JPS63137133A - Highly corrosion-resistant precipitation hardening-type ni-base alloy - Google Patents

Highly corrosion-resistant precipitation hardening-type ni-base alloy

Info

Publication number
JPS63137133A
JPS63137133A JP28367186A JP28367186A JPS63137133A JP S63137133 A JPS63137133 A JP S63137133A JP 28367186 A JP28367186 A JP 28367186A JP 28367186 A JP28367186 A JP 28367186A JP S63137133 A JPS63137133 A JP S63137133A
Authority
JP
Japan
Prior art keywords
less
corrosion
environment
resistance
precipitation hardening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28367186A
Other languages
Japanese (ja)
Other versions
JPH0524218B2 (en
Inventor
Masaaki Igarashi
正晃 五十嵐
Shiro Mukai
向井 史朗
Yasutaka Okada
康孝 岡田
Akio Ikeda
昭夫 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP28367186A priority Critical patent/JPS63137133A/en
Priority to US07/123,878 priority patent/US5000914A/en
Publication of JPS63137133A publication Critical patent/JPS63137133A/en
Priority to US07/619,980 priority patent/US5217684A/en
Publication of JPH0524218B2 publication Critical patent/JPH0524218B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Pressure Vessels And Lids Thereof (AREA)

Abstract

PURPOSE:To obtain the titled alloy having superior stress corrosion cracking resistance, etc., even in an environment in which S as a simple substance is further mixed into the conventional sour-gas environment, by providing a composition consisting of respectively prescribed percentages of Cr, Mo, Nb, Fe, Ni, C, Si, Mn, P, S, and N. CONSTITUTION:A highly corrosion resistant precipitation hardening-type Ni-base alloy of this invention has a composition consisting of, by weight, 12-22% Cr, 9.0-15% Mo, 4.0-6.0% Nb, 5.0-20% Fe, 50-60% Ni, <=0.050% C, <=0.50% Si, <=1.0% Mn, <=0.025% P, <=0.0050% S, and <=0.050% N. This Ni-base alloy has such a high strength as to be outstandingly excellent in corrosion resistance, that is, stress corrosion cracking resistance and hydrogen cracking resistance even under the above-mentioned severe environment and, as a result, it is useful for pit-mouth and bottom-hole members for oil well.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、腐食環境下、特に従来のサワーガス環境(l
lzs  Cot −cQ−)下にあって、さらにイオ
ウ(S)がFeS、 NiS等の硫化物の形態でなく単
体として混入した環境において良好な耐応力割れ性およ
び耐水素割れ性を有する、油井用部材(特に坑口、杭底
部材)に用いられる高耐食性析出硬化型Ni基合金に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is suitable for use in corrosive environments, particularly in conventional sour gas environments (l
For oil wells, it has good stress cracking resistance and hydrogen cracking resistance in an environment where sulfur (S) is mixed as a single substance rather than in the form of sulfides such as FeS and NiS. This invention relates to a highly corrosion-resistant precipitation hardening Ni-based alloy used for members (particularly mineheads and pile bottom members).

(従来の技術) 近年、油井の深井戸化およびサワーガス環境下での掘井
が要求されてきており、高強度、高耐食性を有するNi
基合金等がそのような用途に適用されている。これらN
i基合金の耐食性能は特にCr、Mo、 W含有量の増
加によって向上するため、それらを考慮しながら、対象
となる腐食環境に適した合金成分系が選択されている。
(Conventional technology) In recent years, there has been a demand for deeper oil wells and for drilling wells in sour gas environments.
Base alloys and the like have been applied to such applications. These N
The corrosion resistance performance of i-based alloys is particularly improved by increasing the Cr, Mo, and W contents, so an alloy component system suitable for the target corrosive environment is selected while taking these into account.

さらに強度については、0.2%耐力にて77 kgf
/am”以上、あるいは91 kgf/arm”以上の
高強度が要求されている。したがって、これら合金成分
系に対してチュービング、ケーシング、ライナ等の管状
部材については冷間加工にて高強度化を図っており、一
方、冷間加工の施せないような厚肉あるいは異形状の坑
口、杭底部材等にはToあるいはγ”等の金属間化合物
の析出硬化を利用して高強度化を図っている。
Furthermore, the strength is 77 kgf at 0.2% yield strength.
A high strength of 91 kgf/arm" or higher is required. Therefore, for these alloy component systems, tubular members such as tubing, casings, and liners are made to have high strength by cold working. In order to increase the strength of pile bottom members, etc., precipitation hardening of intermetallic compounds such as To or γ'' is used.

ところで、最近の油井情報によれば上記サワーガス環境
以外にさらにイオウ(S)が単体として、つまり硫化物
等の形態ではなく、混入する環境が見い出され、そのよ
うな環境においては従来の耐サワーガス用Ni基合金で
は耐食性が充分ではなくなってきている。
By the way, according to recent oil well information, in addition to the above-mentioned sour gas environment, there are environments in which sulfur (S) is mixed as a single substance, that is, not in the form of sulfides, etc., and in such environments, conventional sour gas resistant Ni-based alloys no longer have sufficient corrosion resistance.

