JP4428237B2 - High strength martensitic stainless steel with excellent carbon dioxide corrosion resistance and sulfide stress corrosion cracking resistance - Google Patents

High strength martensitic stainless steel with excellent carbon dioxide corrosion resistance and sulfide stress corrosion cracking resistance Download PDF

Info

Publication number
JP4428237B2
JP4428237B2 JP2004562054A JP2004562054A JP4428237B2 JP 4428237 B2 JP4428237 B2 JP 4428237B2 JP 2004562054 A JP2004562054 A JP 2004562054A JP 2004562054 A JP2004562054 A JP 2004562054A JP 4428237 B2 JP4428237 B2 JP 4428237B2
Authority
JP
Japan
Prior art keywords
phase
tempering
content
steel
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004562054A
Other languages
Japanese (ja)
Other versions
JPWO2004057050A1 (en
Inventor
秀樹 高部
昌克 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Publication of JPWO2004057050A1 publication Critical patent/JPWO2004057050A1/en
Application granted granted Critical
Publication of JP4428237B2 publication Critical patent/JP4428237B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Description

本発明は、炭酸ガス、硫化水素、塩素イオン等の腐食性物質を含む厳しい腐食環境において使用するのに適した鋼材に関する。さらに詳しくは、石油や天然ガスの生産設備用、脱炭酸ガス除去設備用、地熱発電設備用等のシームレス鋼管、電縫鋼管、レーザー溶接鋼管、スパイラル溶接管等のシーム溶接鋼管等用の鋼材、または、炭酸ガス含有液用のタンク等を構成する鋼材、特に石油や天然ガス井で用いられる油井管用の鋼材に関する。   The present invention relates to a steel material suitable for use in a severe corrosive environment containing corrosive substances such as carbon dioxide, hydrogen sulfide, and chlorine ions. More specifically, steel materials for seam welded steel pipes such as seamless steel pipes for oil and natural gas production equipment, decarbonation gas removal equipment, geothermal power generation equipment, etc., ERW steel pipes, laser welded steel pipes, spiral welded pipes, Alternatively, the present invention relates to a steel material constituting a tank or the like for a carbon dioxide-containing liquid, particularly a steel material for an oil well pipe used in oil or natural gas wells.

近い将来に予想される石油資源の枯渇化の観点から、近年、過酷な環境下の油井、即ち、深層の油井、サワーガス田等の開発が盛んに行われるようになってきている。従って、このような用途に使用される油井用鋼管には、高い強度を有するとともに、耐食性および耐硫化物応力腐食割れ性に優れることが求められている。   In recent years, oil wells under harsh environments, that is, deep wells, sour gas fields, and the like have been actively developed from the viewpoint of depleting oil resources expected in the near future. Therefore, oil well steel pipes used for such applications are required to have high strength and excellent corrosion resistance and resistance to sulfide stress corrosion cracking.

従来、油井管等の鋼材として、炭素鋼や低合金鋼を使用するのが一般的であったが、井戸の環境が過酷になるに従って、合金量を増加させた鋼が用いられるようになってきた。例えば、炭酸ガスを多量に含む油井用鋼材には、SUS420に代表されるような13Cr系マルテンサイトステンレス鋼が用いられるようになっている。   Conventionally, carbon steel and low alloy steel were generally used as steel materials for oil well pipes, etc., but steels with increased alloy content have been used as the environment of the well becomes severe. It was. For example, 13Cr martensitic stainless steel represented by SUS420 is used for oil well steel materials containing a large amount of carbon dioxide gas.

しかし、上記のSUS420鋼は、炭酸ガスに対する耐食性には優れるものの、硫化水素に対する耐食性が芳しくなく、炭酸ガスと硫化水素を同時に含むような環境下では硫化物応力腐食割れ(SSCC)が発生し易い。そこで、この鋼に替わる種々の鋼材が提案されている。   However, although the above SUS420 steel has excellent corrosion resistance to carbon dioxide gas, it has poor corrosion resistance to hydrogen sulfide, and sulfide stress corrosion cracking (SSCC) easily occurs in an environment containing carbon dioxide gas and hydrogen sulfide at the same time. . Therefore, various steel materials that replace this steel have been proposed.

特許第2861024号公報、特開平5−287455号公報および特開平7−62499号公報には、上記のSUS420の炭素含有量を低減することによって耐食性を向上させた鋼が開示されている。しかし、これらの公報に記載されるような炭素含有量が低い鋼は、深井戸に使用するのに必要な強度、即ち、耐力860MPa以上を得ることができない場合があった。   Japanese Patent No. 2861024, Japanese Patent Application Laid-Open No. 5-287455, and Japanese Patent Application Laid-Open No. 7-62499 disclose steels whose corrosion resistance is improved by reducing the carbon content of the SUS420. However, steels having a low carbon content as described in these publications may not have the strength required for use in deep wells, that is, the yield strength of 860 MPa or more.

特開2000−192196号公報には、高強度、且つ、良好な耐硫化物応力割れ性を有する鋼としてCo:0.5〜7%、Mo:3.1〜7%を含むマルテンサイト単相組織の鋼が開示されている。同公報に記載される発明は、Coを上記の範囲で含有させることによって、冷却時の残留オーステナイトの生成を抑制して、組織をマルテンサイト単相とするものである。しかし、Coは高価な元素であるため、なるべく使用しないことが望ましい。   Japanese Patent Application Laid-Open No. 2000-192196 discloses a martensite single phase containing Co: 0.5 to 7% and Mo: 3.1 to 7% as steel having high strength and good resistance to sulfide stress cracking. Tissue steel is disclosed. In the invention described in the publication, by containing Co in the above range, the formation of retained austenite during cooling is suppressed, and the structure becomes a martensite single phase. However, since Co is an expensive element, it is desirable not to use it as much as possible.

本発明は、上記の実状に鑑みてなされたものであり、深井戸用の油井管への使用に充分な強度、即ち、耐力860MPa以上の高強度を有し、且つ、炭酸ガス、硫化水素、塩素イオンまたはこれらの2種以上を含む環境下でも使用できるような優れた耐炭酸ガス腐食性および耐硫化物応力腐食割れ性を有するマルテンサイトステンレス鋼を提供することを目的とする。   The present invention has been made in view of the above situation, has sufficient strength for use in oil well pipes for deep wells, that is, has a high strength of 860 MPa or more, and carbon dioxide, hydrogen sulfide, It is an object of the present invention to provide martensitic stainless steel having excellent carbon dioxide gas corrosion resistance and sulfide stress corrosion cracking resistance that can be used even in an environment containing chlorine ions or two or more of these.

このため、本発明は、下記(a)および(b)に記載の高強度油井管用マルテンサイトステンレス鋼を要旨としている。なお、以下の説明において、成分含有量に関する%は「質量%」を意味する。   For this reason, the gist of the present invention is the high-strength martensitic stainless steel for oil country tubular goods described in (a) and (b) below. In the following description, “%” regarding the component content means “mass%”.

