JPS58199850A - Martensitic stainless steel for acidic oil well - Google Patents

Martensitic stainless steel for acidic oil well

Info

Publication number
JPS58199850A
JPS58199850A JP8202582A JP8202582A JPS58199850A JP S58199850 A JPS58199850 A JP S58199850A JP 8202582 A JP8202582 A JP 8202582A JP 8202582 A JP8202582 A JP 8202582A JP S58199850 A JPS58199850 A JP S58199850A
Authority
JP
Japan
Prior art keywords
stainless steel
martensitic stainless
resistance
acidic oil
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8202582A
Other languages
Japanese (ja)
Inventor
Kazuo Fujiwara
藤原 和雄
Haruo Tomari
泊里 治夫
Osamu Aritomi
有富 治
Nobuhiro Sato
佐藤 伸弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP8202582A priority Critical patent/JPS58199850A/en
Publication of JPS58199850A publication Critical patent/JPS58199850A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled stainless steel with superior yield strength, tensile strength, stress corrosion cracking resistance and crevice corrosion resistance as a material for an acidic oil well, by adding prescribed percentages of C, Si, Mn, Cr, Ni, Mo and Cu. CONSTITUTION:This martensitic stainless steel for an acidic oil well consists of, by weight, 0.16-0.25% C, <1.0% Si, <1.0% Mn, 12.5-13.5% Cr, 0.3-3% Ni, 0.5-3.5% Mo, 0.5-2% Cu and the balance Fe with inevitable impurities. Among said components, C provides strength, Si and Mn include Si and Mn used as deoxidizers in steel manufacture, and Cr provides resistance to corrosion due to CO2. Ni stabilizes the austenite structure, and Mo and Cu enhance the cracking resistance and crevice corrosion resistance in environment contg. Cl, CO2 and H2S.

Description

【発明の詳細な説明】 本発明は酸性油井用マルテンサイト系ステンレス鋼に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to martensitic stainless steel for acid oil wells.

最近になって、石油資源の枯渇化に伴ない従未見捻られ
ていた高深度油井、または、酸性油井が見直されるよう
になってきた。そして、これらの油井は大量の塩化物や
CO2、及び、H2Sを含む場合が多く、腐蝕性が着し
く激しいので油井管用材料として従来の炭素鋼や低合金
鋼では使用に耐えず、耐蝕性の優れた高合金材料が望ま
れている。
Recently, with the depletion of petroleum resources, deep oil wells or acid oil wells, which had previously been neglected, have been reconsidered. These oil wells often contain large amounts of chloride, CO2, and H2S, and are highly corrosive. Conventional carbon steel and low-alloy steel cannot withstand use as materials for oil country tubular goods; Superior high alloy materials are desired.

これらの高合金材料としては、13Cr系のマルテンサ
イト・ステンレス鋼、オーステナイトとフェライトの2
相ステンレス鋼、オーステナイト系の烏ニッケル合金、
ニッケル基合金、コバルト基合金、チタン合金等がある
が、そのうちで、5US410乃至SUS 420の1
3Cr系のマルテンサイト・ステンレス鋼はCO2に対
する耐蝕性に優れていることから現状最も広く使用され
ており、かつ、安価である。
These high alloy materials include 13Cr-based martensitic stainless steel, austenite and ferrite.
stainless steel, austenitic nickel alloy,
There are nickel-based alloys, cobalt-based alloys, titanium alloys, etc. Among them, 1 of 5US410 to SUS420
3Cr-based martensitic stainless steel is currently the most widely used and inexpensive because it has excellent corrosion resistance against CO2.

しかし、このマルテンサイト系ステンレス鋼の最大の問
題点は、H2Sが共存する場合に硫化物応力腐蝕割れ(
SSCC)を生じることと、塩化物と002の共存下で
孔蝕や隙間腐蝕を生じることであって、これらの腐蝕に
強いマルテンサイト系ステンレス鋼が特に望まれている
However, the biggest problem with this martensitic stainless steel is sulfide stress corrosion cracking (
SSCC) and pitting corrosion and crevice corrosion occur in the coexistence of chlorides and 002, and martensitic stainless steels that are resistant to these corrosions are particularly desired.

しかして、上記したマルテンサイト系ステンレス鋼を酸
性油井の油井管用材料として使用する際に要求される特
性の中で最も重要なものとしては次の3つの条件がある
Therefore, the following three conditions are the most important among the characteristics required when the martensitic stainless steel described above is used as a material for oil country tubular goods in acidic oil wells.

