間化
合物や炭化物を完全に固溶した状態で、再結晶
温度以下での肉厚減少率が10%以上の条件で熱
間加工を施し、この熱間加工は後工程の熱処理
で微細な再結晶粒を形成し、もつて高強度と良
好な延性を確保するためのものであり、ついで
経験式:260logC(%)+1300で算出された下限
温度(℃)と、同じく経験式:16Mo(%)+
10W(%)+10Cr(%)+777で算出された上限温
度(℃)の間の温度に2時間以下保持の条件で
熱処理を施して、上記のように微細な再結晶粒
を形成し、この場合耐食性を劣化させる未固溶
の炭化物が存在すれば、これが固溶されるもの
であり、最終的に上記熱処理後の管材に10〜60
%の肉厚減少率で冷間加工を施して、これを加
工強化する必要があること。 以上(a)〜(j)に示される知見を得たのである。 したがつて、この発明は上記知見にもとづいて
なされたものであつて、C:0.05%以下、Si:1.0
%以下、Mn:2.0%以下、P:0.030%以下、望
ましくは耐水素割れ性を一段と改善する目的で
P:0.003%以下、S:0.005%以下、望ましくは
熱間加工性を一段と改善する目的でS:0.0007%
以下、sol.Al:0.5%以下、Ni:30〜60%、Cr:
15〜30%を含有し、Mo:12%以下およびW:24
%以下のうちの1種または2種を含有し、さらに
必要に応じて、N:0.05〜0.3%、Cu:2%以下、
Co:2%以下、希土類元素:0.10%以下、Y:
0.20%以下、Mg:0.10%以下、Ti:0.5%以下、
およびCa:0.10%以下のうちの1種または2種以
上を含有し、残りがFeと不可避不純物からなる
組成(以上重量%、以下%の表示はすべて重量%
を意味する)を有し、かつ、 Cr(%)+10Mo(%)+5W(%)≧110%、 8%≦Mo(%)+1/2W(%)≦12%、 の条件を満足する合金を、再結晶温度以下での肉
厚減少率を10%以上とした条件で熱間加工し、つ
いで260logC(%)+1300で算出された下限温度
(℃)と、16Mo(%)+10W(%)+10Cr(%)+777
で算出された上限温度(℃)の間の温度に、2時
間以下保持の条件で熱処理した後、10〜60%の肉
厚減少率で冷間加工することによつて、耐応力腐
食割れ性に優れた高強度油井管を製造する方法に
特徴を有するものである。 つぎに、この発明の油井管の製造法において、
成分組成、熱処理条件、熱間加工および冷間加工
における肉厚減少率を上記の通りに限定した理由
を以下に説明する。 A 成分組成 (a) C C含有量を低くすればするほど炭化物の析
出が抑制されるようになるので、熱間加工に
おける加熱温度および熱処理温度を低くで
き、このことは冷間加工後の強度上昇により
有効に作用するものである。したがつて、C
含有量はできるだけ低い方が望ましいが、C
含有量が0.05%を越えると、粒界応力腐食割
れが生じやすくなることから、その上限値を
0.05%と定めた。 (b) Si Siは脱酸成分として必要な成分であるが、
その含有量が1.0%を越えると熱間加工性が
劣化するようになることから、その上限値を
1.0%と定めた。 (c) Mn Mn成分にはSiと同様に脱酸作用があり、
しかもこの成分は応力腐食割れ性にほとんど
影響を及ぼさない成分であることから、その
上限値を高めの2.0%と定めた。 (d) P 不可避不純物としてのP成分には、その含
有量が0.030%を越えると、応力腐食割れ感
受性を高める作用が現われるので、上限値を
0.030%と定めて応力腐食割れ感受性を低位
の状態とする必要がある。また、P含有量を
低減してゆくと、0.003%を境にして急激に
耐水素割れ性が改善されるようになることが
判明しており、かかる点から、特にすぐれた
耐水素割れ性を必要とする場合には、P含有
量を0.0030%以下とするのが望ましい。 (e) S 不可避不純物としてのS成分には、その含
有量が0.005%を越えると、熱間加工性を劣
化させる作用があるので、その上限値を
0.005%と定めて熱間加工性の劣化を防止す
る必要がある。このようにS成分には、含有
量が多くなると熱間加工性を劣化させる作用
があるが、その含有量を低めてゆき、0.0007
%まで低減すると、逆に熱間加工性が一段と
改善されるようになることから、厳しい条件
での熱間加工を必要とする場合には、S含有
量を0.0007%以下とするのが望ましい。 (f) Al AlはSiおよびMnと同様に脱酸成分として
有効であり、sol.Al含有量で0.5%まで含有さ
せても管材の特性を何らそこなうものではな
いことから、その含有量をsol.Al含有量で0.5
%以下と定めた。 (g) Ni Ni成分には管材の耐応力腐食割れ性を向
上させる作用があるが、その含有量が30%未
満では所望のすぐれた耐応力腐食割れ性を確
保することができず、一方60%を越えて含有
させても耐応力腐食割れ性にさらに一段の向
上効果は現われず、経済性をも考慮して、そ
の含有量を30〜60%と定めた。 (h) Cr Cr成分は、Ni、Mo、およびW成分との共
存において、耐応力腐食割れ性を著しく改善
する成分であるが、その含有量を15%未満と
しても熱間加工性が改善されるようになるも
のでもなく、逆に所望の耐応力腐食割れ性を
確保するためには、MoやWの含有量をそれ
だけ増加させなければならず、経済的に不利
となることから、その下限値を15%と定め
た。一方、その含有量が30%を越えると、い
くらS含有量を低減させても熱間加工性の劣
化は避けることができないことから、その上
限値を30%と定めた。 (i) MoおよびW 上記のように、これらの成分には、Niお
よびCrとの共存において耐応力腐食割れ性
を改善する均等的作用があるが、それぞれ
Mo:12%、およびW:24%を越えて含有さ
せても、環境温度が200℃以上のH2S―CO2
―Cl-の腐食環境で、さらに一段の改善効果
が現われず、経済性を考慮して、それぞれの
含有量を、Mo:12%以下、W:24%以下と
定めた。また、MoとWの含有量に関して、
条件式:Mo(%)+1/2W(%)で規定するの は、WがMoに対し原子量が約2倍で、効果
の点では約1/2で均等となることからで、こ
の値が8%未満では特に200℃以上の上記悪
環境下で所望の耐応力腐食割れ性が得られ
ず、一方、この値を12%を越えて高くして
も、上記の通り実質的に不必要な量のMoお
よびWの含有となり、経済的でなく、かかる
点から、Mo(%)+1/2W(%)の値を8〜12 %と定めた。 (j) N N成分には固溶強化による強度向上作用が
あるので、特に高強度が要求される場合に必
要に応じて含有されるが、その含有量が0.05
%未満では所望の強度向上効果を得ることが
できず、一方0.3%を越えて含有させると、
溶製および造塊が困難となることから、その
含有量を0.05〜0.3%と定めた。 (k) CuおよびCo これらの成分には管材の耐食性を向上させ
る均等的作用があり、かつCoにはさらに固
溶強化作用があるので、特に一段とすぐれた
耐食性が要求される場合に必要に応じて含有
されるが、Cuが2%を越えると、熱間加工
性が劣化するようになり、一方Coは2%を
越えて含有させてもより一層の改善効果は現
われないことから、その上限値をそれぞれ
Cu:2%、Co:2%と定めた。 (l) 希土類元素、Y、Mg、Ti、およびCa これらの成分には、熱間加工性をさらに改
善する均等的作用があるので、厳しい条件で
熱間加工が行なわれる場合に、必要に応じて
含有されるが、それぞれ希土類元素:0.10
%、Y:0.20%、Mg:0.10%、Ti:0.5%、
およびCa:0.10%を越えて含有させても、熱
間加工性に改善効果は見られず、むしろ劣化
現象さえ現われるようになることから、それ
ぞれの含有量を、希土類元素0.10%以下、
Y:0.20%以下、Mg:0.10%以下、Ti:0.5
%以下、およびCa:0.10%以下と定めた。 (m) Cr(%)+10Mo(%)+5W(%) 第1図は厳しい腐食環境下での耐応力腐食
割れ性に関し、Cr(%)+10Mo(%)+5W
(%)とNi含有量の関係を示したものであ
る。すなわち、Cr、Ni、Mo、およびWの含
有量を種々変化させたCr―Ni―Mo系、Cr―
Ni―W系、およびCr―Ni―Mo―W系の鋼
を溶製し、鋳造し、鍛伸して板厚:50mmのス
ラブとした後、これを1200℃に加熱して熱間
圧延を開始し、この熱間圧延において、板厚
が10mmとなつた時点、すなわち再結晶が進行
しない1000℃となつた時点からの加工率を30
%として板厚:7mmまで熱延し、ついでこの
板材に、温度:1000℃に30分保持後水冷の熱
処理を施し、引続いて強度向上の目的で加工
率:22%の冷間加工を加え、この結果得られ
た鋼板から圧延方向と直角に、厚さ:2mm×
幅:10mm×長さ:75mmの試験片を切り出し、
この試験片について、第2図に示す3点支持
ビーム冶具を用い、前記試験片Sに0.2%耐
力に相当する引張応力を付加した状態で、10
気圧のH2Sおよび10気圧のCO2でH2Sおよび
CO2を飽和させた20%NaCl溶液(温度:300
℃)中に1000時間浸漬の応力腐食割れ試験を
行ない、試験後、前記試験片における割れ発
生の有無を観察した。これらの結果に基き、
発明者等が独自に設定した条件式:Cr(%)
+10Mo(%)+5W(%)とNi含有量との間に
は、耐応力腐食割れ性に関して、第1図に示
される関係があることが明確になつたのであ
る。なお、第1図において、〇印は割れ発生
なし、×印は割れ発生をそれぞれ示すもので
ある。第1図に示される結果から、Cr(%)
+10Mo(%)+5W(%)の値が110%未満に
して、Ni含有量が30%未満では所望のすぐ
れた耐応力腐食割れ性は得られないことが明
らかである。 なお、この発明の合金において、不可避不純
物としてB、Sn、Pb、およびZnをそれぞれ0.1
%以下の範囲で含有しても、この発明の合金の
特性が何らそこなわれるものではない。 B 熱間加工条件 熱間加工における再結晶温度以下での肉厚減
少率を10%以上としたのは、この肉厚減少率が
10%未満では後工程の熱処理で、管材に所望の
高強度とすぐれた延性を付与するのに不可欠な
微細再結晶粒を十分に形成することができない
からである。また、熱間加工に際しては、その
加熱温度を1050〜1250℃とするのが望ましく、
これは、加熱温度が1050℃未満では熱間加工時
の変形抵抗が高くなりすぎて加工自体が困難に
なるばかりでなく、未固溶の金属間化合物や炭
化物が残留して靭性や耐食性を劣化させる原因
となり、一方1250℃を越えた加熱温度になる
と、熱間における変形能の著しい低下をもたら
し、熱間加工が難しくなるという理由によるも
のである。 C 熱処理条件 上述のように、この熱処理は微細な再結晶粒
を十分に形成するために施されるが、この場合
の微細再結晶粒の形成は、260logC(%)+1300
で算出された下限温度(℃)と、16Mo(%)+
10W(%)+10Cr(%)+777で算出された上限温
度(%)との間の温度に2時間以下保持するこ
とによつて行なわれるものである。この下限温
度の算出式:260logC(%)+1300および上限温
度の算出式:16Mo(%)+10W(%)+10Cr(%)
+777は多数の試験結果にもとづいて経験的に
定められたものであつて、上記の下限温度未満
では所定の微細再結晶の形成を十分にはかるこ
とができず、一方熱処理温度が上記の上限温度
を越えて高くなつたり、保持時間が2時間を越
えたりすると、結晶粒が粗大化して熱間加工に
よつてもたらされる効果が消減してしまつて所
望の高強度並びに高靭性を確保することができ
なくなることから、熱処理条件を上記の通りに
限定したのである。 なお、この場合未固溶の金属間化合物や炭化
物が残留すると耐食性劣化の原因となるが、熱
処理温度を上記の下限温度以上とすることによ
つて、これを完全に固溶することができる。 D 冷間加工条件 また、この発明では、上記のように熱処理後
に冷間加工を施して強度向上をはかるが、この
冷間加工が肉厚減少率で10%未満では所望の強
度を確保することができず、一方同じく肉厚減
少率で60%を越えた冷間加工を施すと、延性お
よび靭性の劣化が著しくなることから、冷間加
工を肉厚減少率で10〜60%と定めたのである。 以上の成分組成および製造条件を適用すること
によつて0.2%耐力が85Kgf/mm2以上の高強度を
もち、かつ延性および靭性は勿論のこと、耐応力
腐食割れ性に優れた油井管を製造することができ
るのである。 つぎに、この発明の油井管製造法を実施例によ
り比較例と対比しながら具体的に説明する。 実施例 それぞれ第1表に示される成分組成をもつた溶
湯を通常の電気炉、および脱硫とN付加の目的で
Ar―酸素脱炭炉(AOD炉)を併用し、さらに必
要に応じて脱燐の目的でエレクトロスラグ溶解炉
(ESR炉)を使用して溶製した後、直径:500mm
φのインゴツトに鋳造し、ついでこのインゴツト
に温度:1200℃で熱間鍛造を施して直径:150mm
φのビレツトを成形し、この場合熱間加工性を評
価する目的でビレツトに割れの発生があるか否か
を観察し、引続いて前記ビレツトにそれぞれ第1
表に示される熱間加工条件にて熱間押出加工を施
して外径:60mmφ×肉厚:4mmの素管を成形し、
引続いて、同じくそれぞれ第1表に示される熱処
理条件(処理後の冷却はいずれも水冷)および肉
厚減少率で、熱処理と冷間加工を施すことによつ
て、本発明合金管材1〜27、比較合金管材1〜
9、および従来合金管材1〜4をそれぞれ製造し
た。 なお、比較合金管材1〜9は、構成成分のうち
のいずれかの成分の含有量、あるいは製造条件の
うちのいずれかの条件(第1表に※印を付して表
示)がこの発明の範囲から外れた条件で製造され
たものであり、また従来合金管材は、いずれも公
知の成分組成をもつものであつて、同管材1は、
The present invention relates to a method for manufacturing high-strength oil country tubular goods having excellent stress corrosion cracking resistance. In recent years, due to the deterioration of the energy situation, there has been a marked tendency for oil and natural gas wells to become deeper.