(a)質量%で、C:0.005〜0.04%、Si:0.5%以下、Mn:0.1〜3.0%、P:0.04%以下、S:0.01%以下、Cr:10〜15%、Ni:5.85〜8%、Mo:2.8〜5.0%、Al:0.001〜0.10%、N:0.07%以下およびTi:0.005〜0.25%を含有し、残部がFeおよび不純物からなり、且つ、下記の(1)式を満足し、金属組織が主として焼戻しマルテンサイト、焼戻し時に析出した炭化物および焼戻し時に微細析出したラーベス相やσ相等の金属間化合物からなることを特徴とする耐炭酸ガス腐食性および耐硫化物応力腐食割れ性に優れた860MPa以上の0.2%耐力を持った高強度マルテンサイトステンレス鋼である。ただし、(1)式中の各元素記号は、それぞれの元素の含有量(質量%)を示す。
Mo≧2.3−0.89Si+32.2C …(1)
(A) In mass%, C: 0.005 to 0.04%, Si: 0.5% or less, Mn: 0.1 to 3.0%, P: 0.04% or less, S: 0.01 %: Cr: 10-15%, Ni: 5.85-8% , Mo: 2.8-5.0%, Al: 0.001-0.10 %, N : 0.07% or less, and Ti : Containing 0.005 to 0.25% , the balance being Fe and impurities, and satisfying the following formula (1), the metal structure is mainly tempered martensite, carbide precipitated during tempering and fine during tempering High strength martensitic stainless steel with 0.2% proof stress of 860 MPa or more, excellent in carbon dioxide gas corrosion resistance and sulfide stress corrosion cracking resistance, characterized by comprising precipitated intermetallic compounds such as Laves phase and σ phase It is steel. However, each element symbol in the formula (1) indicates the content (% by mass) of each element.
Mo ≧ 2.3-0.89Si + 32.2C (1)

本発明は、さらに上記(a)に記載の合金成分に加えて、下記第1群、第2群および第3群の少なくとも1群の中から選んだ、少なくとも1種の合金成分を含むマルテンサイトステンレス鋼を要旨とする。この鋼においても前記(1)式が満たされ、また金属組織も上記に記載のとおりである。
第1群…V:0.005〜0.25%、Nb:0.005〜0.25%およびZr:0.005〜0.25%
第2群…Cu:0.05〜1%
第3群…Ca:0.0002〜0.005%、Mg:0.0002〜0.005%、La:0.0002〜0.005%およびCe:0.0002〜0.005%
The present invention further includes martensite containing at least one alloy component selected from at least one of the following first group, second group and third group in addition to the alloy component described in (a) above. The gist is stainless steel. This steel also satisfies the formula (1), and the metal structure is as described above.
First group : V : 0.005 to 0.25%, Nb: 0.005 to 0.25%, and Zr: 0.005 to 0.25%
Second group: Cu: 0.05 to 1%
Third group: Ca: 0.0002 to 0.005%, Mg: 0.0002 to 0.005%, La: 0.0002 to 0.005%, and Ce: 0.0002 to 0.005%

(b)上記(a)のいずれかに規定する組成を有し、且つ、上記の(1)式を満足する鋼を、焼入れ温度880℃〜1000℃で焼入れ後、焼戻し温度領域を450〜620℃とし、焼戻し温度T(℃)、焼戻し時間t(時間)とする場合に
(20+logt)(T+273)が13500〜17700を満足する焼戻し処理を施すことにより、金属組織が主として焼戻しマルテンサイト、焼戻し時に析出した炭化物および焼戻し時に微細析出したラーベス相やσ相等の金属間化合物からなることを特徴とする耐炭酸ガス腐食性および耐硫化物応力腐食割れ性に優れた860MPa以上の0.2%耐力を持った高強度マルテンサイトステンレス鋼である。
(B) After quenching a steel having the composition defined in any of the above (a) and satisfying the above formula (1) at a quenching temperature of 880 ° C. to 1000 ° C., the tempering temperature range is 450 to 620. When the tempering temperature T (° C.) and the tempering time t (hours) are set, the tempering process in which (20 + logt) (T + 273) satisfies 13500 to 17700 is performed, so that the metal structure is mainly tempered martensite and tempered. 0.2% proof stress of 860 MPa or more excellent in carbon dioxide gas corrosion resistance and sulfide stress corrosion cracking resistance, characterized by comprising precipitated carbides and intermetallic compounds such as Laves phase and σ phase finely precipitated during tempering High strength martensitic stainless steel.

図1は、実施例で試験した各種の鋼のMo含有量と、(1)式の右辺、即ち、「2.3−0.89Si+32.2C」(IM値)との関係を示す図である。   FIG. 1 is a diagram showing the relationship between the Mo content of various steels tested in Examples and the right side of the formula (1), that is, “2.3-0.89Si + 32.2C” (IM value). .

図2は、本発明で規定した焼戻し条件を説明する図であり、920℃で焼入れ後、焼戻し温度を460〜650で変化させて(20+logt)(T+273)の値を変化させたときの0.2%耐力と(20+logt)(T+273)の関係を示す。   FIG. 2 is a diagram for explaining the tempering conditions defined in the present invention. After tempering at 920 ° C., the tempering temperature is changed from 460 to 650, and the value of (20 + logt) (T + 273) is changed. The relationship between 2% yield strength and (20 + logt) (T + 273) is shown.

以下、本発明で規定する各元素についての含有量の限定理由を説明する。なお、各含有量の%は質量%を意味する。   Hereinafter, the reason for limiting the content of each element defined in the present invention will be described. In addition,% of each content means the mass%.

C:0.005〜0.04%
Cは、鋼の強度を向上させるのに有効な元素であるが、耐食性の面からはできるだけ少ない方がよい。しかし、0.005%未満であると、耐力が860MPa以上にならないので、その含有量の下限を0.005%とした。一方、その含有量が0.04%を超えると、焼戻し後の硬度が高くなりすぎ、硫化物応力腐食割れ感受性が高くなる。従って、Cの含有量を0.005〜0.04%とした。
C: 0.005-0.04%
C is an element effective for improving the strength of steel, but is preferably as small as possible from the viewpoint of corrosion resistance. However, if it is less than 0.005%, the yield strength does not become 860 MPa or more, so the lower limit of its content was made 0.005%. On the other hand, if the content exceeds 0.04%, the hardness after tempering becomes too high, and the sensitivity to sulfide stress corrosion cracking becomes high. Therefore, the content of C is set to 0.005 to 0.04%.

Si:0.5%以下
Siは、脱酸剤として必要な元素である。鋼中残留量は不純物レベルであっても良い。しかし、より大きな脱酸効果を得るためには、その含有量を0.01%以上とするのが望ましい。一方、その含有量が0.5%を超えると、靱性が低下するとともに、熱間加工性を低下させる。従って、Siの含有量を0.5%以下とした。
Si: 0.5% or less Si is an element necessary as a deoxidizer. The residual amount in steel may be an impurity level. However, in order to obtain a greater deoxidation effect, the content is desirably 0.01% or more. On the other hand, when the content exceeds 0.5%, toughness is lowered and hot workability is lowered. Therefore, the Si content is set to 0.5% or less.