(発明が解決しようとする問題点) 上記のようにサワーガス環境(H2S−Co□−Cf2
−)にさらにイオウ(S)の単体が混入する環境におい
ては、N1基合金部材等は特異な腐食形態を示すが、本
件出願人は、このような環境においても良好な耐食性を
維持する合金として、チェーピング、ケーシング、ライ
ナ等の管状部材用には、冷間加工により強度上昇を図れ
る合金系を特願昭61−1199号ないし61−120
4号においてすでに提案している。
(Problem to be solved by the invention) As mentioned above, sour gas environment (H2S-Co□-Cf2
-) and sulfur (S), N1-based alloy members exhibit a unique form of corrosion, but the applicant has developed an alloy that maintains good corrosion resistance even in such environments. For tubular members such as chaping, casings, and liners, alloys whose strength can be increased by cold working are disclosed in Japanese Patent Application Nos. 61-1199 and 1982-120.
This has already been proposed in issue 4.

しかしながら、上記合金系にあっても、油井坑口、杭底
部材等で冷間加工により強度上昇を図れない場合には、
γ°あるいはT1等の金属間化合物の析出硬化により高
強度化を図る必要がある。
However, even with the above alloys, if the strength cannot be increased by cold working for oil wellheads, pile bottom members, etc.
It is necessary to increase the strength by precipitation hardening of intermetallic compounds such as γ° or T1.

しかし、これら析出硬化型の既存合金では上記のイオウ
(S)を単体として含むサワーガス環境においては、い
ずれも局部腐食あるいは応力腐食割れ(以下、rscc
Jと称する)を発生することが確認された。すなわち、
単体Sは温度、圧力(特にH2S分圧)に依存して(S
□+ +HtS :!HtS*)ノ反応に従イ3B (
SX−1、u、s 、 1ids、 ) ニi化するが
、Slm−1として遊離したイオウ(S)もしくはH2
S、が存在すると、これが油井坑口、杭底部材に局所的
に付着し、その部分において孔食の発生あるいはSCC
に至ることがわかった。これは4S+4H,S;l!3
H2S+H,504の反応によりozsA度が局所的に
上昇することと、同時にntsa、を発生し低pH化す
るためと考えられる。このような特異な腐食形態を呈す
る環境において、充分な耐食性能を発揮するためには、
管状部材の場合(特願昭61−1199号その他参照)
と同様、坑口、杭底部材の析出硬化型合金においても従
来よりもさらに高強度かつ修復性の良好な耐食性皮H々
を形成させることが不可欠となる。ところが既存の析出
硬化型のNi基合金等では析出硬化能と組織安定性(γ
°、γ”以外の脆化をもたらす第2相;シグマ相、La
ves相等の析出防止)の観点から合金元素に制約があ
り、当該環境にて十分な耐食性を有する良好な耐食性皮
膜は得られなかった。
However, these existing precipitation hardening alloys suffer from localized corrosion or stress corrosion cracking (hereinafter referred to as rscc) in a sour gas environment containing the above-mentioned sulfur (S) as a single element.
It has been confirmed that the product generates That is,
The simple substance S depends on temperature and pressure (particularly H2S partial pressure) (S
□+ +HtS:! According to the reaction of HtS*), 3B (
SX-1, u, s, 1ids, ) oxidizes, but sulfur (S) or H2 liberated as Slm-1
If S is present, it will locally adhere to the oil well entrance and pile bottom members, causing pitting corrosion or SCC in those areas.
It was found that this leads to. This is 4S+4H,S;l! 3
This is thought to be because the ozsA degree locally increases due to the reaction of H2S+H,504, and at the same time, ntsa is generated to lower the pH. In order to exhibit sufficient corrosion resistance in an environment with such a unique form of corrosion,
In the case of tubular members (see Japanese Patent Application No. 1199/1986 and others)
Similarly, it is essential to form a corrosion-resistant skin H with even higher strength and better repairability than before in precipitation hardening alloys for wellhead and pile bottom members. However, existing precipitation hardening type Ni-based alloys have poor precipitation hardenability and structural stability (γ
The second phase that causes embrittlement other than °, γ''; sigma phase, La
There are restrictions on alloying elements from the viewpoint of prevention of precipitation of ves phase, etc., and a good corrosion-resistant film having sufficient corrosion resistance in this environment could not be obtained.

したがって、本発明の目的は、従来のサワーガス環境(
His−Co□−C2−)にさらにイオウ(S)の単体
が混入した環境においても良好な耐応力腐食割れ性およ
び耐水素割れ性を有する油井用坑口、杭底部材用の高強
度析出硬化型Ni基合金を提供することである。
Therefore, it is an object of the present invention to overcome the conventional sour gas environment (
A high-strength precipitation hardening type for oil well entrances and pile bottom members that has good stress corrosion cracking resistance and hydrogen cracking resistance even in environments where sulfur (S) is further mixed into His-Co□-C2-). An object of the present invention is to provide a Ni-based alloy.