(1)−Cl−Co2−H2S環境下において応力腐蝕
割れを起さないこと。
(1) Stress corrosion cracking should not occur in a -Cl-Co2-H2S environment.

(2)CI”−Co2−1(2S環境下における隙間腐
蝕や孔蝕などの局部腐蝕に強いこと。
(2) CI''-Co2-1 (resistant to localized corrosion such as crevice corrosion and pitting corrosion in a 2S environment).

(3)高い機械的強度を有すること。(3) Have high mechanical strength.

この3条件のうちで、(3)の機械的性質については熱
処理によって2調整することができるので、この調整の
ための熱処理条件下においての、(1)、及び、(2)
の性能が確保することができるがどうがが重要なことで
ある。
Among these three conditions, the mechanical properties (3) can be adjusted by heat treatment, so (1) and (2) under the heat treatment conditions for this adjustment.
What is important is how the performance can be ensured.

本発明者は従来にiけるマルテンサイト系ステンレス鋼
の硫化物応力腐蝕割れや塩化物とCO2共存下の孔蝕、
隙間腐蝕の問題、及び、酸性油井用の管材として特に要
求される上記した3つの条件について種々実験、研究を
行なった。
The present inventor has previously discovered that martensitic stainless steel suffers from sulfide stress corrosion cracking and pitting corrosion in the coexistence of chlorides and CO2.
Various experiments and research were conducted regarding the problem of crevice corrosion and the above three conditions that are particularly required for pipe materials for acidic oil wells.

即ち、0.2C13Cr鋼を基に種々の合金元素ヲ変工
たマルテンサイト系鋼について、982℃からの焼入れ
、677℃での焼戻しの熱処理を行なった後、常温の5
%Cl−0,1atmCO2−0,05%H2S水溶液
中に浸漬した場合の割れ状況を下に示す各材料の耐力、
及び、硬度との関係を調査した結果を第1図に示す。
That is, martensitic steel, which is based on 0.2C13Cr steel and modified with various alloying elements, is heat treated at 982°C and tempered at 677°C.
%Cl-0,1atmCO2-0,05%H2S The yield strength of each material is shown below when immersed in an aqueous solution of H2S.
FIG. 1 shows the results of investigating the relationship between hardness and hardness.

使用した材料は次の通りである。The materials used are as follows.

No、1: 0,2C13Cr、 No、2: 0.1
C13Cr、 No、3: 0.3C−13Cr、 N
o、4: 0.06C−13Cr、No、5: 0.2
C13Cr  IMo、 No、6: 0.2Cl3C
r  3No、No、7:0.2C−13Cr  0.
IN、 No、8: 0.2C−13Cr−0,2N、
No、9: 0.2C13Cr  2Cu、 No1O
: 0,2C−13Cr −0、INi%No、11:
 0.2C−13Cr−0,1S、 No、12: 0
.2C13Cr−INo−ICu%No、13: 0,
2C−13Cr−3No −ICu −2,5Ni。
No, 1: 0.2C13Cr, No, 2: 0.1
C13Cr, No, 3: 0.3C-13Cr, N
o, 4: 0.06C-13Cr, No, 5: 0.2
C13Cr IMo, No, 6: 0.2Cl3C
r 3No, No, 7:0.2C-13Cr 0.
IN, No. 8: 0.2C-13Cr-0,2N,
No, 9: 0.2C13Cr 2Cu, No1O
: 0,2C-13Cr-0, INi%No, 11:
0.2C-13Cr-0,1S, No, 12: 0
.. 2C13Cr-INo-ICu%No, 13: 0,
2C-13Cr-3No-ICu-2,5Ni.

また、この第1図の0内の数字は同時に浸漬した隙間付
平板試験片の重量減少量を示し、さらに、この溶液中で
の全面腐蝕速度は極めて小さいのでこれらの数字は隙間
腐蝕や孔蝕などの局部−蝕に基づくものである。なお、
第1図において、○は耐硫化物応力腐蝕割れに優れるも
のを、また、・は耐硫化物応力腐蝕割れに劣るものを示
し、0内の数値は隙間腐蝕量をμ@/yearで示した
ものである。
In addition, the numbers within 0 in Figure 1 indicate the amount of weight loss of the flat plate specimen with gaps that was immersed at the same time, and since the overall corrosion rate in this solution is extremely small, these numbers do not reflect the effects of crevice corrosion or pitting corrosion. It is based on local eclipse such as. In addition,
In Figure 1, ○ indicates excellent resistance to sulfide stress corrosion cracking, . indicates poor resistance to sulfide stress corrosion cracking, and numbers within 0 indicate the amount of crevice corrosion in μ@/year. It is something.