Mn:0.1〜3.0%
Mnは、熱間加工性を向上させるのに有効な元素である。この効果を得るためには、その含有量を0.1%以上とする必要がある。一方、その含有量が3.0%を超えると、その効果は飽和し、コスト上昇を招く。従って、Mnの含有量を0.1〜3.0%とした。
Mn: 0.1 to 3.0%
Mn is an element effective for improving hot workability. In order to obtain this effect, the content needs to be 0.1% or more. On the other hand, when the content exceeds 3.0%, the effect is saturated and the cost is increased. Therefore, the Mn content is set to 0.1 to 3.0%.

P:0.04%以下
Pは、鋼中に含まれる不純物であり、その含有量はできるだけ少ない方がよい。特に、その含有量が0.04%を超えると耐硫化物応力腐食割れ性が著しく低下する。従って、Pの含有量を0.04%以下とした。
P: 0.04% or less P is an impurity contained in steel, and its content is preferably as small as possible. In particular, when the content exceeds 0.04%, the resistance to sulfide stress corrosion cracking is significantly reduced. Therefore, the content of P is set to 0.04% or less.

S:0.01%以下
Sも鋼中に含まれる不純物であり、その含有量はできるだけ少ない方がよい。特に、その含有量が0.01%を超えると熱間加工性、耐食性および靱性が著しく低下する。従って、Sの含有量を0.01%以下とした。
S: 0.01% or less S is also an impurity contained in steel, and its content should be as small as possible. In particular, when the content exceeds 0.01%, hot workability, corrosion resistance, and toughness are remarkably lowered. Therefore, the S content is set to 0.01% or less.

Cr:10〜15%
Crは、耐炭酸ガス腐食性を向上させるのに有効な元素である。この効果を得るためには、その含有量を10%以上とする必要がある。一方、その含有量が15%を超える場合には、焼戻し後の組織を主としてマルテンサイト相にするのが困難になる。従って、Crの含有量を10〜15%とした。
Cr: 10-15%
Cr is an element effective for improving the carbon dioxide gas corrosion resistance. In order to obtain this effect, the content needs to be 10% or more. On the other hand, when the content exceeds 15%, it becomes difficult to make the structure after tempering mainly a martensite phase. Therefore, the Cr content is set to 10 to 15%.

Ni:5.85〜8%
Niは、焼戻し後の組織を主としてマルテンサイト相にするために必要な元素である。しかし、その含有量が5.85%未満の場合には、焼戻し後の組織にフェライト相が多く析出し、焼戻し後の組織が主にマルテンサイト相にならない。一方、その含有量が8%を超える場合には、焼戻し後の組織が主としてオーステナイト相となる。従って、Niの含有量を5.85〜8%とした。
Ni: 5.85-8%
Ni is an element necessary for making the structure after tempering mainly a martensite phase. However, when the content is less than 5.85%, a large amount of ferrite phase precipitates in the structure after tempering, and the structure after tempering does not mainly become a martensite phase. On the other hand, when the content exceeds 8%, the structure after tempering mainly becomes an austenite phase. Therefore, the Ni content is set to 5.85 to 8% .

Mo:2.8〜5.0%
Moは、高強度材の耐硫化物応力腐食割れ性を向上させるには有効な元素である。この効果を得るためには、その含有量を2.8%以上とする必要がある。しかし、その含有量が5.0%を超えると、この効果は飽和し、コスト上昇を招く。したがって、Moの含有量を2.8〜5.0%とした。
Mo: 2.8 to 5.0%
Mo is an element effective for improving the resistance to sulfide stress corrosion cracking of a high-strength material. In order to acquire this effect, the content needs to be 2.8% or more. However, when the content exceeds 5.0%, this effect is saturated and the cost is increased. Therefore, the Mo content is set to 2.8 to 5.0%.

Al:0.001〜0.10%
Alは、溶製過程において脱酸剤として使用する元素である。この効果を得るためには、その含有量を0.001%以上とする必要がある。しかし、その含有量が0.10%を超えると、介在物が多くなって耐食性が損なわれる。従って、Alの含有量を0.001〜0.10%とした。
Al: 0.001 to 0.10%
Al is an element used as a deoxidizer in the melting process. In order to obtain this effect, the content needs to be 0.001% or more. However, when the content exceeds 0.10%, inclusions increase and corrosion resistance is impaired. Therefore, the Al content is set to 0.001 to 0.10%.

N:0.07%以下
Nは、鋼中に含まれる不純物であり、その含有量はできるだけ少ない方がよい。特に、その含有量が0.07%を超えると、介在物が多くなって耐食性が劣化する。従って、Nの含有量を0.07%以下とした。
N: 0.07% or less N is an impurity contained in steel, and its content is preferably as small as possible. In particular, when the content exceeds 0.07%, the inclusions increase and the corrosion resistance deteriorates. Therefore, the N content is set to 0.07% or less.

Ti:0.005〜0.25%
Tiは、Cを固定し、強度のばらつきを小さくするために必要な元素である。その含有量が0.005%未満では上記の効果が得られない。一方、その含有量が0.25%を超えると、焼戻し後の組織を主としてマルテンサイト相とすることができず、耐力が860MPa以上の高強度化が図れない。従って、Tiの含有量を0.005〜0.25%とした
Ti: 0.005-0.25%
Ti is an element necessary for fixing C and reducing variation in strength. If the content is less than 0.005%, the above effect cannot be obtained. On the other hand, if the content exceeds 0.25%, the structure after tempering cannot be mainly made into the martensite phase, and the strength cannot be increased to 860 MPa or more. Therefore, the Ti content is set to 0.005 to 0.25% .

本発明のマルテンサイト系ステンレス鋼の一つは、上記各成分のほか、残部がFeおよび不可避的不純物からなるものである。もう一つは、上記の成分に加えて更に下記に示す第1群、第2群および第3群の少なくとも1群から選んだ少なくとも1種の合金成分を含むものである。以下、各群の成分について説明する。   One of the martensitic stainless steels of the present invention is composed of Fe and inevitable impurities in the balance in addition to the above components. The other one contains at least one alloy component selected from at least one of the following first group, second group and third group in addition to the above components. Hereinafter, the components of each group will be described.

第1群(V、Nb、Zr:それぞれ0.005〜0.25%)
V、NbおよびZrは、いずれもCを固定し、強度のばらつきを小さくする作用を有するので、必要に応じて、これらのうちから選択される1種以上を含有してもよい。しかし、いずれの元素もその含有量が0.005%未満では上記の効果が得られない。一方、いずれの元素もその含有量が0.25%を超えると、焼戻し後の組織を主としてマルテンサイト相とすることができず、耐力が860MPa以上の高強度化が図れない。従って、これらの元素を選択的に含有させる場合の含有量をそれぞれ0.005〜0.25%とした。
First group (V 1, Nb, Zr: 0.005 to 0.25% each)
V, Nb, and Zr all have the effect of fixing C and reducing the variation in strength, and therefore may contain one or more selected from these, if necessary. However, the above effects cannot be obtained when the content of any element is less than 0.005%. On the other hand, if the content of any element exceeds 0.25%, the structure after tempering cannot be mainly made into the martensite phase, and the strength cannot be increased to 860 MPa or more. Therefore, the contents when these elements are selectively contained are 0.005 to 0.25%, respectively.