(問題点を解決するための手段) そこで、本発明者らは、析出硬化能を損なうことなく、
強硬かつ修復能の良好な皮膜が得られる合金成分系を得
るために、サワーガス環境における皮膜の強度および修
復能が、管状部材用の冷間加工型Ni基合金の場合には
概ねCr、 Mo、、Wの含有量に比例して向上するこ
とと、さらに単体Sを含む場合には、Cu、 Nbが有
効であることに着目した検討を行い、次の如き知見を得
た。
(Means for solving the problem) Therefore, the present inventors solved the problem without impairing the precipitation hardening ability.
In order to obtain an alloy component system that provides a hard film with good repairability, the strength and repairability of the film in a sour gas environment are approximately Cr, Mo, We conducted a study focusing on the fact that Cu and Nb improve in proportion to the content of W, and that Cu and Nb are effective when they contain elemental S, and the following findings were obtained.

(1)坑口、杭底部材用の析出硬化型N+基合金の場合
には、Cr、 MO% W、 CLI等の含有量を増加
させてい(と、シグマ相、Laves相等の脆化相が製
品においても残存するようになり、γ″、γ”の析出硬
化を妨げると同時に皮膜自体の強度、修復能さえ有効に
向上しなかった。
(1) In the case of precipitation hardening N+ base alloys for wellheads and pile bottom members, the content of Cr, MO% W, CLI, etc. is increased (and embrittlement phases such as sigma phase and Laves phase are They also remained in the coating, preventing precipitation hardening of γ'' and γ'', and at the same time, did not effectively improve the strength or repair ability of the coating itself.

(2)さらにそのメカニズムを検討した結果、本発明者
らは、 Mo:9.0〜15%、Nb:4.O〜6.0
%を含む特定成分系の組み合せにより、析出硬化能すな
わち、To、γ”の金属間化合物の析出を低下させるこ
とな(、かつ単体Sを含む200℃以上、250℃以下
の環境において十分な強度と良好な修復能を有する耐食
性皮膜が得られ、当該環境にて良好な耐SCC性および
耐水素割れ性を呈する。
(2) As a result of further studying the mechanism, the present inventors found that Mo: 9.0 to 15%, Nb: 4. O~6.0
By combining specific component systems including A corrosion-resistant film with good repair ability is obtained, and exhibits good SCC resistance and hydrogen cracking resistance in the relevant environment.

すなわち、本発明は、そのような知見にもとづいて完成
されたもので、その要旨とするところは、重量%で、 Cr:  12〜22%、         Mo: 
 9.0〜15%、Nb: 4.0〜6.0%、  F
e: 5.0〜20%、Nt: 50〜60%、   
 C: 0.050%以下、St: 0.50%以下、
   Mn: 1.0%以下、P : 0.025%以
下、  S : 0.0050%以下、N : 0.0
50%以下、 さらに所望によりTi :0.01〜1.0%および/
または八Q:0.01〜2.0% からなる組成を有するサワーガス環境にさらにS単体が
混入する過酷な環境下ですぐれた耐SCC性を示す高耐
食性析出硬化型Ntli合金である。
That is, the present invention was completed based on such knowledge, and its gist is as follows: Cr: 12-22%, Mo:
9.0-15%, Nb: 4.0-6.0%, F
e: 5.0-20%, Nt: 50-60%,
C: 0.050% or less, St: 0.50% or less,
Mn: 1.0% or less, P: 0.025% or less, S: 0.0050% or less, N: 0.0
50% or less, further optionally Ti: 0.01 to 1.0% and/or
It is a highly corrosion-resistant precipitation-hardening Ntli alloy that exhibits excellent SCC resistance in a harsh environment where elemental S is mixed in a sour gas environment having a composition consisting of 0.01 to 2.0% of 8Q.

さらに、上記成分系を下記(11式なる範囲に限定すれ
ば、m織は安定化し、熱間加工性が極めて優れた均質な
合金が得られ、耐SCC性も良好となり、本発明の目的
がさらに一層効果的に達成される。
Furthermore, if the above-mentioned component system is limited to the range of formula 11 below, the m-weave will be stabilized, a homogeneous alloy with extremely excellent hot workability will be obtained, and the SCC resistance will also be good, thus achieving the object of the present invention. This is achieved even more effectively.

Ni−2(Mo+15(Cr−12)l −4(Nb+
1.57i+ 0.5 (Al −0,5) l ≧0
 ・・・・(1)かくして、本発明によれば、200 
’C以上という高温下にあっても、サワーガス環境にさ
らにsML体が混合した過酷な環境下ですぐれた耐SC
C性および耐水素割れ性を示す析出硬化型Ni基合金が
得られる。
Ni-2(Mo+15(Cr-12)l-4(Nb+
1.57i+ 0.5 (Al -0,5) l ≧0
(1) Thus, according to the present invention, 200
Excellent SC resistance even under high temperatures of 'C or higher, even in harsh environments where sML bodies are mixed with sour gas environments.
A precipitation-hardening Ni-based alloy is obtained that exhibits C properties and hydrogen cracking resistance.