Deep wells over 6000m deep, some over 10000m deep, have appeared. Furthermore, due to similar circumstances, it is becoming increasingly difficult to extract oil and natural gas in a harsh corrosive environment containing humid hydrogen sulfide, as well as corrosive components such as carbon dioxide gas and chloride ions. As oil and natural gas are drilled in such harsh environments, the oil country tubular goods used in this process are now required to have high strength and excellent corrosion resistance, especially stress corrosion cracking resistance. . As a general anti-corrosion measure for oil country tubular goods, it is known to introduce a corrosion suppressant called an inhibitor, but this method is often not effective for use in, for example, offshore oil wells. From this point of view, consideration has recently begun to be given to the use of high-grade corrosion-resistant high-alloy steels such as stainless steel and Incoloy and Hastelloy (both trade names) for the production of oil country tubular goods. Regarding the corrosion behavior of H 2 S―CO 2 ―Cl - in an oil well environment, the details have not yet been fully elucidated, and furthermore, it does not have the high strength required for oil country tubular goods for deep wells. is the current situation. Therefore, from the above-mentioned point of view, the present inventors investigated deep wells and severe corrosive environments, especially H 2 S―CO 2 -
As a result of conducting research to manufacture oil country tubular goods with high strength and excellent stress corrosion cracking resistance that can sufficiently withstand oil drilling in the Cl - oil well environment, we found that (a) H 2 S―CO 2 - The main type of corrosion in a Cl - environment is stress corrosion cracking, but the behavior of stress corrosion cracking in this case is completely different from that of general austenitic stainless steel. In other words, whereas general stress corrosion cracking is deeply related to the presence of Cl - , in the oil well environment mentioned above, the influence of H 2 S is greater than that of Cl - . (b) Steel pipes used for practical use as oil country tubular goods are generally
Cold working is performed to improve strength, but cold working significantly reduces the resistance to stress corrosion cracking. (c) The elution rate (corrosion rate) of steel in an H 2 S—CO 2 —Cl environment depends on the contents of Cr, Ni, Mo, and W, and is affected by the surface film made of these components. Corrosion resistance is maintained and these components are
It also increases its resistance to stress corrosion cracking, with Mo being 10 times more effective than Cr, and Mo being 10 times more effective than W.
It has twice the effect of
Mo and W satisfy the following conditional expressions: Cr (%) + 10Mo (%) + 5W (%) ≧110%, 8%≦Mo (%) + 1/2W (%)≦12%, and the Ni content is 30~
60%, and the Cr content is 15 to 30%, H 2 S—, which is extremely corrosive, even if it is a cold-worked material.
It is possible to obtain a surface film that exhibits excellent resistance to stress corrosion cracking in a CO 2 - Cl - oil well environment, especially in a harsh environment of 200°C or higher. (d) Ni has the effect of increasing stress corrosion cracking resistance not only on the surface film but also on the structure. (e) When N is included as an alloy component in the range of 0.05 to 0.3%, the strength of the pipe material is further improved. (f) If the S content as an unavoidable impurity is reduced to 0.0007% or less, the hot workability of the pipe material will be significantly improved. (g) When the P content as an unavoidable impurity is reduced to 0.003% or less, the susceptibility to hydrogen cracking significantly decreases. (h) Cu: 2% or less and Co: 2 as alloy components
% or less, the corrosion resistance is further improved. (i) Rare earth elements: 0.10% or less as alloy components;
Y: 0.20% or less, Mg: 0.10% or less, Ti: 0.5%
When one or more of the following and Ca: 0.10% or less is contained, hot workability is further improved. (j) However, in order to ensure the desired high strength,
First, to the alloy of the above composition, preferably 1050 ~
This material is heated to a temperature within the temperature range of 1250°C to completely dissolve intermetallic compounds and carbides, and then hot worked under conditions where the wall thickness reduction rate below the recrystallization temperature is 10% or more. Hot working is to form fine recrystallized grains in the post-process heat treatment to ensure high strength and good ductility. (℃) and the same empirical formula: 16Mo (%) +
Heat treatment is performed at a temperature between the upper limit temperature (°C) calculated by 10W (%) + 10Cr (%) + 777 for 2 hours or less to form fine recrystallized grains as described above, and in this case If there is undissolved carbide that degrades corrosion resistance, it will be dissolved in solid solution, and eventually the pipe material after the above heat treatment will contain 10 to 60% carbide.
It is necessary to perform cold working at a wall thickness reduction rate of % to strengthen the process. The findings shown in (a) to (j) above were obtained. Therefore, this invention was made based on the above knowledge, and includes C: 0.05% or less, Si: 1.0%.
% or less, Mn: 2.0% or less, P: 0.030% or less, preferably for the purpose of further improving hydrogen cracking resistance, P: 0.003% or less, S: 0.005% or less, preferably for the purpose of further improving hot workability. So S: 0.0007%
Below, sol.Al: 0.5% or less, Ni: 30-60%, Cr:
Contains 15-30%, Mo: 12% or less and W: 24
% or less, and if necessary, N: 0.05 to 0.3%, Cu: 2% or less,
Co: 2% or less, rare earth elements: 0.10% or less, Y:
0.20% or less, Mg: 0.10% or less, Ti: 0.5% or less,
and Ca: 0.10% or less, and the remainder is Fe and unavoidable impurities.
) and satisfies the following conditions: Cr (%) + 10Mo (%) + 5W (%) ≧110%, 8%≦Mo (%) + 1/2W (%)≦12%. , hot working under the condition that the wall thickness reduction rate below the recrystallization temperature is 10% or more, and then the lower limit temperature (℃) calculated by 260logC (%) + 1300 and 16Mo (%) + 10W (%) + 10Cr (%) +777
After heat treatment at a temperature between the upper limit temperature (℃) calculated for 2 hours or less, cold working at a wall thickness reduction rate of 10 to 60% improves stress corrosion cracking resistance. This method is characterized by a method for manufacturing high-strength oil country tubular goods with excellent properties. Next, in the method for manufacturing oil country tubular goods of this invention,