この第1図から材料の硬度、即ち、強度が上ると硫化物
応力腐蝕割れ感受性が高くなることは明らかであるが、
CuやMoを含有するものは強度が高くなっても硫化物
応力腐蝕割れ感受性の低いことも明らかであり、さらに
、CuとMoの含有は隙間腐蝕の軽減に有効であり、こ
のCuとMoの共存が特に顕著な効果を示していること
がわかったのである。
It is clear from Fig. 1 that as the hardness, or strength, of the material increases, the susceptibility to sulfide stress corrosion cracking increases.
It is clear that materials containing Cu and Mo have a low susceptibility to sulfide stress corrosion cracking even if their strength increases.Furthermore, the inclusion of Cu and Mo is effective in reducing crevice corrosion; It was found that coexistence had a particularly remarkable effect.

また、T i、 N’b、 Vの効果は第1図には示さ
れてはいないが、本発明者の実験の結果、これらの元素
の炭窒化物が腐蝕により発生した水素のトラップサイト
として作用するため硫化物応力腐蝕割れの防止に有効な
ことがわかった。
Although the effects of Ti, N'b, and V are not shown in Figure 1, the inventor's experiments have shown that carbonitrides of these elements act as trap sites for hydrogen generated by corrosion. It was found to be effective in preventing sulfide stress corrosion cracking.

本発明は上記に説明したように、本発明者の新たな知見
に基いてなされたもので、酸性油井用の材料として極め
て優れている酸性油井用マルテンサイト系ステンレス鋼
を提供するものである。
As explained above, the present invention was made based on the new findings of the present inventor, and provides a martensitic stainless steel for acidic oil wells that is extremely excellent as a material for acidic oil wells.

本発明に係る酸性油井用マルテンサイト系ステンレス鋼
は、(1) CO,16〜0.25%、S i < 1
.0%、Mn<1.0%、Cr 12.5−13.5%
、Ni 003−3%、Mo015−3.5%、Cu0
.5−2%を含み、残部Fe及び不可避不純物からなる
ことを特徴とする酸性油井用マルテンサイト系ステンレ
ス鋼を第1の発明とし、(2) CO,16〜0.25
%、Si<1.0%、Mn<1.0%、Cr 12.5
−13.5%、Ni 003−3%、Mo O,5−3
,5%、Cu0.5−2%を含み、さらに、Ti、Nb
、Vの内から選んだ1種、または、2種以上を合計で0
.1〜0.5%含有し、残部Fe及び不可避不純物から
なることを特徴とする酸性油井用マルテンサイト系ステ
ンレス鋼を第2の発明とする2つの発明よりなるもので
ある。
The martensitic stainless steel for acidic oil wells according to the present invention has (1) CO, 16 to 0.25%, S i < 1
.. 0%, Mn<1.0%, Cr 12.5-13.5%
, Ni003-3%, Mo015-3.5%, Cu0
.. The first invention is a martensitic stainless steel for acidic oil wells, characterized in that it contains 5-2% of CO, and the balance consists of Fe and unavoidable impurities, (2) CO, 16-0.25
%, Si<1.0%, Mn<1.0%, Cr 12.5
-13.5%, Ni003-3%, MoO,5-3
, 5%, Cu0.5-2%, and further contains Ti, Nb
, one type selected from V, or two or more types in total 0
.. The second invention is a martensitic stainless steel for acidic oil wells, which contains 1 to 0.5% of Fe and the remainder consists of Fe and unavoidable impurities.

本発明に係る酸性油井用マルテンサイト系ステンレス鋼
について詳細に説明する。
The martensitic stainless steel for acidic oil wells according to the present invention will be described in detail.

先づ、本発明に係る酸性油井用マルテンサイト系ステン
レス鋼の含有成分、及び、成分割合について説明する。
First, the components and component ratios of the martensitic stainless steel for acid oil wells according to the present invention will be explained.

Cは強度を付与する元素であり、特に高深度油井用の管
材料としての必要な強度を得るには、含有量は0.16
%未満では全く問題とならないものであり、また、0.
25%を越えて含有されると耐硫化物応力腐蝕割れが著
しく劣化する。よって、C含有量は0.16〜0.25
%とする。
C is an element that imparts strength, and in order to obtain the strength necessary for pipe material for deep oil wells, the content should be 0.16
%, there is no problem at all, and 0.
If the content exceeds 25%, the resistance to sulfide stress corrosion cracking will deteriorate significantly. Therefore, the C content is 0.16 to 0.25
%.