(作用) 次に、本発明において成分組成を上述の如く限定する理
由を説明する。
(Function) Next, the reason why the component composition is limited as described above in the present invention will be explained.

Cr: CrはMo、 Ni、 Fe等と共にγ″、7
’析出硬化のためのオーステナイトマトリンクスを構成
する。従来のサワーガス環境では特に高温での耐食性に
有効とされていたが、当該環境では阿0、Ni等とのバ
ランスで耐食性皮膜に寄与する。このためにはCr21
2%は必要であるが、組織安定性の観点からCr522
%とした。
Cr: Cr is γ″, 7 along with Mo, Ni, Fe, etc.
'Construct austenitic matrix links for precipitation hardening. In the conventional sour gas environment, it was said to be effective for corrosion resistance, especially at high temperatures, but in this environment, it contributes to a corrosion-resistant film in balance with A0, Ni, etc. For this purpose, Cr21
2% is necessary, but from the viewpoint of tissue stability, Cr522
%.

Mo: Moは当該環境にて耐食性皮膜を形成させるた
めに不可欠な元素であり250 ℃以下を対象とした場
合、Mo≧9.0%必要である。しかしながら、多量添
加はγ″、γ”析出硬化の妨げとなるシグマ相、Lev
es相が析出し易くなり、かつ熱間加工性を低下させる
ために、Mo515%とする。
Mo: Mo is an essential element for forming a corrosion-resistant film in the relevant environment, and when the temperature is 250° C. or lower, Mo≧9.0% is required. However, the addition of large amounts of sigma phase, Lev
In order to facilitate precipitation of the es phase and to reduce hot workability, the Mo content is set at 515%.

なお、WはMoと同様な効果を有すると一般的に考えら
れ、通常Wの原子量を考慮して1%Moに対して2%W
にて置換可能とされているが、当該成分系では成分構成
上高W添加は実質不可能である。ただし、Moの一部を
Wにて置換することは可能である。
Note that W is generally considered to have the same effect as Mo, and considering the atomic weight of W, 2% W to 1% Mo is usually used.
However, it is virtually impossible to add a high amount of W due to the composition of the component system. However, it is possible to partially replace Mo with W.

Ni: NiはTo、γ”析出硬化に不可欠な元素であ
るが、当該環境における耐食性皮膜の強化にも重要な役
割を果す。そのためには、Ni≧50%必要だが、他成
分系とのバランスと耐水素割れ性の観点からNi560
%とする。
Ni: Ni is an essential element for To and γ" precipitation hardening, but it also plays an important role in strengthening the corrosion-resistant film in the relevant environment. For this purpose, Ni ≥ 50% is required, but it is necessary to balance it with other components. and Ni560 from the viewpoint of hydrogen cracking resistance.
%.

Fe: FeはTo、γ″析出硬化能の向上には不可欠
な元素である。そのためにはFe≧5.0%必要だが、
他成分系とのバランスを考慮してFe≦20%とする。
Fe: Fe is an essential element for improving To and γ″ precipitation hardenability.For this purpose, Fe≧5.0% is required, but
Considering the balance with other components, Fe≦20%.

Nb: Nbは本合金系では主にTo−Ni3Nb(D
Otz型規則構造)の析出硬化により高強度かつ高耐食
性を与える。これはT”特有の変形機構により応力集中
が小さく、また耐孔食性に優れているからである。その
ためにはNb≧4.0%必要であるが、多量添加はLa
ves相の生成等好ましくない第2相を析出するためN
b≦6.0%とする。
Nb: In this alloy system, Nb is mainly To-Ni3Nb (D
Otz-type regular structure) precipitation hardening provides high strength and high corrosion resistance. This is because the stress concentration is small due to the deformation mechanism unique to T'', and it has excellent pitting corrosion resistance.For this purpose, Nb≧4.0% is required, but adding a large amount of La
N to precipitate undesirable second phases such as the formation of ves phase.
b≦6.0%.

Ti: Tiは多量に添加されるとγ゛相を形成するが
本合金系では微量であればT′析出を促進する効果があ
る。そのため、多量添加は不要であり、添加量はTiS
2.0%とする。その効果を得るのにTi添加の下限を
0.01%とする。
Ti: When added in a large amount, Ti forms a γ' phase, but in the present alloy system, a trace amount of Ti has the effect of promoting T' precipitation. Therefore, it is not necessary to add a large amount of TiS.
It shall be 2.0%. To obtain this effect, the lower limit of Ti addition is set to 0.01%.