The reason why the component composition, heat treatment conditions, and wall thickness reduction rates in hot working and cold working are limited as described above will be explained below. A Component composition (a) C The lower the C content, the more the precipitation of carbides will be suppressed, so the heating temperature and heat treatment temperature during hot working can be lowered, and this will improve the strength after cold working. It works more effectively as the temperature rises. Therefore, C
It is desirable that the content be as low as possible, but C
If the content exceeds 0.05%, intergranular stress corrosion cracking is likely to occur, so the upper limit value should be
It was set at 0.05%. (b) Si Si is a necessary component as a deoxidizing component, but
If the content exceeds 1.0%, hot workability will deteriorate, so the upper limit value should be set.
It was set at 1.0%. (c) Mn Mn component has a deoxidizing effect like Si,
Furthermore, since this component has almost no effect on stress corrosion cracking resistance, its upper limit was set at a rather high value of 2.0%. (d) P The P component as an unavoidable impurity has the effect of increasing stress corrosion cracking susceptibility when its content exceeds 0.030%.
It is necessary to set it at 0.030% to keep stress corrosion cracking susceptibility to a low level. It has also been found that as the P content is reduced, hydrogen cracking resistance rapidly improves after reaching 0.003%. If necessary, the P content is preferably 0.0030% or less. (e) S The S component as an unavoidable impurity has the effect of deteriorating hot workability when its content exceeds 0.005%, so the upper limit value must be set.
It is necessary to set it at 0.005% to prevent deterioration of hot workability. In this way, the S component has the effect of deteriorating hot workability when its content increases, but by decreasing its content, 0.0007
On the contrary, if the S content is reduced to 0.0007% or less, the hot workability will be further improved, so if hot working under severe conditions is required, it is desirable to reduce the S content to 0.0007% or less. (f) Al Al is effective as a deoxidizing component like Si and Mn, and even if it is included up to 0.5% in sol.Al content, it will not impair the properties of the pipe material. .0.5 in Al content
% or less. (g) Ni Ni has the effect of improving the stress corrosion cracking resistance of pipe materials, but if its content is less than 30%, the desired excellent stress corrosion cracking resistance cannot be secured; Even if the content exceeds 30%, no further improvement effect on stress corrosion cracking resistance appears, and the content was set at 30% to 60%, taking economic efficiency into account. (h) Cr The Cr component is a component that significantly improves stress corrosion cracking resistance when coexisting with Ni, Mo, and W components, but hot workability is not improved even if its content is less than 15%. On the contrary, in order to secure the desired stress corrosion cracking resistance, the content of Mo and W must be increased by that amount, which is economically disadvantageous, so the lower limit The value was set at 15%. On the other hand, if the S content exceeds 30%, deterioration of hot workability cannot be avoided no matter how much the S content is reduced, so the upper limit was set at 30%. (i) Mo and W As mentioned above, these components have an equal effect on improving stress corrosion cracking resistance when coexisting with Ni and Cr, but each
Even if Mo: 12% and W: 24% are contained, the environmental temperature is 200℃ or higher H 2 S—CO 2
- In the corrosive environment of Cl - , no further improvement effect appeared, and in consideration of economic efficiency, the respective contents were determined to be Mo: 12% or less and W: 24% or less. Also, regarding the content of Mo and W,
The reason why the conditional expression: Mo (%) + 1/2 W (%) is specified is because the atomic weight of W is about twice that of Mo, and the effect is about 1/2, which is equivalent, so this value is If it is less than 8%, the desired stress corrosion cracking resistance cannot be obtained, especially under the adverse environment above 200°C.On the other hand, even if this value is increased beyond 12%, as mentioned above, there will be substantially unnecessary stress corrosion cracking resistance. Since the amount of Mo and W contained is uneconomical, the value of Mo (%) + 1/2 W (%) was set at 8 to 12%. (j) N Since the N component has the effect of improving strength through solid solution strengthening, it is included as necessary when particularly high strength is required, but if the content is 0.05
If the content is less than 0.3%, the desired strength improvement effect cannot be obtained; on the other hand, if the content exceeds 0.3%,
Since melting and ingot making are difficult, its content was set at 0.05 to 0.3%. (k) Cu and Co These components have a uniform effect of improving the corrosion resistance of pipe materials, and Co has a solid solution strengthening effect. However, if Cu exceeds 2%, hot workability will deteriorate, while Co content will not improve further even if it exceeds 2%. each value
Cu: 2% and Co: 2% were set. (l) Rare earth elements, Y, Mg, Ti, and Ca These components have a uniform effect to further improve hot workability, so they can be used as needed when hot working is carried out under severe conditions. Rare earth elements: 0.10
%, Y: 0.20%, Mg: 0.10%, Ti: 0.5%,
and Ca: Even if the content exceeds 0.10%, there is no improvement effect on hot workability, and even a deterioration phenomenon appears.
Y: 0.20% or less, Mg: 0.10% or less, Ti: 0.5
% or less, and Ca: 0.10% or less. (m) Cr (%) + 10Mo (%) + 5W (%) Figure 1 shows stress corrosion cracking resistance under severe corrosive environments. Cr (%) + 10Mo (%) + 5W
(%) and the relationship between Ni content. That is, Cr-Ni-Mo system, Cr-
Ni-W steel and Cr-Ni-Mo-W steel are melted, cast, and forged to form a slab with a thickness of 50 mm, which is then heated to 1200°C and hot rolled. In this hot rolling, the processing rate is reduced to 30°C from the time when the plate thickness reaches 10mm, that is, from the time when the temperature reaches 1000℃ where recrystallization does not proceed.