第2群(Cu:0.05〜1%)
Cuは、Niと同様に、焼戻し後の組織を主としてマルテンサイト相とするのに有効な元素である。Cuの添加によってこの効果を得るためには、その含有量を0.05%以上とすればよい。ただし、その含有量が1%を超えると、鋼の熱間加工性が低下する。従って、Cuを含有させる場合には、その含有量を0.05〜1%とした。
Second group (Cu: 0.05 to 1%)
Cu, like Ni, is an element effective for making the structure after tempering mainly a martensite phase. In order to obtain this effect by adding Cu, the content may be 0.05% or more. However, when the content exceeds 1%, the hot workability of the steel decreases. Therefore, when Cu is contained, the content is set to 0.05 to 1%.

第3群(Ca、Mg、La、Ce:それぞれ0.0002〜0.005%)
Ca、Mg、LaおよびCeはいずれも、鋼の熱間加工性を向上させるのに有効な元素であるので、必要に応じて、これらのうちから選択される1種以上を含有してもよい。しかし、いずれの元素もその含有量が0.0002%未満では上記の効果が得られない。一方、いずれの元素もその含有量が0.005%を超えると、粗大な酸化物が生成し、鋼の耐食性が低下する。従って、これらの元素を選択的に含有させる場合の含有量を0.0002〜0.005%とした。特に、Caおよび/またはLaを含有させるのが望ましい。
Third group (Ca, Mg, La, Ce: 0.0002 to 0.005% each)
Since Ca, Mg, La, and Ce are all effective elements for improving the hot workability of steel, they may contain one or more selected from these as necessary. . However, the above effects cannot be obtained when the content of any element is less than 0.0002%. On the other hand, if the content of any element exceeds 0.005%, a coarse oxide is generated, and the corrosion resistance of the steel decreases. Therefore, the content when these elements are selectively contained is set to 0.0002 to 0.005%. In particular, it is desirable to contain Ca and / or La.

本発明の鋼は、上記の化学組成を有するとともに、下記の(1)式を満足しなければならない。これは、上記の(1)式を満たす場合には、耐硫化物応力腐食割れ性を劣化させずに鋼の強度を耐力が860MPa以上と向上させることができるからである。
Mo≧2.3−0.89Si+32.2C …(1)
ただし、(1)式中の各元素記号は、それぞれの元素の含有量(質量%)を示す。
The steel of the present invention has the above chemical composition and must satisfy the following formula (1). This is because, when the above formula (1) is satisfied, the strength of the steel can be improved to 860 MPa or more without deteriorating the resistance to sulfide stress corrosion cracking.
Mo ≧ 2.3-0.89Si + 32.2C (1)
However, each element symbol in the formula (1) indicates the content (% by mass) of each element.

図1は、後述する実施例で試験した各種の鋼のMo含有量と、(1)式の右辺、即ち、「2.3−0.89Si+32.2C」(これをIM値という)との関係を示す図である。具体的には、本発明鋼と比較鋼(試験No.18〜21)の結果に基づいている。図中の「○」は硫化物応力腐食割れ試験で破断しなかったものを示し、「×」は破断したものを示す。Mo含有量が2.8%以上でも、上記(1)式を満たさないと、耐応力腐食割れ性に劣る。   FIG. 1 shows the relationship between the Mo content of various steels tested in Examples described later and the right side of the formula (1), that is, “2.3-0.89Si + 32.2C” (this is called the IM value). FIG. Specifically, it is based on the results of the steel of the present invention and the comparative steel (Test Nos. 18 to 21). In the figure, “◯” indicates that the sample was not broken in the sulfide stress corrosion cracking test, and “X” indicates that it was broken. Even if the Mo content is 2.8% or more, the stress corrosion cracking resistance is poor unless the above formula (1) is satisfied.

Mo含有量が本発明で規定する範囲外(即ち、2.8%未満)の場合には、0.2%耐力が860MPa未満であり、また、Moの含有量が本発明で規定する範囲内(即ち、2.8〜5%)の場合でも、上記の(1)式を満たさなければ、0.2%耐力が860MPa未満である。   When the Mo content is outside the range defined by the present invention (ie, less than 2.8%), the 0.2% proof stress is less than 860 MPa, and the Mo content is within the range defined by the present invention. Even in the case of (ie, 2.8 to 5%), the 0.2% proof stress is less than 860 MPa unless the above formula (1) is satisfied.

しかしながら、上記の(1)式の条件を満たす鋼であれば、0.2%耐力が860MPa以上となり、油井用鋼材としての使用に耐えうる充分な強度が得られる。従って、本発明の鋼は、前記の化学組成の範囲内で、しかも上記の(1)式を満たす必要がある。   However, if the steel satisfies the condition of the above expression (1), the 0.2% proof stress is 860 MPa or more, and a sufficient strength that can be used as an oil well steel is obtained. Therefore, the steel of the present invention must satisfy the above formula (1) within the range of the chemical composition.

本発明者らは、さらに、金属組織の影響について検討した結果、金属組織が主として焼戻しマルテンサイト、焼戻し時に析出した炭化物および焼戻し時に微細析出したラーベス相やσ相等の金属間化合物からなる組織であれば、耐硫化物応力腐食割れ性を低下させることなく、鋼の強度を向上させることができることを見出した。   The present inventors further examined the influence of the metal structure. For example, the present inventors have found that the strength of steel can be improved without reducing the resistance to sulfide stress corrosion cracking.

なお、「主として焼戻しマルテンサイト」とは、金属組織の70vol%以上が焼戻しマルテンサイト組織であることをいい、焼戻しマルテンサイト組織の外に残留オーステナイト組織やフェライト組織が存在していてもよい。   The “mainly tempered martensite” means that 70 vol% or more of the metal structure is a tempered martensite structure, and a residual austenite structure or a ferrite structure may exist in addition to the tempered martensite structure.

また、「ラーベス相やσ相等の金属間化合物」は、Fe2Mo等のラーベス相、σ相の他に、μ相、χ相等の金属間化合物を含んでもよいものとする。   The “intermetallic compounds such as Laves phase and σ phase” may include intermetallic compounds such as μ phase and χ phase in addition to Laves phase such as Fe 2 Mo and σ phase.

本発明鋼の金属組織中には焼戻し時に析出した炭化物が含まれる。炭化物は、鋼の強度を確保するために有効な金属組織であるが、鋼中に炭化物が含まれているだけでは、耐力860MPa以上の高強度を実現することはできない。従って、本発明においては、炭化物が析出するとともに、上述のラーベス相やσ相等の金属間化合物が微細に析出する必要がある。   The metal structure of the steel of the present invention contains carbides precipitated during tempering. Carbide is an effective metal structure for ensuring the strength of steel, but high strength of 860 MPa or more cannot be achieved simply by including carbide in steel. Therefore, in the present invention, it is necessary that the carbide precipitates and the intermetallic compounds such as the Laves phase and the σ phase are finely precipitated.