Al:Alは、M≦0.5%で有効な脱酸剤として、さ
らに組織の安定化に寄与する。それらの効果を得るのに
M≧0.01%を必要とする。またγ゛あるいはγ“相
の析出にも寄与するため、M≧0.5%としてもよいが
、Al>2%は却って強度向上には好ましくない。
Al: Al serves as an effective deoxidizer when M≦0.5% and further contributes to stabilizing the tissue. M≧0.01% is required to obtain these effects. Since it also contributes to the precipitation of γ'' or γ'' phase, M≧0.5% may be acceptable, but Al>2% is rather unfavorable for improving strength.

C:Cは、C>0.05%では粗大なMC型(M: N
b。
C:C becomes coarse MC type (M:N
b.

Ti等)炭化物を形成し、著しく延性、靭性が低下する
。したがって、好ましくは、C50゜020%とするほ
うがよい。
(Ti, etc.) forms carbides, significantly reducing ductility and toughness. Therefore, it is preferable to set C50°020%.

Sis Mn: Sis Mrlは通常脱酸剤、脱硫剤
として添加されるが多量添加は延性、靭性の低下につな
がるため、添加する場合には、Si≦0.50%、Mn
S2.0%とするのが好ましい。
Sis Mn: Sis Mrl is usually added as a deoxidizing agent and desulfurizing agent, but adding a large amount leads to a decrease in ductility and toughness.
It is preferable to set the S content to 2.0%.

P、S: P、Sは不可避的に混入する不純物であり、
多量に存在すると熱間加工性、耐食性に悪影響を及ぼす
ため、P≦0.025%、S≦0゜0050%とするの
が好ましい。
P, S: P and S are impurities that are inevitably mixed,
If present in a large amount, it will adversely affect hot workability and corrosion resistance, so it is preferable that P≦0.025% and S≦0°0050%.

N:Nは、Nの多量添加がMN型(M: Nb5Ti等
)窒化物の形成によりTo、T′析出硬化の妨げになる
とともに延性、靭性を低下させるためN≦o、oso%
とするのが好ましい。
N: N is set at N≦o, oso% because addition of a large amount of N hinders To, T' precipitation hardening due to the formation of MN type (M: Nb5Ti, etc.) nitrides and reduces ductility and toughness.
It is preferable that

本発明のその好適M様にあって下記口)式によってさら
にその合金組成が制限されてもよいが、その場合、熱間
加工性がさらに一層良好なものとなり、それにより組織
的にも一層均質となるため耐SCC性等の耐食性も相乗
的に改善される。
In the preferred embodiment M of the present invention, the alloy composition may be further restricted by the following formula, but in that case, the hot workability will be even better, and the structure will be more homogeneous. Therefore, corrosion resistance such as SCC resistance is also synergistically improved.

Ni−2(門o+1.5(Cr−12))  −4(N
b+1.5Ti十0.5(M −0,5) l  ≧ 
0 ・ ・ ・ ・(11なお、本発明合金系にあって
も、所望成分として、必要によりCu、 Co、 RE
M 、Mg、 Ca、 Y等を適宜添加してもよいが、
それらを添加する場合には次のように制限される。
Ni-2 (gate o+1.5 (Cr-12)) -4 (N
b + 1.5 Ti + 0.5 (M - 0,5) l ≧
0 . .
M, Mg, Ca, Y, etc. may be added as appropriate, but
When adding them, the following restrictions apply.

Cuは当該環境にて耐食性皮膜の形成に寄与するが、多
量添加はTo、T”の析出硬化の妨げになるため、Cu
≦2.0%とするのが好ましい。
Cu contributes to the formation of a corrosion-resistant film in this environment, but adding a large amount hinders the precipitation hardening of To and T''.
It is preferable to set it as ≦2.0%.

Coは耐水素割れ性の向上に有効だが、多量添加は延性
、靭性の低下を招くため、Co≦5.0%とするのが好
ましい。
Although Co is effective in improving hydrogen cracking resistance, adding a large amount leads to a decrease in ductility and toughness, so it is preferable that Co≦5.0%.

REM 、Mg、 Ca、 Yは少なくとも1f11の
添加により熱間加工性を向上させるが、それぞれ0.1
0%、0.10%、0.10%、0.20%を越えると
逆に低融点化合物を生成し易くなり加工性が低下するた
め、それぞれ0.10%、0.10%、0.10%、0
.20%以下とするのが好ましい。
REM, Mg, Ca, and Y improve hot workability by adding at least 1f11, but each
If the content exceeds 0%, 0.10%, 0.10%, or 0.20%, low melting point compounds tend to be produced and processability decreases, so if the content exceeds 0.10%, 0.10%, or 0.20%, respectively. 10%, 0
.. It is preferably 20% or less.

その他、V、 Zr、 Ta、 Hf等はCの安定化に
寄与するとされており本発明にかかる本合金系にあって
も、合計2.0%までは添加してもよい。
In addition, V, Zr, Ta, Hf, etc. are said to contribute to the stabilization of C, and may be added up to a total of 2.0% even in the present alloy system according to the present invention.