The plate material was hot-rolled to a thickness of 7 mm as a percentage, and then this plate material was held at a temperature of 1000℃ for 30 minutes, water-cooled, and then cold-worked at a processing rate of 22% for the purpose of improving strength. , from the resulting steel plate, perpendicular to the rolling direction, thickness: 2 mm ×
Cut out a test piece with width: 10mm x length: 75mm,
For this test piece, using the three-point support beam jig shown in Fig. 2, a tensile stress equivalent to 0.2% proof stress was applied to the test piece S, and 10
H2S and 10 atm of CO2
20% NaCl solution saturated with CO2 (temperature: 300
A stress corrosion cracking test was carried out by immersing the test piece in 1,000-hour immersion temperature (°C) for 1000 hours, and after the test, the presence or absence of cracking in the test piece was observed. Based on these results,
Conditional expression independently set by the inventors: Cr (%)
It has become clear that there is a relationship between +10Mo (%) +5W (%) and Ni content with respect to stress corrosion cracking resistance, as shown in Figure 1. In FIG. 1, the ◯ mark indicates no cracking, and the x mark indicates cracking. From the results shown in Figure 1, Cr (%)
It is clear that the desired excellent stress corrosion cracking resistance cannot be obtained when the value of +10Mo (%) +5W (%) is less than 110% and the Ni content is less than 30%. In addition, in the alloy of this invention, B, Sn, Pb, and Zn are each contained at 0.1 as unavoidable impurities.
Even if the content is within the range of % or less, the properties of the alloy of the present invention will not be impaired in any way. B. Hot working conditions The reason why the wall thickness reduction rate below the recrystallization temperature during hot working is set at 10% or more is because this wall thickness reduction rate is
This is because if it is less than 10%, it will not be possible to sufficiently form fine recrystallized grains, which are essential for imparting the desired high strength and excellent ductility to the pipe material, in the post-process heat treatment. In addition, during hot working, it is desirable that the heating temperature be 1050 to 1250°C.
This is because if the heating temperature is less than 1050℃, the deformation resistance during hot working becomes too high, making the processing itself difficult, and undissolved intermetallic compounds and carbides remain, deteriorating toughness and corrosion resistance. On the other hand, if the heating temperature exceeds 1250°C, the deformability in hot conditions will be significantly reduced, making hot working difficult. C Heat treatment conditions As mentioned above, this heat treatment is performed to sufficiently form fine recrystallized grains, but the formation of fine recrystallized grains in this case is 260logC (%) + 1300
The lower limit temperature (℃) calculated by 16Mo (%) +
This is done by maintaining the temperature between the upper limit temperature (%) calculated by 10W (%) + 10Cr (%) + 777 for 2 hours or less. The formula for calculating the lower limit temperature: 260logC (%) + 1300 and the formula for calculating the upper limit temperature: 16Mo (%) + 10W (%) + 10Cr (%)
+777 has been determined empirically based on the results of numerous tests, and the formation of the specified fine recrystallization cannot be sufficiently achieved below the above lower limit temperature, while the heat treatment temperature is lower than the above upper limit temperature. If the temperature exceeds 2 hours or the holding time exceeds 2 hours, the crystal grains will become coarse and the effects brought about by hot working will disappear, making it impossible to secure the desired high strength and high toughness. Therefore, the heat treatment conditions were limited as described above. In this case, if undissolved intermetallic compounds and carbides remain, this will cause deterioration of corrosion resistance, but by setting the heat treatment temperature to the above-mentioned lower limit temperature or higher, they can be completely dissolved. D. Cold working conditions In addition, in this invention, as described above, cold working is performed after heat treatment to improve the strength, but if the cold working is less than 10% in wall thickness reduction rate, the desired strength cannot be secured. On the other hand, cold working with a wall thickness reduction rate of more than 60% will result in significant deterioration of ductility and toughness. It is. By applying the above component composition and manufacturing conditions, we manufacture oil country tubular goods that have high strength with a 0.2% proof stress of 85 Kgf/mm 2 or more, as well as excellent ductility and toughness, as well as excellent stress corrosion cracking resistance. It is possible to do so. Next, the method for manufacturing oil country tubular goods of the present invention will be specifically explained using examples and comparing with comparative examples. Example Molten metal having the composition shown in Table 1 was heated in a normal electric furnace and for the purpose of desulfurization and N addition.
Diameter: 500 mm after melting using an Ar-oxygen decarburization furnace (AOD furnace) and, if necessary, an electroslag melting furnace (ESR furnace) for the purpose of dephosphorization.
It is cast into a φ ingot, and then hot forged at a temperature of 1200℃ to create a diameter of 150mm.
A billet of φ is formed, and in this case, for the purpose of evaluating hot workability, it is observed whether or not cracks occur in the billet.
Hot extrusion processing is performed under the hot processing conditions shown in the table to form a raw tube with an outer diameter of 60 mmφ and a wall thickness of 4 mm.
Subsequently, the alloy tube materials 1 to 27 of the present invention were obtained by heat treatment and cold working under the heat treatment conditions (cooling after treatment was all water cooling) and wall thickness reduction rate shown in Table 1, respectively. , Comparative alloy tube material 1~
9 and conventional alloy tube materials 1 to 4 were manufactured, respectively. In addition, Comparative Alloy Tube Materials 1 to 9 have the content of any one of the constituent components or any of the manufacturing conditions (indicated with an asterisk in Table 1) of the present invention. The tube material 1 was manufactured under conditions outside the range, and all conventional alloy tube materials have known compositions.