本発明鋼の熱処理は、通常の焼入れ−焼戻しである。微細な金属間化合物を焼戻し時に析出させるためには、焼入れ時に金属間化合物を充分に固溶させる必要がある。その焼入れ温度は、880〜1,000℃とするのが望ましい。   The heat treatment of the steel of the present invention is ordinary quenching-tempering. In order to precipitate a fine intermetallic compound during tempering, it is necessary to sufficiently dissolve the intermetallic compound during quenching. The quenching temperature is desirably 880 to 1,000 ° C.

さらに、微細なラーベス相やσ相等の金属間化合物が析出し、0.2%耐力を860MPa以上とできるのは、焼戻し温度領域は450〜620℃で、且つ、焼戻し温度T(℃)、焼戻し時間t(時間)とすると、(20+logt)(T+273):13500〜17700を満足できる場合である。   Furthermore, fine intermetallic compounds such as Laves phase and σ phase are precipitated, and the 0.2% proof stress can be 860 MPa or more. The tempering temperature range is 450 to 620 ° C., and the tempering temperature T (° C.). When time t (time) is satisfied, (20 + logt) (T + 273): 13500-17700 can be satisfied.

図2は、本発明で規定した焼戻し条件を説明する図である。同図では、後述する実施例の試験No.1の材料を用い、920℃で焼入れ後、焼戻し温度を400〜650で変化させて(20+logt)(T+273)の値を変化させたときの0.2%耐力と(20+logt)(T+273)の関係を示している。   FIG. 2 is a diagram for explaining the tempering conditions defined in the present invention. In the same figure, test No. The relationship between 0.2% proof stress and (20 + logt) (T + 273) when the value of (20 + logt) (T + 273) was changed by changing the tempering temperature from 400 to 650 after quenching at 920 ° C. using the material No. 1 Is shown.

図2に示すように、0.2%耐力が860MPa以上になるのは(20+logt)(T+273)が13500〜17700の範囲のときである。
(20+logt)(T+273)が17700を超える条件で焼戻しをすると、転位密度が減少し、または、金属間化合物が金属組織中に固溶化し、0.2%耐力が860MPa以上の高強度化が達成できない。一方、13500未満の条件で焼戻しすると、金属間化合物、炭化物が析出しないため0.2%耐力が860MPa以上を達成できない。
As shown in FIG. 2, the 0.2% proof stress is 860 MPa or more when (20 + logt) (T + 273) is in the range of 13500-17700.
When tempering is performed under a condition where (20 + logt) (T + 273) exceeds 17700, the dislocation density decreases, or the intermetallic compound is solid-solved in the metal structure, and the 0.2% yield strength is increased to 860 MPa or more. Can not. On the other hand, when tempering under a condition of less than 13500, intermetallic compounds and carbides do not precipitate, so the 0.2% proof stress cannot achieve 860 MPa or more.

上記のような原理から、本発明の鋼は、先に述べた化学組成を有し、(1)式を満たすとともに、その金属組織が主として焼戻しマルテンサイト、焼戻し時に析出した炭化物および焼戻し時に微細析出したラーベス相やσ相等の金属間化合物である必要がある。   From the above principle, the steel of the present invention has the above-described chemical composition, satisfies the formula (1), and its metal structure is mainly tempered martensite, carbide precipitated during tempering, and fine precipitation during tempering. It is necessary to be an intermetallic compound such as Laves phase or σ phase.

表1に示す化学組成を有する鋼を溶製して鋳造し、得られた鋳片を熱間鍛造し、熱間圧延して、厚さ:15mm、幅:120mm、長さ:1,000mmの鋼板を作製し、これらの鋼板に焼入れ(920℃水冷)および焼戻し〔550℃で30分均熱後空冷:(20+logt)(T+273)=16212〕を施したものを試験用鋼板として各種試験に供した。   The steel having the chemical composition shown in Table 1 is melted and cast, and the resulting slab is hot forged and hot rolled to have a thickness of 15 mm, a width of 120 mm, and a length of 1,000 mm. Steel plates were prepared and subjected to various tests as test steel plates that were quenched (920 ° C. water cooling) and tempered (equal cooling at 550 ° C. for 30 minutes and then air cooling: (20 + logt) (T + 273) = 16212). did.

Figure 0004428237
Figure 0004428237

まず、それぞれの試験用鋼板から直径:6.35mm、平行部長さ:25.4mmの丸棒試験片を採取し、常温で引張試験を行った。このときの0.2%耐力を表2に示す。
次に、それぞれの試験用鋼板から厚さ:3mm、幅:20mm、長さ:50mmの試験片を採取し、この試験片を600番エメリー紙で研磨した後、脱脂、乾燥したものを0.973MPaのCO2ガスおよび0.0014MPaのH2Sガスを飽和させた25%NaCl水溶液(温度:165℃)に720時間浸漬した。
First, a round bar test piece having a diameter of 6.35 mm and a parallel part length of 25.4 mm was taken from each test steel plate, and a tensile test was performed at room temperature. Table 2 shows the 0.2% yield strength at this time.
Next, a test piece having a thickness of 3 mm, a width of 20 mm, and a length of 50 mm was taken from each test steel plate, and this test piece was polished with No. 600 emery paper, then degreased and dried. It was immersed in a 25% NaCl aqueous solution (temperature: 165 ° C.) saturated with 973 MPa of CO 2 gas and 0.0014 MPa of H 2 S gas for 720 hours.

浸漬後に試験片の腐食減量〔(試験前の質量)−(試験後の質量)〕を測定し、また目視により試験片表面の局部腐食の有無を確認した。この結果、本発明鋼の腐食速度は0.5mm/年以下で、かつ表面に局部腐食は見られなかった。   After immersion, the corrosion weight loss of the test piece [(mass before test) − (mass after test)] was measured, and the presence or absence of local corrosion on the test piece surface was visually confirmed. As a result, the corrosion rate of the steel of the present invention was 0.5 mm / year or less, and no local corrosion was observed on the surface.

続いて、NACEのTM0177−96 Method Aに従い、バネ式(プルーフリング式)試験機を使用して定荷重試験を行った。具体的には、それぞれの試験用鋼板から直径:6.3mm、平行部長さ:25.4mmの丸棒試験片を採取し、0.003MPaのH2Sガス(CO2bal.)を飽和させた25%NaCl溶液(pH4.0)を使用して、試験温度:25℃で720時間、試験応力:0.2%耐力の85%定荷重試験を行った。 Subsequently, according to NACE TM0177-96 Method A, a constant load test was performed using a spring type (proof ring type) tester. Specifically, a round bar test piece having a diameter of 6.3 mm and a parallel part length of 25.4 mm was taken from each test steel plate, and 0.003 MPa of H 2 S gas (CO 2 bal.) Was saturated. In addition, an 85% constant load test was performed using a 25% NaCl solution (pH 4.0) at a test temperature of 25 ° C. for 720 hours and a test stress of 0.2% yield strength.

この結果、0.2%耐力が860MPa以上である本発明鋼は全ての試験片で破断しなかった。金属組織についても、光学顕微鏡および抽出レプリカによって観察した。この結果を表2に併記する。   As a result, the steel of the present invention having a 0.2% proof stress of 860 MPa or more did not break in all the test pieces. The metal structure was also observed with an optical microscope and an extraction replica. The results are also shown in Table 2.