またB、 Sn、 Zns Pb等は微量では特に影響
がないため不純物として合計0.10%までその存在が
許容される。
Further, B, Sn, Zns, Pb, etc. have no particular effect in trace amounts, so their presence as impurities is allowed up to a total of 0.10%.

次に、本発明を実施例に基づいてさらに具体的に説明す
る。
Next, the present invention will be explained in more detail based on examples.

実施例 第1表に示す化学組成を有する各合金を調製後、熱間加
工によって板材とし、さらに第2表に示す所定の固溶化
処理後、種々の時効処理を施して、0.2%耐力(室温
)にて77 kgf/+sm”以上という所定の強度を
得た。この板材から下記試験用試験片を採取し、下記の
各試験条件で各試験を実施した。
Examples After preparing each alloy having the chemical composition shown in Table 1, it was made into a plate material by hot working, and after the prescribed solution treatment shown in Table 2, it was subjected to various aging treatments to achieve 0.2% yield strength. A predetermined strength of 77 kgf/+sm" or more was obtained at (room temperature). Test pieces for the following tests were taken from this plate material, and each test was conducted under the following test conditions.

それらの結果を第2表にまとめて示す。The results are summarized in Table 2.

冬跋駐逢立 ■里景拭慧 温度  二 室温 試験片 :  4.Oo++*φX GL = 20+
m歪み速度:  1 xto−’s−’ 試験項目: 引張強度、伸び、絞り ■狙W仄駄 温度  二 0℃ 試験片 :  10 X 10 X 55mm −2,
0m+w■ノツチ付 試験項目; 衝撃値 ■U  溶ン夜    :  20%NaCQ   1
.Og/ IS−10a tm、HlS−20atm 
co。
Temperature 2. Room temperature test piece: 4. Oo++*φX GL = 20+
m Strain rate: 1xto-'s-' Test items: Tensile strength, elongation, reduction of area ■Aim W 仄temperature 20℃ Test piece: 10 x 10 x 55mm -2,
0m+w■Notched test item; Impact value■U Melting night: 20% NaCQ 1
.. Og/IS-10a tm, Hls-20atm
co.

温度  :250℃ 浸漬時間:500h 試験片 :  2txlOw ×751’ (mm)、
R0,25Uノツチ付 付加応力=1.0 σy ■水二皿並拭慧 NACE条件: 5χNaCQ−0,5χC1hCOO
H−1atm HzS、 25℃ 試験片 : 炭素泪カップリング、 2t x 10w X 751 (mm)、R0,25
0ノツチ付 付加力カニ1.0σy 浸漬時間:  1oooh 上記の■、■の腐食試験において割れまたは孔食、局部
腐食の発生しながったものを「O」、発生したもの「×
」にて示す。
Temperature: 250°C Immersion time: 500h Test piece: 2txlOw ×751' (mm),
R0, 25U notched additional stress = 1.0 σy ■ Two dishes of water wiped clean NACE conditions: 5χNaCQ-0,5χC1hCOO
H-1atm HzS, 25℃ Test piece: Carbon tear coupling, 2t x 10w x 751 (mm), R0,25
Additional force with 0 notch 1.0σy Immersion time: 1oooh In the corrosion tests of ■ and ■ above, "O" indicates that no cracking, pitting corrosion, or local corrosion occurred, and "×" indicates that cracking or pitting corrosion did not occur.
”.

(発明の効果) 以上のように、本発明によれば、耐食性即ち耐応力割れ
性、耐水素割れ性に抜群に優れた高強度の油井抗日、坑
底部材が得られる。
(Effects of the Invention) As described above, according to the present invention, it is possible to obtain a high-strength oil well and bottom hole member that is excellent in corrosion resistance, that is, stress cracking resistance and hydrogen cracking resistance.

したがって、本発明が斯界に与える利益は大きい。Therefore, the present invention is of great benefit to the industry.

Claims (4)