【表】【table】

【表】【table】

【表】【table】

【表】 JIS・SUS316に、同2はJIS・SUS310Sに、同3
はインコロイ800に、同4はJIS・SUS329J1にそ
れぞれ相当する組成をもつものである。 ついで、この結果得られた本発明合金管材1〜
27、比較合金管材1〜9、および従来合金管材1
〜4より長さ:20mmの試験片をそれぞれ切出し、
この試験片より長さ方向にそつて60゜に相当する
部分を切落し、この状態の試験片に第3図に正面
図で示されるようにボルトを貫通し、ナツトでし
めつけて管外表面に0.2%耐力に相当する引張応
力を付加し、この状態の試験片Sに対して、H2S
分圧をそれぞれ0.1気圧、1気圧、および20気圧
としたH2S―10気圧CO2―20%NaCl溶液(液
温:300℃)中に1000時間浸漬の応力腐食割れ試
験を行ない、試験後における応力腐食割れの有無
を調査した。この結果を、上記の熱間鍛造時の割
れ発生の有無、引張試験結果、および衝撃試験結
果と共に、第2表に合せて示した。なお、第2表
において、〇印はいずれも割れ発生のないものを
示し、一方×印は割れ発生のあつたものを示す。 第2表に示される結果から、比較合金管材1〜
9は、熱間加工性、耐応力腐食割れ性、および強
度のうちの少なくともいずれかの性質が劣つたも
のであるのに対して、本発明合金管材1〜27は、
いずれもすぐれた熱間加工性および耐応力腐食割
れ性を有し、さらに高強度を有し、かつ熱間加工
性は良好であるが、相対的に強度が低く、しかも
耐応力腐食割れ性に劣る従来合金管材1〜4と比
較しても一段とすぐれた特性を有することが明ら
かである。 上述のように、この発明の方法によつて製造さ
れた油井管は、特に高強度および優れた耐応力腐
食割れ性を有するので、これらの特性が要求され
る苛酷な環境下での石油並びに天然ガス採掘は勿
論のこと、地熱井管として用いた場合にもきわめ
て優れた性能を発揮するのである。
[Table] JIS/SUS316, same 2 is JIS/SUS310S, same 3
The composition is equivalent to Incoloy 800, and the composition corresponding to Incoloy 4 is JIS/SUS329J1. Next, the resulting alloy tube materials 1 to 1 of the present invention
27, comparative alloy pipe materials 1 to 9, and conventional alloy pipe material 1
From ~4, cut out a test piece with a length of 20 mm,
Cut off a section corresponding to 60° along the length of this test piece, pass a bolt through this test piece as shown in the front view in Figure 3, tighten it with a nut, and attach it to the outside surface of the tube. A tensile stress equivalent to 0.2% proof stress is applied to the specimen S in this state, and H 2 S
A stress corrosion cracking test was conducted by immersion in H 2 S - 10 atm CO 2 - 20% NaCl solution (liquid temperature: 300°C) at partial pressures of 0.1 atm, 1 atm, and 20 atm, respectively, for 1000 hours. The presence or absence of stress corrosion cracking was investigated. The results are shown in Table 2 together with the presence or absence of cracking during hot forging, the tensile test results, and the impact test results. In Table 2, the ○ marks indicate those with no cracks, while the x marks indicate those with cracks. From the results shown in Table 2, comparative alloy tube materials 1 to
No. 9 is inferior in at least one of hot workability, stress corrosion cracking resistance, and strength, whereas alloy tube materials 1 to 27 of the present invention are
Both have excellent hot workability and stress corrosion cracking resistance, and also have high strength and good hot workability, but have relatively low strength and poor stress corrosion cracking resistance. It is clear that this material has even better characteristics than conventional alloy tube materials 1 to 4, which are inferior. As mentioned above, oil country tubular goods manufactured by the method of the present invention have particularly high strength and excellent stress corrosion cracking resistance, so they can be used in petroleum and natural products in harsh environments where these properties are required. It exhibits extremely excellent performance not only in gas extraction, but also when used as geothermal well pipes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は合金の耐応力腐食割れ性に関し、Ni
合有量とCr(%)+10Mo(%)+5W(%)との関係
を示した図、第2図および第3図はそれぞれ板状
および管状試験片に対する応力腐食割れ試験の態
様を示す図である。
Figure 1 shows the stress corrosion cracking resistance of alloys.
Figures 2 and 3 are diagrams showing the relationship between the combined content and Cr (%) + 10Mo (%) + 5W (%), and Figures 2 and 3 are diagrams showing the stress corrosion cracking test for plate-shaped and tubular specimens, respectively. be.