Si、Mnは製鋼上脱酸剤として使用したものが含有さ
れるものであり、1%を越える含有は加工性や靭性な損
なうようになる。よって、Si、Mnの含有量は1%以
下とする。
Si and Mn are those used as deoxidizing agents in steel manufacturing, and if the content exceeds 1%, workability and toughness will be impaired. Therefore, the content of Si and Mn is set to 1% or less.

Crはステンレス鋼としてCO2に対する耐蝕性を付与
する元素であり、含′有量が12.5%未満では充分な
CO2耐蝕性を付与できず、また、含有量が13.5%
を越えるとこの効果は飽和し、が□ つ、マルテンサイト1維を維持して充分な強度を得るた
めにはNi含有量との関係で13.5%を越えてはなら
ない。よって、Cr含有量は12.5〜13.5%とす
る、なお、Crはオーステナイト組織を安定にし、さら
に、Moの含有による強度−上昇を柔らげる効果をも有
する。
Cr is an element that imparts corrosion resistance to CO2 in stainless steel, and if the content is less than 12.5%, sufficient CO2 corrosion resistance cannot be imparted, and if the content is less than 13.5%.
However, in order to maintain one martensite fiber and obtain sufficient strength, the Ni content must not exceed 13.5%. Therefore, the Cr content is set to 12.5 to 13.5%. Cr stabilizes the austenite structure and also has the effect of softening the increase in strength due to Mo content.

NiはMo含有量が増加するとフェライト生成傾向が増
し強度が低下するので少量含有させてオーステナイ)M
織を安定にする元素であるが、含有量が0.3%未満で
はこの効果はなく、また、多量に含有させても効果は飽
和するばかりか、高価であるので3%を越えて含有させ
る必要はない。よって、Ni含有量は0.3〜3%とす
る。
When the Mo content increases, the tendency of Ni to form ferrite increases and the strength decreases.
It is an element that stabilizes weaving, but if the content is less than 0.3%, it will not have this effect, and even if it is contained in a large amount, the effect will not only be saturated, but it is also expensive, so it should be contained in amounts exceeding 3%. There's no need. Therefore, the Ni content is set to 0.3 to 3%.

MoはC1−CO2−H2S環境下における耐割れ性、
及び、耐隙間腐蝕性を向上させる元素であり、含有量が
0.5%未満ではこの効果は少なく、また、3.5%を
越えて含有させると上記効果は飽和してしまい、さらに
、マルテンサイト組織を維持するのが極めて困難となる
。よって、Mo含有量は0.5〜3.5%とする。
Mo has cracking resistance in C1-CO2-H2S environment,
It is an element that improves crevice corrosion resistance, and if the content is less than 0.5%, this effect will be small, and if the content exceeds 3.5%, the above effect will be saturated. Maintaining site organization becomes extremely difficult. Therefore, the Mo content is set to 0.5 to 3.5%.

C,uはc +−c o 2’+ H2S環境下での耐
割れ性、及び、耐隙間腐蝕性の向上に効果のある元素で
あり、Moとの共存において特に顕著な効果を発揮する
が、含有量が0.5%未満ではこの効果は充分でなく、
また、2%を越えて含有されると効果が飽和し、がっ、
熱間加工性を限外する。よって、Cu含有量は0.5〜
2.0%とする。
C and u are elements that are effective in improving cracking resistance and crevice corrosion resistance in a c + -c o 2'+ H2S environment, and exhibit a particularly remarkable effect when coexisting with Mo. , this effect is not sufficient if the content is less than 0.5%,
In addition, if the content exceeds 2%, the effect will be saturated, and
Limits hot workability. Therefore, the Cu content is 0.5~
It shall be 2.0%.

Ti、Nb、■は何れも強力な炭化物生成元素であり、
これらの微細な析出物は腐蝕によって発生した水素のト
ラップサイトとなり、耐硫化物応力腐蝕割れ性の向上に
有効であり、強度の上昇にも効果があるが、含有量が0
.1%木満ではこの効果は期待できず、また、0.5%
を越えて含有させると加工性が劣化する。よって、Ti
、Nb、Vの内から選んだ1種、または、2種以上の合
計で0.1〜0.5%とする。
Ti, Nb, ■ are all strong carbide-forming elements,
These fine precipitates act as trap sites for hydrogen generated by corrosion, and are effective in improving resistance to sulfide stress corrosion cracking and increasing strength.
.. This effect cannot be expected with 1% Kimitsu, and 0.5%
If it is contained in excess of this amount, processability will deteriorate. Therefore, Ti
, Nb, and V, or the total amount of two or more of them is 0.1 to 0.5%.