【特許請求の範囲】[Claims] (1)重量%で、 Cr:12〜22%、Mo:9.0〜15%、Nb:4
.0〜6.0%、Fe:5.0〜20%、Ni:50〜
60%、C:0.050%以下、Si:0.50%以下
、Mn:1.0%以下、P:0.025%以下、S:0
.0050%以下、N:0.050%以下 からなる組成を有する、サワーガス環境にさらにS単体
が混入した過酷な環境下ですぐれた耐SC性Cを示す高
耐食性析出硬化型Ni基合金。
(1) In weight%, Cr: 12-22%, Mo: 9.0-15%, Nb: 4
.. 0 to 6.0%, Fe: 5.0 to 20%, Ni: 50 to
60%, C: 0.050% or less, Si: 0.50% or less, Mn: 1.0% or less, P: 0.025% or less, S: 0
.. 0.050% or less, N: 0.050% or less, and exhibits excellent SC resistance C in a harsh environment where elemental S is mixed in a sour gas environment.
(2)重量%で、 Cr:12〜22%、Mo:9.0〜15%、Nb:4
.0〜6.0%、Fe:5.0〜20%、Ni:50〜
60%、C:0.050%以下、Si:0.50%以下
、Mn:1.0%以下、P:0.025%以下、S:0
.0050%以下、N:0.050%以下、Ti:0.
01〜1.0%からなる組成を有する、サワーガス環境
にさらにS単体が混入した過酷な環境下ですぐれた耐S
CC性を示す高耐食性析出硬化型Ni基合金。
(2) In weight%, Cr: 12-22%, Mo: 9.0-15%, Nb: 4
.. 0 to 6.0%, Fe: 5.0 to 20%, Ni: 50 to
60%, C: 0.050% or less, Si: 0.50% or less, Mn: 1.0% or less, P: 0.025% or less, S: 0
.. 0.0050% or less, N: 0.050% or less, Ti: 0.
It has a composition consisting of 01 to 1.0%, and has excellent S resistance in harsh environments where S is mixed into a sour gas environment.
A highly corrosion-resistant precipitation-hardening Ni-based alloy that exhibits CC properties.
(3)重量%で、 Cr:12〜22%、Mo:9.0〜15%、Nb:4
.0〜6.0%、Fe:5.0〜20%、Ni:50〜
60%、C:0.050%以下、Si:0.50%以下
、Mn:1.0%以下、P:0.025%以下、S:0
.0050%以下、N:0.050%以下、M:0.0
1〜2.0%からなる組成を有する、サワーガス環境に
さらにS単体が混入した過酷な環境下ですぐれた耐SC
C性を示す高耐食性析出硬化型Ni基合金。
(3) In weight%, Cr: 12-22%, Mo: 9.0-15%, Nb: 4
.. 0 to 6.0%, Fe: 5.0 to 20%, Ni: 50 to
60%, C: 0.050% or less, Si: 0.50% or less, Mn: 1.0% or less, P: 0.025% or less, S: 0
.. 0050% or less, N: 0.050% or less, M: 0.0
Has a composition of 1 to 2.0%, and has excellent SC resistance in harsh environments where single S is mixed in with sour gas environments.
A highly corrosion-resistant precipitation-hardening Ni-based alloy that exhibits C properties.
(4)重量%で、 Cr:12〜22%、Mo:9.0〜15%、Nb:4
.0〜6.0%、Fe:5.0〜20%、Ni:50〜
60%、C:0.050%以下、Si:0.50%以下
、Mn:1.0%以下、P:0.025%以下、S:0
.0050%以下、N:0.050%以下、Ti:0.
01〜1.0%、Al:0.01〜2.0% からなる組成を有する、サワーガス環境にさらにS単体
が混入した過酷な環境下ですぐれた耐SCC性を示す高
耐食性析出硬化型Ni基合金。
(4) In weight%, Cr: 12-22%, Mo: 9.0-15%, Nb: 4
.. 0 to 6.0%, Fe: 5.0 to 20%, Ni: 50 to
60%, C: 0.050% or less, Si: 0.50% or less, Mn: 1.0% or less, P: 0.025% or less, S: 0
.. 0.0050% or less, N: 0.050% or less, Ti: 0.
A highly corrosion-resistant precipitation-hardening type Ni that has a composition of 0.01 to 1.0% and Al: 0.01 to 2.0%, and exhibits excellent SCC resistance in a harsh environment where S is mixed in a sour gas environment. Base alloy.
JP28367186A 1986-11-28 1986-11-28 Highly corrosion-resistant precipitation hardening-type ni-base alloy Granted JPS63137133A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP28367186A JPS63137133A (en) 1986-11-28 1986-11-28 Highly corrosion-resistant precipitation hardening-type ni-base alloy
US07/123,878 US5000914A (en) 1986-11-28 1987-11-23 Precipitation-hardening-type ni-base alloy exhibiting improved corrosion resistance
US07/619,980 US5217684A (en) 1986-11-28 1990-11-30 Precipitation-hardening-type Ni-base alloy exhibiting improved corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28367186A JPS63137133A (en) 1986-11-28 1986-11-28 Highly corrosion-resistant precipitation hardening-type ni-base alloy

Publications (2)

Publication Number Publication Date
JPS63137133A true JPS63137133A (en) 1988-06-09
JPH0524218B2 JPH0524218B2 (en) 1993-04-07

Family

ID=17668554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28367186A Granted JPS63137133A (en) 1986-11-28 1986-11-28 Highly corrosion-resistant precipitation hardening-type ni-base alloy

Country Status (1)