Claims (1)

【特許請求の範囲】 1 C:0.05%以下、Si:1.0%以下、Mn:2.0%
以下、P:0.030%以下、S:0.005%以下、sol.
Al:0.5%以下、Ni:30〜60%、Cr:15〜30%を
含有し、Mo:12%以下およびW:24%以下のう
ちの1種または2種を含有し、残りがFeと不可
避不純物からなる組成(以上重量%)を有し、か
つ、 Cr(%)+10Mo(%)+5W(%)≧110%、 8%≦Mo(%)+1/2W(%)≦12%、 の条件を満足する合金を、再結晶温度以下での肉
厚減少率を10%以上とした条件で熱間加工し、つ
いで260logC(%)+1300で算出された下限温度
(℃)と、16Mo(%)+10W(%)+10Cr(%)+777
で算出された上限温度(℃)の間の温度に、2時
間以下保持の条件で熱処理した後、10〜60%の肉
厚減少率で冷間加工することを特徴とする耐応力
腐食割れ性に優れた高強度油井管の製造法。 2 C:0.05%以下、Si:1.0%以下、Mn:2.0%
以下、P:0.030%以下、S:0.005%以下、sol.
Al:0.5%以下、Ni:30〜60%、Cr:15〜30%を
含有し、Mo:12%以下およびW:24%以下のう
ちの1種または2種を含有し、さらにCu:2%
以下およびCo:2%以下のうちの1種または2
種を含有し、残りがFeと不可避不純物からなる
組成(以上重量%)を有し、かつ、 Cr(%)+10Mo(%)+5W(%)≧110%、 8%≦Mo(%)+1/2W(%)≦12%、 の条件を満足する合金を、再結晶温度以下での肉
厚減少率を10%以上とした条件で熱間加工し、つ
いで260logC(%)+1300で算出された下限温度
(℃)と、16Mo(%)+10W(%)+10Cr(%)+777
で算出された上限温度(℃)の間の温度に、2時
間以下保持の条件で熱処理した後、10〜60%の肉
厚減少率で冷間加工することを特徴とする耐応力
腐食割れ性に優れた高強度油井管の製造法。 3 C:0.05%以下、Si:1.0%以下、Mn:2.0%
以下、P:0.030%以下、S:0.005%以下、sol.
Al:0.5%以下、Ni:30〜60%、Cr:15〜30%を
含有し、Mo:12%以下およびW:24%以下のう
ちの1種または2種を含有し、さらに希土類元
素:0.10%以下、Y:0.20%以下、Mg:0.10%以
下、Ti:0.5%以下、およびCa:0.10%以下のう
ちの1種または2種以上を含有し、残りがFeと
不可避不純物からなる組成(以上重量%)を有
し、かつ、 Cr(%)+10Mo(%)+5W(%)≧110%、 8%≦Mo(%)+1/2W(%)≦12%、 の条件を満足する合金を、再結晶温度以下での肉
厚減少率を10%以上とした条件で熱間加工し、つ
いで260logC(%)+1300で算出された下限温度
(℃)と、16Mo(%)+10W(%)+10Cr(%)+777
で算出された上限温度(℃)の間の温度に、2時
間以下保持の条件で熱処理した後、10〜60%の肉
厚減少率で冷間加工することを特徴とする耐応力
腐食割れ性に優れた高強度油井管の製造法。 4 C:0.05%以下、Si:1.0%以下、Mn:2.0%
以下、P:0.030%以下、S:0.005%以下、sol.
Al:0.5%以下、Ni:30〜60%、Cr:15〜30%を
含有し、Mo:12%以下およびW:24%以下のう
ちの1種または2種を含有し、さらにCu:2%
以下およびCo:2%以下のうちの1種または2
種と、希土類元素:0.10%以下、Y:0.20%以
下、Mg:0.10%以下、Ti:0.5%以下、および
Ca:0.10%以下のうちの1種または2種以上とを
含有し、残りがFeと不可避不純物からなる組成
(以上重量%)を有し、かつ、 Cr(%)+10Mo(%)+5W(%)≧110%、 8%≦Mo(%)+1/2W(%)≦12%、 の条件を満足する合金を、再結晶温度以下での肉
厚減少率を10%以上とした条件で熱間加工し、つ
いで260logC(%)+1300で算出された下限温度
(℃)と、16Mo(%)+10W(%)+10Cr(%)+777
で算出された上限温度(℃)の間の温度に、2時
間以下保持の条件で熱処理した後、10〜60%の肉
厚減少率で冷間加工することを特徴とする耐応力
腐食割れ性に優れた高強度油井管の製造法。 5 C:0.05%以下、Si:1.0%以下、Mn:2.0%
以下、P:0.030%以下、S:0.005%以下、sol.
Al:0.5%以下、N:0.05〜0.3%、Ni:30〜60
%、Cr:15〜30%を含有し、Mo:12%以下およ
びW:24%以下のうちの1種または2種を含有
し、残りがFeと不可避不純物からなる組成(以
上重量%)を有し、かつ、 Cr(%)+10Mo(%)+5W(%)≧110%、 8%≦Mo(%)+1/2W(%)≦12%、 の条件を満足する合金を、再結晶温度以下での肉
厚減少率を10%以上とした条件で熱間加工し、つ
いで260logC(%)+1300で算出された下限温度
(℃)と、16Mo(%)+10W(%)+10Cr(%)+777
で算出された上限温度(℃)の間の温度に、2時
間以下保持の条件で熱処理した後、10〜60%の肉
厚減少率で冷間加工することを特徴とする耐応力
腐食割れ性に優れた高強度油井管の製造法。 6 C:0.05%以下、Si:1.0%以下、Mn:2.0%
以下、P:0.030%以下、S:0.005%以下、sol.
Al:0.5%以下、N:0.05〜0.3%、Ni:30〜60
%、Cr:15〜30%を含有し、Mo:12%以下およ
びW:24%以下のうちの1種または2種を含有
し、さらにCu:2%以下およびCo:2%以下の
うちの1種または2種を含有し、残りがFeと不
可避不純物からなる組成(以上重量%)を有し、
かつ、 Cr(%)+10Mo(%)+5W(%)≧110%、 8%≦Mo(%)+1/2W(%)≦12%、 の条件を満足する合金を、再結晶温度以下での肉
厚減少率を10%以上とした条件で熱間加工し、つ
いで260logC(%)+1300で算出された下限温度
(℃)と、16Mo(%)+10W(%)+10Cr(%)+777
で算出された上限温度(℃)の間の温度に、2時
間以下保持の条件で熱処理した後、10〜60%の肉
厚減少率で冷間加工することを特徴とする耐応力
腐食割れ性に優れた高強度油井管の製造法。 7 C:0.05%以下、Si:1.0%以下、Mn:2.0%
以下、P:0.030%以下、S:0.005%以下、sol.
Al:0.5%以下、N:0.05〜0.3%、Ni:30〜60
%、Cr:15〜30%を含有し、Mo:12%以下およ
びW:24%以下のうちの1種または2種を含有
し、さらに希土類元素:0.10%以下、Y:0.20%
以下、Mg:0.10%以下、Ti:0.5%以下、および
Ca:0.10%以下のうちの1種または2種以上を含
有し、残りがFeと不可避不純物からなる組成
(以上重量%)を有し、かつ、 Cr(%)+10Mo(%)+5W(%)≧110%、 8%≦Mo(%)+1/2W(%)≦12%、 の条件を満足する合金を、再結晶温度以下での肉
厚減少率を10%以上とした条件で熱間加工し、つ
いで260logC(%)+1300で算出された下限温度
(℃)と、16Mo(%)+10W(%)+10Cr(%)+777
で算出された上限温度(℃)の間の温度に、2時
間以下保持の条件で熱処理した後、10〜60%の肉
厚減少率で冷間加工することを特徴とする耐応力
腐食割れ性に優れた高強度油井管の製造法。 8 C:0.05%以下、Si:1.0%以下、Mn:2.0%
以下、P:0.030%以下、S:0.005%以下、sol.
Al:0.5%以下、N:0.05〜0.3%、Ni:30〜60
%、Cr:15〜30%を含有し、Mo:12%以下およ
びW:24%以下のうちの1種または2種を含有
し、さらにCu:2%以下およびCo:2%以下の
うちの1種または2種と、希土類元素:0.10%以
下、Y:0.20%以下、Mg:0.10%以下、Ti:0.5
%以下、およびCa:0.10%以下のうちの1種また
は2種以上とを含有し、残りがFeと不可避不純
物からなる組成(以上重量%)を有し、かつ、 Cr(%)+10Mo(%)+5W(%)≧110%、 8%≦Mo(%)+1/2W(%)≦12%、 の条件を満足する合金を、再結晶温度以下での肉
厚減少率を10%以上とした条件で熱間加工し、つ
いで260logC(%)+1300で算出された下限温度
(℃)と、16Mo(%)+10W(%)+10Cr(%)+777
で算出された上限温度(℃)の間の温度に、2時
間以下保持の条件で熱処理した後、10〜60%の肉
厚減少率で冷間加工することを特徴とする耐応力
腐食割れ性に優れた高強度油井管の製造法。
[Claims] 1 C: 0.05% or less, Si: 1.0% or less, Mn: 2.0%
Below, P: 0.030% or less, S: 0.005% or less, sol.
Contains Al: 0.5% or less, Ni: 30 to 60%, Cr: 15 to 30%, one or two of Mo: 12% or less and W: 24% or less, and the rest is Fe. It has a composition (weight% or more) consisting of unavoidable impurities, and Cr (%) + 10Mo (%) + 5W (%) ≧110%, 8%≦Mo (%) + 1/2W (%)≦12%, An alloy that satisfies the conditions is hot-worked under the condition that the wall thickness reduction rate below the recrystallization temperature is 10% or more, and then the lower limit temperature (℃) calculated by 260logC (%) + 1300 and 16Mo (% )+10W(%)+10Cr(%)+777
Stress corrosion cracking resistance characterized by heat treatment at a temperature between the upper limit temperature (°C) calculated for 2 hours or less, and then cold working at a wall thickness reduction rate of 10 to 60%. A manufacturing method for high-strength oil country tubular goods with excellent properties. 2 C: 0.05% or less, Si: 1.0% or less, Mn: 2.0%
Below, P: 0.030% or less, S: 0.005% or less, sol.
Contains Al: 0.5% or less, Ni: 30 to 60%, Cr: 15 to 30%, one or two of Mo: 12% or less and W: 24% or less, and further Cu: 2 %
One or two of the following and Co: 2% or less
It has a composition (more than % by weight) containing seeds and the rest is Fe and unavoidable impurities, and Cr (%) + 10Mo (%) + 5W (%) ≧110%, 8%≦Mo (%) + 1/ 2W (%) ≦ 12%, an alloy that satisfies the conditions is hot worked under the condition that the wall thickness reduction rate below the recrystallization temperature is 10% or more, and then the lower limit calculated by 260logC (%) + 1300 Temperature (℃) and 16Mo (%) + 10W (%) + 10Cr (%) + 777
Stress corrosion cracking resistance characterized by heat treatment at a temperature between the upper limit temperature (°C) calculated for 2 hours or less, and then cold working at a wall thickness reduction rate of 10 to 60%. A manufacturing method for high-strength oil country tubular goods with excellent properties. 3 C: 0.05% or less, Si: 1.0% or less, Mn: 2.0%
Below, P: 0.030% or less, S: 0.005% or less, sol.
Contains Al: 0.5% or less, Ni: 30 to 60%, Cr: 15 to 30%, one or two of Mo: 12% or less and W: 24% or less, and further rare earth elements: A composition containing one or more of the following: 0.10% or less, Y: 0.20% or less, Mg: 0.10% or less, Ti: 0.5% or less, and Ca: 0.10% or less, with the remainder consisting of Fe and inevitable impurities. (more than weight%) and satisfies the following conditions: Cr (%) + 10Mo (%) + 5W (%) ≧110%, 8%≦Mo (%) + 1/2W (%)≦12% is hot-worked under conditions where the wall thickness reduction rate below the recrystallization temperature is 10% or more, and then the lower limit temperature (℃) calculated by 260logC (%) + 1300 and 16Mo (%) + 10W (%) +10Cr(%)+777