次に本発明に係る酸性油井用マルテンサイト系ステンレ
ス鋼の実施例を比較例とともに説明する。
Next, examples of martensitic stainless steel for acid oil wells according to the present invention will be described together with comparative examples.

実施例 第1表に示す含有成分、成分割合となるように、通常の
溶製法により各種鋼を溶製し、後鋳造してから加工して
試験片を作成した。
Examples Various types of steel were melted using a normal melting method so as to have the components and ratios shown in Table 1, and were then cast and processed to prepare test pieces.

第2表に試験結束を示す。Table 2 shows the test ties.

引張特性は982℃からの焼入れ、677℃での焼戻し
の熱処理を施した試料について測定したものであり、ま
た、腐蝕試験は常温の5%C1−−0,1atIICO
2−0,05H2S水溶液中に2週間浸漬することによ
り行なった。この場合、応力腐蝕割れ試験にはU曲げ試
験片を、また、隙間腐蝕試験には平板試験片にテフロン
ワッシャーにて隙間を付与したものを用いた。
The tensile properties were measured on samples that had been heat-treated by quenching from 982°C and tempering at 677°C, and the corrosion test was performed using 5% C1--0,1atIICO at room temperature.
The test was carried out by immersion in a 2-0,05H2S aqueous solution for two weeks. In this case, a U-bend test piece was used for the stress corrosion cracking test, and a flat plate test piece with a gap provided with a Teflon washer was used for the gap corrosion test.

この第2表から明らかなように、本発明に係る酸性油井
用マルテンサイト系ステンレス鋼は比較鋼に比して、耐
ツバ抗張力は格段に優れており、さらに、耐応力腐蝕割
れ、及び、耐隙間腐蝕も極めて優秀であることを示して
いる。
As is clear from Table 2, the martensitic stainless steel for acidic oil wells according to the present invention has significantly superior flanges tensile strength and stress corrosion cracking and stress resistance compared to comparative steels. It also shows that crevice corrosion is extremely good.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は耐力と硬度との関係を示し、かつ、耐硫化物応
力腐蝕割れを示したグラフである。
FIG. 1 is a graph showing the relationship between yield strength and hardness, and also showing resistance to sulfide stress corrosion cracking.

Claims (2)

【特許請求の範囲】[Claims] (1) CO,16−0,25%、Si<1.0%、M
n<1.0%、Cr 12.5−13.5%、Ni O
,3−3%、Mo 0.5−3.5%、Cu0,5〜2
%を含み、残部Fe及び不可避不純物からなることを特
徴とする酸性油井用マルテンサイト系ステンレス鋼。
(1) CO, 16-0, 25%, Si<1.0%, M
n<1.0%, Cr 12.5-13.5%, NiO
,3-3%, Mo 0.5-3.5%, Cu0.5-2
%, with the balance consisting of Fe and unavoidable impurities.
(2) CO,16−0,25%、Si<1.0%、M
n<1.0%、Cr  12.5−13.5 %、 N
i  O,3−3%、 Mo  O,5−3,5%、C
u O,5−2%を含み、さらに、Ti、Nb、■の内
から選んだ1種、または、2種以上を合計で0.1〜0
.5%含有し、残部Fe及び不可避不純物からなること
を特徴とする酸性油井用マルテンサイト系ステンレス鋼
(2) CO, 16-0, 25%, Si<1.0%, M
n<1.0%, Cr 12.5-13.5%, N
i O, 3-3%, Mo O, 5-3, 5%, C
u Contains O, 5-2%, and further contains one or more selected from Ti, Nb, ■, with a total of 0.1-0
.. A martensitic stainless steel for use in acidic oil wells, characterized in that it contains 5% Fe and the remainder consists of Fe and unavoidable impurities.
JP8202582A 1982-05-15 1982-05-15 Martensitic stainless steel for acidic oil well Pending JPS58199850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8202582A JPS58199850A (en) 1982-05-15 1982-05-15 Martensitic stainless steel for acidic oil well

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8202582A JPS58199850A (en) 1982-05-15 1982-05-15 Martensitic stainless steel for acidic oil well

Publications (1)

Publication Number Publication Date
JPS58199850A true JPS58199850A (en) 1983-11-21