Figure 0004428237
Figure 0004428237

表2に示すとおり、本発明例4、5、10〜13、16は、0.2%耐力が860MPa以上であるとともに、優れた耐炭酸ガス腐食性および耐硫化物応力腐食割れ性を有している。一方、Crおよび/またはMoの含有量が本発明で規定する範囲外の比較例22〜25および各成分の含有範囲が本発明で規定する範囲内であるが前記(1)式を満たさない比較例18〜21はいずれも、炭酸ガス性能または耐応力割れ性能が充分ではなかった。 As shown in Table 2, Examples 4 , 5, 10-13 , and 16 of the present invention have a 0.2% proof stress of 860 MPa or more, and have excellent carbon dioxide gas corrosion resistance and sulfide stress corrosion cracking resistance. ing. On the other hand, Comparative Examples 22 to 25 outside the range defined by the present invention and the content range of each component is within the range defined by the present invention, but the content of Cr and / or Mo does not satisfy the formula (1) In all of Examples 18 to 21, the carbon dioxide gas performance or the stress cracking resistance performance was not sufficient.

本発明のマルテンサイトステンレス鋼によれば、特定成分について鋼組成を制限するとともに、鋼中のMo含有量をIM値との関係で規定し、且つ、金属組織を主として焼戻しマルテンサイト、焼戻し時に析出した炭化物および焼戻し時に微細析出したラーベス相やσ相等の金属間化合物から構成することによって、0.2%耐力が860MPa以上の高強度であり、優れた耐炭酸ガス腐食性および耐硫化物応力腐食割れ性を有することができる。これにより、炭酸ガス、硫化水素、塩素イオンまたはこれらの2種以上を含む環境下で油井管その他の用途に広く使用できる実用性の高い鋼として広い分野で適用することができる。   According to the martensitic stainless steel of the present invention, the steel composition is limited for specific components, the Mo content in the steel is defined in relation to the IM value, and the metal structure is mainly tempered martensite and precipitated during tempering. It is composed of carbonized carbides and intermetallic compounds such as Laves phase and σ phase finely precipitated during tempering, so that 0.2% proof stress is high strength of 860 MPa or more, and excellent carbon dioxide corrosion resistance and sulfide stress corrosion resistance. It can have cracking properties. Thereby, it can be applied in a wide field as a highly practical steel that can be widely used for oil well pipes and other uses in an environment containing carbon dioxide, hydrogen sulfide, chlorine ions, or two or more thereof.

Claims (5)

質量%で、C:0.005〜0.04%、Si:0.5%以下、Mn:0.1〜3.0%、P:0.04%以下、S:0.01%以下、Cr:10〜15%、Ni:5.85〜8%、Mo:2.8〜5.0%、Al:0.001〜0.10%、N:0.07%以下およびTi:0.005〜0.25%を含有し、残部がFeおよび不純物からなり、且つ、下記の(1)式を満足し、金属組織の70vol%以上が焼戻しマルテンサイト組織であって、焼戻し時に析出した炭化物および焼戻し時に微細析出したラーベス相、σ相、μ相またはχ相の少なくとも一つの金属間化合物相を含有することを特徴とする耐炭酸ガス腐食性および耐硫化物応力腐食割れ性に優れた860MPa以上の0.2%耐力を持った高強度マルテンサイトステンレス鋼。
Mo≧2.3−0.89Si+32.2C …(1)
ただし、(1)式中の各元素記号は、それぞれの元素の含有量(質量%)を示す。
In mass%, C: 0.005 to 0.04%, Si: 0.5% or less, Mn: 0.1 to 3.0%, P: 0.04% or less, S: 0.01% or less, Cr: 10-15%, Ni: 5.85-8% , Mo: 2.8-5.0%, Al: 0.001-0.10 %, N : 0.07% or less and Ti: 0.00 . 005 to 0.25% , the balance being Fe and impurities, and satisfying the following formula (1) , 70 vol% or more of the metal structure is a tempered martensite structure, and carbide precipitated during tempering And at least one intermetallic compound phase of Laves phase, σ phase, μ phase, or χ phase finely precipitated during tempering, which is excellent in carbon dioxide gas corrosion resistance and sulfide stress corrosion cracking resistance. High strength martensitic stainless steel with 0.2% proof stress steel.
Mo ≧ 2.3-0.89Si + 32.2C (1)
However, each element symbol in the formula (1) indicates the content (% by mass) of each element.
Feの一部に替えて、さらに、V:0.005〜0.25%、Nb:0.005〜0.25%およびZr:0.005〜0.25%から選択される1種以上を含むことを特徴とする請求項1に記載の高強度マルテンサイトステンレス鋼。  In place of a part of Fe, one or more selected from V: 0.005 to 0.25%, Nb: 0.005 to 0.25% and Zr: 0.005 to 0.25% The high-strength martensitic stainless steel according to claim 1, comprising: Feの一部に替えて、さらに、Cu:0.05〜1%を含むことを特徴とする請求項1または2に記載の高強度マルテンサイトステンレス鋼。  The high-strength martensitic stainless steel according to claim 1 or 2, further comprising Cu: 0.05 to 1% instead of a part of Fe. Feの一部に替えて、さらに、Ca:0.0002〜0.005%、Mg:0.0002〜0.005%、La:0.0002〜0.005%およびCe:0.0002〜0.005%から選択される1種以上を含むことを特徴とする請求項1〜3のいずれかに記載の高強度マルテンサイトステンレス鋼。  In place of part of Fe, Ca: 0.0002 to 0.005%, Mg: 0.0002 to 0.005%, La: 0.0002 to 0.005%, and Ce: 0.0002 to 0 The high-strength martensitic stainless steel according to any one of claims 1 to 3, comprising one or more selected from 0.005%. 前記請求項1〜4のいずれかに規定する組成を有し、且つ、下記の(1)式を満足する鋼を、焼入れ温度880℃〜1000℃で焼入れ後、焼戻し温度領域を450〜620℃とし、焼戻し温度T(℃)、焼戻し時間t(時間)とする場合に(20+logt)(T+273)が13500〜17700を満足する焼戻し処理を施すことにより、金属組織の70vol%以上が焼戻しマルテンサイト組織であって、焼戻し時に析出した炭化物および焼戻し時に微細析出したラーベス相、σ相、μ相またはχ相の少なくとも一つの金属間化合物相を含有することを特徴とする耐炭酸ガス腐食性および耐硫化物応力腐食割れ性に優れた860MPa以上の0.2%耐力を持った高強度マルテンサイトステンレス鋼。 Mo≧2.3−0.89Si+32.2C …(1)
ただし、(1)式中の各元素記号は、それぞれの元素の含有量(質量%)を示す。
A steel having the composition defined in any one of claims 1 to 4 and satisfying the following formula (1) is quenched at a quenching temperature of 880 ° C to 1000 ° C, and a tempering temperature region is set to 450 to 620 ° C. When a tempering temperature T (° C.) and a tempering time t (hours) are used, a tempering process in which (20 + logt) (T + 273) satisfies 13500 to 17700 is performed, whereby 70 vol% or more of the metal structure is tempered martensite structure. Carbon dioxide corrosion resistance and sulfidation resistance characterized by containing carbide precipitated during tempering and at least one intermetallic compound phase of Laves phase, σ phase, μ phase or χ phase finely precipitated during tempering High-strength martensitic stainless steel with 0.2% proof stress of 860 MPa or more with excellent physical stress corrosion cracking properties. Mo ≧ 2.3-0.89Si + 32.2C (1)
However, each element symbol in the formula (1) indicates the content (% by mass) of each element.
JP2004562054A 2002-12-20 2003-12-18 High strength martensitic stainless steel with excellent carbon dioxide corrosion resistance and sulfide stress corrosion cracking resistance Expired - Fee Related JP4428237B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002369595 2002-12-20
JP2002369595 2002-12-20
PCT/JP2003/016288 WO2004057050A1 (en) 2002-12-20 2003-12-18 High-strength martensitic stainless steel with excellent resistances to carbon dioxide gas corrosion and sulfide stress corrosion cracking