Stress corrosion cracking resistance characterized by heat treatment at a temperature between the upper limit temperature (°C) calculated for 2 hours or less, and then cold working at a wall thickness reduction rate of 10 to 60%. A manufacturing method for high-strength oil country tubular goods with excellent properties. 4 C: 0.05% or less, Si: 1.0% or less, Mn: 2.0%
Below, P: 0.030% or less, S: 0.005% or less, sol.
Contains Al: 0.5% or less, Ni: 30 to 60%, Cr: 15 to 30%, one or two of Mo: 12% or less and W: 24% or less, and further Cu: 2 %
One or two of the following and Co: 2% or less
Species, rare earth elements: 0.10% or less, Y: 0.20% or less, Mg: 0.10% or less, Ti: 0.5% or less, and
Contains one or more of Ca: 0.10% or less, with the remainder consisting of Fe and unavoidable impurities (weight%), and Cr (%) + 10Mo (%) + 5W (%) )≧110%, 8%≦Mo(%)+1/2W(%)≦12%, An alloy that satisfies the following conditions is hot-heated under the condition that the wall thickness reduction rate below the recrystallization temperature is 10% or more. After processing, the lower limit temperature (℃) calculated by 260logC (%) + 1300 and 16Mo (%) + 10W (%) + 10Cr (%) + 777
Stress corrosion cracking resistance characterized by heat treatment at a temperature between the upper limit temperature (°C) calculated for 2 hours or less, and then cold working at a wall thickness reduction rate of 10 to 60%. A manufacturing method for high-strength oil country tubular goods with excellent properties. 5 C: 0.05% or less, Si: 1.0% or less, Mn: 2.0%
Below, P: 0.030% or less, S: 0.005% or less, sol.
Al: 0.5% or less, N: 0.05-0.3%, Ni: 30-60
%, Cr: 15 to 30%, Mo: 12% or less, W: 24% or less, and the remainder is Fe and unavoidable impurities (weight%). Cr (%) + 10Mo (%) + 5W (%) ≧ 110%, 8% ≦ Mo (%) + 1/2W (%) ≦ 12%, and below the recrystallization temperature. Hot working is performed under the condition that the wall thickness reduction rate is 10% or more, and then the lower limit temperature (℃) calculated from 260logC (%) + 1300 and 16Mo (%) + 10W (%) + 10Cr (%) + 777
Stress corrosion cracking resistance characterized by heat treatment at a temperature between the upper limit temperature (°C) calculated for 2 hours or less, and then cold working at a wall thickness reduction rate of 10 to 60%. A manufacturing method for high-strength oil country tubular goods with excellent properties. 6 C: 0.05% or less, Si: 1.0% or less, Mn: 2.0%
Below, P: 0.030% or less, S: 0.005% or less, sol.
Al: 0.5% or less, N: 0.05-0.3%, Ni: 30-60
%, Cr: 15 to 30%, Mo: 12% or less and W: 24% or less, and Cu: 2% or less and Co: 2% or less. Contains one or two types, with the remainder consisting of Fe and unavoidable impurities (weight %),
And, an alloy that satisfies the following conditions: Cr (%) + 10Mo (%) + 5W (%) ≧110%, 8%≦Mo (%) + 1/2W (%)≦12%, is processed at a temperature below the recrystallization temperature. Hot working is performed under the condition that the thickness reduction rate is 10% or more, and then the lower limit temperature (℃) calculated from 260logC (%) + 1300 and 16Mo (%) + 10W (%) + 10Cr (%) + 777
Stress corrosion cracking resistance characterized by heat treatment at a temperature between the upper limit temperature (°C) calculated for 2 hours or less, and then cold working at a wall thickness reduction rate of 10 to 60%. A manufacturing method for high-strength oil country tubular goods with excellent properties. 7 C: 0.05% or less, Si: 1.0% or less, Mn: 2.0%
Below, P: 0.030% or less, S: 0.005% or less, sol.
Al: 0.5% or less, N: 0.05-0.3%, Ni: 30-60
%, Cr: 15 to 30%, Mo: 12% or less and W: 24% or less, further containing rare earth elements: 0.10% or less, Y: 0.20%
Below, Mg: 0.10% or less, Ti: 0.5% or less, and
Contains one or more of Ca: 0.10% or less, with the remainder consisting of Fe and unavoidable impurities (weight%), and Cr (%) + 10Mo (%) + 5W (%) ≧110%, 8%≦Mo(%)+1/2W(%)≦12%, Alloys that satisfy the following conditions are hot worked under conditions where the wall thickness reduction rate below the recrystallization temperature is 10% or more. Then, the lower limit temperature (℃) calculated by 260logC (%) + 1300 and 16Mo (%) + 10W (%) + 10Cr (%) + 777
Stress corrosion cracking resistance characterized by heat treatment at a temperature between the upper limit temperature (°C) calculated for 2 hours or less, and then cold working at a wall thickness reduction rate of 10 to 60%. A manufacturing method for high-strength oil country tubular goods with excellent properties. 8 C: 0.05% or less, Si: 1.0% or less, Mn: 2.0%
Below, P: 0.030% or less, S: 0.005% or less, sol.
Al: 0.5% or less, N: 0.05-0.3%, Ni: 30-60
%, Cr: 15 to 30%, Mo: 12% or less and W: 24% or less, and Cu: 2% or less and Co: 2% or less. 1 or 2 types, rare earth elements: 0.10% or less, Y: 0.20% or less, Mg: 0.10% or less, Ti: 0.5
% or less, and one or more of Ca: 0.10% or less, with the remainder consisting of Fe and unavoidable impurities (wt%), and Cr (%) + 10Mo (%) ) + 5W (%) ≧ 110%, 8% ≦ Mo (%) + 1/2W (%) ≦ 12%, the alloy that satisfies the following conditions has a wall thickness reduction rate of 10% or more below the recrystallization temperature. After hot working under the following conditions, the lower limit temperature (℃) calculated from 260logC (%) + 1300 and 16Mo (%) + 10W (%) + 10Cr (%) + 777
Stress corrosion cracking resistance characterized by heat treatment at a temperature between the upper limit temperature (°C) calculated for 2 hours or less, and then cold working at a wall thickness reduction rate of 10 to 60%. A manufacturing method for high-strength oil country tubular goods with excellent properties.
JP10411381A 1981-07-03 1981-07-03 Production of high-strength oil well pipe of high stress corrosion cracking resistance Granted JPS586929A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP10411381A JPS586929A (en) 1981-07-03 1981-07-03 Production of high-strength oil well pipe of high stress corrosion cracking resistance
US06/389,568 US4421571A (en) 1981-07-03 1982-06-17 Process for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking
GB08217860A GB2104100B (en) 1981-07-03 1982-06-21 High strength deep well casing and tubing having improved resistance to stress-corrosion cracking
SE8204121A SE461986C (en) 1981-07-03 1982-07-02 PROCEDURES FOR PREPARING HOEGHAALLFASTA DEEP BORROWS WITH RESISTANCE TO TENSION CORROSION
FR8211645A FR2508930A1 (en) 1981-07-03 1982-07-02 PROCESS FOR MANUFACTURING HIGH MECHANICAL RESISTANCE PIPES AND PIPES FOR DEEP WELLS
DE3224865A DE3224865C2 (en) 1981-07-03 1982-07-02 Process for the production of heavy-duty casing for deep boreholes or the like
SE8901647A SE502102C2 (en) 1981-07-03 1989-05-09 Process for the manufacture of high strength deep drill pipes with resistance to stress corrosion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10411381A JPS586929A (en) 1981-07-03 1981-07-03 Production of high-strength oil well pipe of high stress corrosion cracking resistance