Family

ID=13762982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8202582A Pending JPS58199850A (en) 1982-05-15 1982-05-15 Martensitic stainless steel for acidic oil well

Country Status (1)

Country Link
JP (1) JPS58199850A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6468550A (en) * 1987-09-07 1989-03-14 Tomotake Nakahira Double solenoid needle selector in knitting machine
US5167731A (en) * 1990-07-30 1992-12-01 Nkk Corporation Martensitic stainless steel for an oil well
US5496421A (en) * 1993-10-22 1996-03-05 Nkk Corporation High-strength martensitic stainless steel and method for making the same
US9677160B2 (en) 2011-03-03 2017-06-13 Nkk Tubes Low C-high Cr 862 MPa-class steel tube having excellent corrosion resistance and a manufacturing method thereof
JP2018524473A (en) * 2015-07-16 2018-08-30 サンドビック インテレクチュアル プロパティー アクティエボラーグ New martensitic stainless steel
CN111424221A (en) * 2020-03-27 2020-07-17 嘉兴吉森科技有限公司 Stainless steel plate for lamination and manufacturing method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6468550A (en) * 1987-09-07 1989-03-14 Tomotake Nakahira Double solenoid needle selector in knitting machine
US5167731A (en) * 1990-07-30 1992-12-01 Nkk Corporation Martensitic stainless steel for an oil well
US5496421A (en) * 1993-10-22 1996-03-05 Nkk Corporation High-strength martensitic stainless steel and method for making the same
US9677160B2 (en) 2011-03-03 2017-06-13 Nkk Tubes Low C-high Cr 862 MPa-class steel tube having excellent corrosion resistance and a manufacturing method thereof
JP2018524473A (en) * 2015-07-16 2018-08-30 サンドビック インテレクチュアル プロパティー アクティエボラーグ New martensitic stainless steel
JP2018527458A (en) * 2015-07-16 2018-09-20 サンドビック インテレクチュアル プロパティー アクティエボラーグ Drill component
US10941469B2 (en) 2015-07-16 2021-03-09 Ab Sandvik Materials Technology Martensitic stainless steel
US11047028B2 (en) 2015-07-16 2021-06-29 Sandvik Intellectual Property Ab Drill component
CN111424221A (en) * 2020-03-27 2020-07-17 嘉兴吉森科技有限公司 Stainless steel plate for lamination and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP4428237B2 (en) High strength martensitic stainless steel with excellent carbon dioxide corrosion resistance and sulfide stress corrosion cracking resistance
CA2165817C (en) Ferritic-austenitic stainless steel and use of the steel
KR20020010061A (en) Flux cored welding wire having properties of anti-stress corrosion, anti-pitting and good weldibilty for dual phase stainless steel
GB1564244A (en) Austenitic stainless steel
JPH0488152A (en) Martensitic stainless steel for oil well excellent in corrosion resistance
JP2003003243A (en) High-strength martensitic stainless steel with excellent resistance to carbon dioxide gas corrosion and sulfide stress corrosion cracking
EP0708184A1 (en) High-strength austenitic heat-resisting steel with excellent weldability and good high-temperature corrosion resistance
JPS58199850A (en) Martensitic stainless steel for acidic oil well
JP3156170B2 (en) Martensitic stainless steel for line pipe
JPS6261107B2 (en)
JPS61113749A (en) High corrosion resistance alloy for oil well
JP3201081B2 (en) Stainless steel for oil well and production method thereof
GB2123031A (en) High-nickel austenitic alloys for sour well service
JPH0448050A (en) Spring steel strip
JP2756545B2 (en) Austenitic stainless steel with excellent corrosion resistance in hot water
JPS5980755A (en) Chrome-molybdenum steel having superior temper embrittlement resistance at weld heat-affected zone
GB2123437A (en) Dual phase stainless steel suitable for use in sour wells
JPS6362848A (en) Low-alloy heat-resistant steel having high strength
JP2002241902A (en) High strength martensitic stainless steel and production method therefor
JP3422880B2 (en) High corrosion resistance martensitic stainless steel with low weld hardness
JP3422877B2 (en) High corrosion resistance martensitic stainless steel with low weld hardness
JPH0250937A (en) Free cutting stainless steel for header
JPH02115346A (en) Ferritic stainless steel having excellent corrosion resistance in high concentrated halide
JPS58199851A (en) High nickel alloy for acidic oil well
JPH09256115A (en) Martensitic stainless steel, excellent in sour resistance and having superior weldability, and its production