Publications (2)

Publication Number Publication Date
JPWO2004057050A1 JPWO2004057050A1 (en) 2006-04-20
JP4428237B2 true JP4428237B2 (en) 2010-03-10

Family

ID=32677145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004562054A Expired - Fee Related JP4428237B2 (en) 2002-12-20 2003-12-18 High strength martensitic stainless steel with excellent carbon dioxide corrosion resistance and sulfide stress corrosion cracking resistance

Country Status (12)

Country Link
US (1) US20050224143A1 (en)
EP (1) EP1584699A4 (en)
JP (1) JP4428237B2 (en)
CN (1) CN100368579C (en)
AR (1) AR042494A1 (en)
AU (1) AU2003289437B2 (en)
BR (1) BRPI0317550B1 (en)
CA (1) CA2509581C (en)
MX (1) MXPA05006562A (en)
NO (1) NO337858B1 (en)
RU (1) RU2307876C2 (en)
WO (1) WO2004057050A1 (en)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4337712B2 (en) * 2004-11-19 2009-09-30 住友金属工業株式会社 Martensitic stainless steel
US8980167B2 (en) * 2005-04-28 2015-03-17 Jfe Steel Corporation Stainless steel pipe having excellent expandability for oil country tubular goods
CN100453685C (en) * 2006-07-11 2009-01-21 无锡西姆莱斯石油专用管制造有限公司 High Cr series stainless steel jointless oil well tube and its production method
JP5124857B2 (en) * 2006-08-22 2013-01-23 新日鐵住金株式会社 Martensitic stainless steel
EP2058412A4 (en) 2006-08-31 2016-02-17 Nippon Steel & Sumitomo Metal Corp Martensitic stainless steel for welded structure
JP5145793B2 (en) * 2007-06-29 2013-02-20 Jfeスチール株式会社 Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
JP4951564B2 (en) 2008-03-25 2012-06-13 住友化学株式会社 Regenerated sulfur recovery unit
CN101981215A (en) * 2008-03-28 2011-02-23 住友金属工业株式会社 Stainless steel for use in oil well tube
EP2322679B1 (en) * 2008-09-04 2020-02-26 JFE Steel Corporation Seamless pipe of martensitic stainless steel for oil well pipe and process for producing the same
AR073884A1 (en) 2008-10-30 2010-12-09 Sumitomo Metal Ind STAINLESS STEEL TUBE OF HIGH RESISTANCE EXCELLENT IN RESISTANCE TO FISURATION UNDER VOLTAGE SULFURS AND CORROSION OF GAS OF CARBONIC ACID IN HIGH TEMPERATURE.
AR076669A1 (en) * 2009-05-18 2011-06-29 Sumitomo Metal Ind STAINLESS STEEL FOR PETROLEUM WELLS, STAINLESS STEEL TUBE FOR PETROLEUM WELLS, AND STAINLESS STEEL MANUFACTURING METHOD FOR PETROLEUM WELLS
MY158405A (en) * 2010-04-28 2016-10-14 Sumitomo Metal Ind Seamless steel pipe for steam injection and method for manufacturing the same
IT1403689B1 (en) * 2011-02-07 2013-10-31 Dalmine Spa HIGH-RESISTANCE STEEL TUBES WITH EXCELLENT LOW TEMPERATURE HARDNESS AND RESISTANCE TO CORROSION UNDER VOLTAGE SENSORS.
CN102534418A (en) * 2012-02-29 2012-07-04 宝山钢铁股份有限公司 Martensitic stainless steel for oil casing and manufacturing method thereof
CA2863187C (en) * 2012-03-26 2016-11-15 Nippon Steel & Sumitomo Metal Corporation Stainless steel for oil wells and stainless steel pipe for oil wells
CN102866172A (en) * 2012-08-31 2013-01-09 广东电网公司电力科学研究院 Measuring method of Laves phase content of T/P 92 steel
EP2927337B1 (en) * 2012-09-27 2018-08-15 Hitachi Metals, Ltd. Precipitation hardening type martensitic steel and process for producing same
BR102014005015A8 (en) * 2014-02-28 2017-12-26 Villares Metals S/A martensitic-ferritic stainless steel, manufactured product, process for producing forged or rolled bars or parts of martensitic-ferritic stainless steel and process for producing all seamless martensitic-ferritic stainless steel
WO2016001705A1 (en) * 2014-07-03 2016-01-07 Arcelormittal Method for manufacturing a high strength steel sheet having improved formability and ductility and sheet obtained
WO2016001703A1 (en) 2014-07-03 2016-01-07 Arcelormittal Method for manufacturing a high strength steel sheet and sheet obtained by the method
CN107250405B (en) * 2015-02-20 2019-12-24 杰富意钢铁株式会社 High-strength seamless thick-walled steel pipe and method for producing same
US10995394B2 (en) * 2016-05-20 2021-05-04 Nippon Steel Corporation Steel bar for downhole member, and downhole member
CN105755393A (en) * 2016-05-24 2016-07-13 江苏金基特钢有限公司 Special steel for petroleum pipelines and preparation method thereof
CN106399862B (en) * 2016-09-28 2017-12-29 睿智钢业有限公司 A kind of high-intensity corrosion steel and its preparation method and application
JP6315159B1 (en) 2016-10-25 2018-04-25 Jfeスチール株式会社 Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
RU2718019C1 (en) * 2017-03-28 2020-03-30 Ниппон Стил Корпорейшн Martensitic stainless steel product
RU2650353C1 (en) * 2017-09-18 2018-04-11 Юлия Алексеевна Щепочкина Steel
WO2019065116A1 (en) 2017-09-29 2019-04-04 Jfeスチール株式会社 Oil well pipe martensitic stainless seamless steel pipe and production method for same
JP6540921B1 (en) 2017-09-29 2019-07-10 Jfeスチール株式会社 Martensitic stainless steel seamless steel pipe for oil well pipe and method for producing the same
US20200407814A1 (en) 2017-09-29 2020-12-31 Jfe Steel Corporation Martensitic stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same
RU2659530C1 (en) * 2017-11-27 2018-07-02 Юлия Алексеевна Щепочкина Steel for manufacturing jewelry
JP6680408B1 (en) 2018-05-25 2020-04-15 Jfeスチール株式会社 Martensitic stainless seamless steel pipe for oil country tubular goods and method for producing the same
JP6680409B1 (en) 2018-05-25 2020-04-15 Jfeスチール株式会社 Martensitic stainless seamless steel pipe for oil country tubular goods and method for producing the same
AR116495A1 (en) 2018-09-27 2021-05-12 Nippon Steel Corp MARTENSITIC STAINLESS STEEL MATERIAL
JP6743992B1 (en) 2018-11-05 2020-08-19 Jfeスチール株式会社 Martensitic stainless seamless steel pipe for oil country tubular goods and method for producing the same
CN111793773B (en) * 2019-08-09 2021-10-12 中南大学 High-speed steel through Laves phase and mu phase composite strong hardening and preparation method thereof
US20230175107A1 (en) * 2020-04-01 2023-06-08 Nippon Steel Corporation Steel material