Publications (2)

Publication Number Publication Date
JPS586929A JPS586929A (en) 1983-01-14
JPS6363605B2 true JPS6363605B2 (en) 1988-12-08

Family

ID=14372067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10411381A Granted JPS586929A (en) 1981-07-03 1981-07-03 Production of high-strength oil well pipe of high stress corrosion cracking resistance

Country Status (1)

Country Link
JP (1) JPS586929A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6187855A (en) * 1984-10-05 1986-05-06 Sumitomo Metal Ind Ltd Stainless steel having superior corrosion resistance and hot workability
JPS6383248A (en) * 1986-09-25 1988-04-13 Nkk Corp High-ni alloy for pipe of oil well having superior resistance to stress corrosion cracking and its manufacture

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54110918A (en) * 1978-02-21 1979-08-30 Cabot Corp Anticorrosion nickel alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54110918A (en) * 1978-02-21 1979-08-30 Cabot Corp Anticorrosion nickel alloy

Also Published As

Publication number Publication date
JPS586929A (en) 1983-01-14

Similar Documents

Publication Publication Date Title
US4400349A (en) Alloy for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking
JPS625977B2 (en)
JPS625976B2 (en)
JPH10121202A (en) High strength steel used in environment requiring sulfides stress creaking resistance and its production
JPS6144133B2 (en)
JPS6362569B2 (en)
JPS6363608B2 (en)
JPS6363610B2 (en)
JPS6144135B2 (en)
JPS6363609B2 (en)
JPS6363606B2 (en)
JPS6199660A (en) High strength welded steel pipe for line pipe
JPH0371506B2 (en)
JPS6144126B2 (en)
JPS6144128B2 (en)
JPH0372698B2 (en)
CA3086462C (en) Cr-ni alloy and seamless steel pipe made of cr-ni alloy
JPS581044A (en) High strength alloy having superior stress corrosion cracking resistance for oil well pipe
JPS6144134B2 (en)
JPS6362570B2 (en)
JPS6144125B2 (en)
JPS6363605B2 (en)
JPS6363611B2 (en)
JP3470418B2 (en) High strength austenitic alloy with excellent seawater corrosion resistance and hydrogen sulfide corrosion resistance
JPS6363607B2 (en)