Country Link
JP (1) JPS63137133A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230571A (en) * 1992-02-20 1993-09-07 Nippon Steel Corp High ni superalloy for cladding material for clad steel plate excellent in toughness at low temperature as well as in sour resistance
JP2009515053A (en) * 2005-11-07 2009-04-09 ハンチントン、アロイス、コーポレーション High strength corrosion resistant alloy for oil patch applications
JP2014070276A (en) * 2012-10-02 2014-04-21 Hitachi Ltd Large-sized cast member made of nickel based alloy, and its manufacturing method
JP2017503085A (en) * 2013-12-05 2017-01-26 フォロニ・ソチエタ・ペル・アツィオーニ Nickel-based alloys, methods and uses
CN113088761A (en) * 2021-02-21 2021-07-09 江苏汉青特种合金有限公司 Ultrahigh-strength corrosion-resistant alloy and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57203740A (en) * 1981-06-11 1982-12-14 Sumitomo Metal Ind Ltd Precipitation hardening alloy of high stress corrosion cracking resistance for high strength oil well pipe
JPS57203741A (en) * 1981-04-17 1982-12-14 Huntington Alloys Anticorrosive high strength nickel base alloy
JPS57210938A (en) * 1981-06-17 1982-12-24 Sumitomo Metal Ind Ltd Precipitation hardening type alloy for high strength oil well pipe with superior stress corrosion cracking resistance
JPS63145740A (en) * 1986-05-27 1988-06-17 シーアールエス ホールディングス,インコーポレイテッド Corrosion resistant ageing cured nickel base alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57203741A (en) * 1981-04-17 1982-12-14 Huntington Alloys Anticorrosive high strength nickel base alloy
JPS57203740A (en) * 1981-06-11 1982-12-14 Sumitomo Metal Ind Ltd Precipitation hardening alloy of high stress corrosion cracking resistance for high strength oil well pipe
JPS57210938A (en) * 1981-06-17 1982-12-24 Sumitomo Metal Ind Ltd Precipitation hardening type alloy for high strength oil well pipe with superior stress corrosion cracking resistance
JPS63145740A (en) * 1986-05-27 1988-06-17 シーアールエス ホールディングス,インコーポレイテッド Corrosion resistant ageing cured nickel base alloy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230571A (en) * 1992-02-20 1993-09-07 Nippon Steel Corp High ni superalloy for cladding material for clad steel plate excellent in toughness at low temperature as well as in sour resistance
JP2009515053A (en) * 2005-11-07 2009-04-09 ハンチントン、アロイス、コーポレーション High strength corrosion resistant alloy for oil patch applications
JP2014070276A (en) * 2012-10-02 2014-04-21 Hitachi Ltd Large-sized cast member made of nickel based alloy, and its manufacturing method
JP2017503085A (en) * 2013-12-05 2017-01-26 フォロニ・ソチエタ・ペル・アツィオーニ Nickel-based alloys, methods and uses
CN113088761A (en) * 2021-02-21 2021-07-09 江苏汉青特种合金有限公司 Ultrahigh-strength corrosion-resistant alloy and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0524218B2 (en) 1993-04-07

Similar Documents

Publication Publication Date Title
US7416618B2 (en) High strength corrosion resistant alloy for oil patch applications
EP0132055B1 (en) Precipitation-hardening nickel-base alloy and method of producing same
EP0545753A1 (en) Duplex stainless steel having improved strength and corrosion resistance
US20110011500A1 (en) Ultra high strength alloy for severe oil and gas environments and method of preparation
EP0262673A2 (en) Corrosion resistant high strength nickel-base alloy
US5000914A (en) Precipitation-hardening-type ni-base alloy exhibiting improved corrosion resistance
JPS63137133A (en) Highly corrosion-resistant precipitation hardening-type ni-base alloy
GB2133419A (en) Nickel-based alloys
JPS62158844A (en) Highly corrosion resistant ni-base alloy
JPS6261107B2 (en)
JPS61113749A (en) High corrosion resistance alloy for oil well
JPH0639650B2 (en) High corrosion resistance Ni-based alloy with excellent toughness
JPS63140055A (en) Highly corrosion resistant precipitation hardening-type ni-base alloy
JP3470418B2 (en) High strength austenitic alloy with excellent seawater corrosion resistance and hydrogen sulfide corrosion resistance
JPS62158845A (en) High-strength ni-base alloy excellent in corrosion resistance
JPH0674473B2 (en) High corrosion resistance Ni-based alloy
JPS58199850A (en) Martensitic stainless steel for acidic oil well
JPS63140056A (en) Highly corrosion resistant precipitation hardening-type ni-base alloy
JPS58197260A (en) 2-phase type stainless steel for acidic oil well
JPS63140054A (en) Highly corrosion resistant precipitation hardening-type ni-base alloy
JPH0639649B2 (en) High corrosion resistance Ni-based alloy with excellent toughness
JPS581043A (en) High strength alloy having superior stress corrosion cracking resistance for oil well pipe
JPH0674474B2 (en) High-strength Ni-based alloy with excellent corrosion resistance
JPS59211557A (en) Heat-resistant steel
JPS61223155A (en) Highly corrosion resistant ni-base alloy and its manufacture