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51133807A (en) * 1975-05-14 1976-11-19 Hitachi Ltd Turbo type impeller with high performance
JP2861024B2 (en) * 1989-03-15 1999-02-24 住友金属工業株式会社 Martensitic stainless steel for oil well and its production method
JPH03120337A (en) * 1989-10-03 1991-05-22 Sumitomo Metal Ind Ltd Martensitic stainless steel and its manufacture
JPH05156409A (en) * 1991-11-29 1993-06-22 Nippon Steel Corp High-strength martensite stainless steel having excellent sea water resistance and production thereof
EP0771366B1 (en) * 1994-07-21 1999-06-02 Nippon Steel Corporation Martensitic stainless steel having excellent hot workability and sulfide stress cracking resistance
MY114984A (en) * 1995-01-13 2003-03-31 Hitachi Metals Ltd High hardness martensitic stainless steel with good pitting corrosion resistance
JP3533055B2 (en) * 1996-03-27 2004-05-31 Jfeスチール株式会社 Martensitic steel for line pipes with excellent corrosion resistance and weldability
JP3254146B2 (en) * 1996-10-29 2002-02-04 川崎製鉄株式会社 High strength martensitic stainless steel for oil country tubular goods with excellent stress corrosion cracking resistance and high temperature tensile properties.
JP3555579B2 (en) * 1997-07-18 2004-08-18 住友金属工業株式会社 High corrosion resistance martensitic stainless steel
JP2000063997A (en) * 1998-08-25 2000-02-29 Sumitomo Metal Ind Ltd Welded tube of martensitic stainless steel
JP3743226B2 (en) * 1998-10-12 2006-02-08 住友金属工業株式会社 Martensitic stainless steel for downhole materials
JP2000192196A (en) * 1998-12-22 2000-07-11 Sumitomo Metal Ind Ltd Martensitic stainless steel for oil well
JP3485022B2 (en) * 1999-05-17 2004-01-13 住友金属工業株式会社 Martensitic stainless steel with excellent hot workability
JP2001107198A (en) * 1999-10-07 2001-04-17 Nippon Steel Corp Martensitic stainless steel linepipe excellent in ssc resistance and its producing method
JP4250851B2 (en) * 2000-03-30 2009-04-08 住友金属工業株式会社 Martensitic stainless steel and manufacturing method
CN1114715C (en) * 2000-11-15 2003-07-16 浦项产业科学研究院 Martensitic stainless steel with high mechanical strength and anti-corrosion

Also Published As

Publication number Publication date
MXPA05006562A (en) 2005-08-16
AU2003289437A1 (en) 2004-07-14
AR042494A1 (en) 2005-06-22
NO337858B1 (en) 2016-07-04
RU2307876C2 (en) 2007-10-10
NO20052986L (en) 2005-09-15
BR0317550A (en) 2005-11-22
US20050224143A1 (en) 2005-10-13
JPWO2004057050A1 (en) 2006-04-20
BRPI0317550B1 (en) 2016-06-14
RU2005122929A (en) 2006-02-10
EP1584699A4 (en) 2009-06-03
NO20052986D0 (en) 2005-06-17
EP1584699A1 (en) 2005-10-12
CN1729306A (en) 2006-02-01
AU2003289437B2 (en) 2007-09-20
CA2509581A1 (en) 2004-07-08
CN100368579C (en) 2008-02-13
CA2509581C (en) 2010-04-06
WO2004057050A1 (en) 2004-07-08

Similar Documents

Publication Publication Date Title
JP4428237B2 (en) High strength martensitic stainless steel with excellent carbon dioxide corrosion resistance and sulfide stress corrosion cracking resistance
JP6766887B2 (en) High-strength stainless seamless steel pipe for oil wells and its manufacturing method
JP4893196B2 (en) High strength stainless steel pipe for oil well with high toughness and excellent corrosion resistance
JP4367412B2 (en) Martensitic stainless steel
JP5446335B2 (en) Evaluation method of high strength stainless steel pipe for oil well
JP4249419B2 (en) Duplex stainless steel
JP4462005B2 (en) High strength stainless steel pipe for line pipe with excellent corrosion resistance and method for producing the same
JP6156609B1 (en) High strength stainless steel seamless steel pipe for oil well and method for producing the same
US20110014083A1 (en) Stainless steel used for oil country tubular goods
WO2005017222A1 (en) High strength stainless steel pipe excellent in corrosion resistance for use in oil well and method for production thereof
JPWO2004001082A1 (en) Stainless steel pipe for oil well and manufacturing method thereof
JP3608743B2 (en) Martensitic stainless steel with excellent hot workability and resistance to sulfide stress cracking
JP6237873B2 (en) High strength stainless steel seamless steel pipe for oil well
WO2005042793A1 (en) High strength stainless steel pipe for line pipe excellent in corrosion resistance and method for production thereof
JP2003003243A (en) High-strength martensitic stainless steel with excellent resistance to carbon dioxide gas corrosion and sulfide stress corrosion cracking
KR20060056886A (en) Duplex stainless steel alloy for use in seawater applications
JP4400423B2 (en) Martensitic stainless steel pipe
WO2021187331A1 (en) Stainless seamless steel pipe and method for producing stainless seamless steel pipe
JP4470617B2 (en) High strength stainless steel pipe for oil wells with excellent carbon dioxide corrosion resistance
JP2007084837A (en) Two-phase stainless steel excellent in hot-workability
JP3666388B2 (en) Martensitic stainless steel seamless pipe
JP2962098B2 (en) Method for producing 110 Ksi grade high strength corrosion resistant martensitic stainless steel pipe
JP3451993B2 (en) Cr-containing steel for oil country tubular goods with excellent corrosion resistance to hydrogen sulfide and carbon dioxide
JPH08134593A (en) High strength austenitic alloy excellent in seawater corrosion resistance and hydrogen sulfide corrosion resistance
JP3890821B2 (en) High strength and high toughness stainless steel with excellent stress corrosion cracking resistance

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4428237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees