JP2014070276A - Large-sized cast member made of nickel based alloy, and its manufacturing method - Google Patents

Large-sized cast member made of nickel based alloy, and its manufacturing method Download PDF

Info

Publication number
JP2014070276A
JP2014070276A JP2012220365A JP2012220365A JP2014070276A JP 2014070276 A JP2014070276 A JP 2014070276A JP 2012220365 A JP2012220365 A JP 2012220365A JP 2012220365 A JP2012220365 A JP 2012220365A JP 2014070276 A JP2014070276 A JP 2014070276A
Authority
JP
Japan
Prior art keywords
weight
phase
cast member
heat treatment
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012220365A
Other languages
Japanese (ja)
Other versions
JP6148843B2 (en
Inventor
Hiroki Kamoshida
宏紀 鴨志田
Shinya Konno
晋也 今野
Takehiko Yoshida
武彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012220365A priority Critical patent/JP6148843B2/en
Publication of JP2014070276A publication Critical patent/JP2014070276A/en
Application granted granted Critical
Publication of JP6148843B2 publication Critical patent/JP6148843B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a large-sized cast member having high strength and stable properties for long time even at high temperature.SOLUTION: A large-sized cast member contains a nickel alloy having a composition containing Cr:20 to 23 wt.%, Mo:8 to 10 wt.%, Nb+Ta:3.15 to 4.15 wt.%, Fe:0 to 5 wt.%, Co:0 to 1 wt.%, Ti:0 to 0.4 wt.%, Al:0 to 0.4 wt.% and having at least one character of (1) a δ phase or a Laves phase is deposited at a dendrite border and a grain boundary, or (2) a MC type, MCtype or MC type carbide is deposited at the grain boundary. The large-sized cast member can be obtained by applying a heat treatment at 700 to 820°C for 8 to 200 hours to a cast member obtained by casting after a solution treatment.

Description

本発明はニッケル基合金からなる鋳造部材に関し、特に蒸気タービンの高温部材のような、高温下で用いる大型の鋳造部材に関する。   The present invention relates to a cast member made of a nickel base alloy, and more particularly to a large cast member used at a high temperature such as a high temperature member of a steam turbine.

昨今、石炭火力発電プラントの高効率化を目指して、蒸気温度が700℃以上である火力発電プラント(A−USC:Advanced-Ultra Super Critical)の開発が進められている。従来の蒸気タービンの高温部材には、鉄系の材料である9Cr系または12Cr系耐熱フェライト鋼などが用いられている。しかし、耐熱フェライト鋼は使用環境として蒸気温度で650℃が限界であると言われており、700℃級蒸気タービンへの適用は難しいとされている。そこで700℃級の蒸気タービン用高温部材としてニッケル(Ni)基合金が検討されている。   In recent years, development of a thermal power plant (A-USC: Advanced-Ultra Super Critical) having a steam temperature of 700 ° C. or higher is being promoted with the aim of increasing the efficiency of a coal-fired power plant. For high-temperature members of conventional steam turbines, iron-based materials such as 9Cr-based or 12Cr-based heat resistant ferritic steel are used. However, heat-resistant ferritic steel is said to have a limit of 650 ° C. in steam temperature as a use environment, and is considered difficult to apply to a 700 ° C. class steam turbine. Therefore, a nickel (Ni) -based alloy has been studied as a high-temperature member for a steam turbine of 700 ° C. class.

ニッケル基合金は、Crのほかに、AlやTiといった元素を添加し、適切な熱処理を施すことで、高温下で安定な金属間化合物を析出させる合金が多く、優れた高温強度特性を示す(析出強化)。AlやTiは、偏析しやすいという問題があるが、例えばロータシャフトなどの素材では、最適な合金設計により、VIM+ESR、VIM+VARといったダブルメルトプロセス、もしくはVIM+ESR+VARのトリプルメルトプロセスを用いた溶解方法でインゴットを作製し、鍛造によって均質な部材を得ることができる。   Nickel-based alloys include many alloys that precipitate stable intermetallic compounds at high temperatures by adding elements such as Al and Ti in addition to Cr and applying appropriate heat treatment, and exhibit excellent high-temperature strength characteristics ( Precipitation strengthening). Al and Ti are prone to segregation, but for materials such as rotor shafts, ingots can be made by a melting method using a double melt process such as VIM + ESR or VIM + VAR or a triple melt process such as VIM + ESR + VAR, depending on the optimal alloy design. A homogeneous member can be obtained by fabrication and forging.

一方、蒸気タービンケーシングや蒸気タービンバルブ部材などは、大型であることに加え、形状が複雑であることなどから、大型の鋳型を用いて鋳造で製造される。しかし、形状が複雑であるがため、上述したようなダブル(トリプル)メルトプロセスといった溶解法が適用できない。また、大型の鋳型を用いた鋳造では雰囲気制御が難しく、活性元素の成分制御が難しいばかりでなく、溶解中に活性な元素が酸化することで介在物となり、材料特性に悪影響を及ぼす欠陥となりうる。   On the other hand, the steam turbine casing, the steam turbine valve member, and the like are manufactured by casting using a large mold because they are large in size and complicated in shape. However, since the shape is complicated, a melting method such as a double (triple) melt process as described above cannot be applied. In addition, it is difficult to control the atmosphere in casting using a large mold, and it is difficult not only to control the active element components but also to become inclusions due to oxidation of active elements during melting, which can be a defect that adversely affects material properties. .

そこで、同じニッケル基合金であっても、鋳造部材の場合には、析出強化に代えて、固溶強化で強化した合金の適用が検討されている。そのようなニッケル基合金としては、特許文献1および特許文献2に開示されているAlloy625が知られている。また、Alloy625の特性を改良する技術として特許文献3に記載されているようなものが知られている。   Therefore, even for the same nickel-based alloy, in the case of a cast member, application of an alloy strengthened by solid solution strengthening instead of precipitation strengthening has been studied. As such a nickel-based alloy, Alloy 625 disclosed in Patent Document 1 and Patent Document 2 is known. A technique for improving the characteristics of Alloy 625 as described in Patent Document 3 is known.

米国特許第3046108号明細書US Pat. No. 3,046,108 米国特許第3160500号明細書US Pat. No. 3,160,500 特開2010−261104号JP 2010-261104 A

本発明者らは、Alloy625を用いてタービンケーシングなどの肉厚部材を想定した肉厚試験体を鋳造により試作したところ、マクロ的な欠陥は発生せず良好な製造性を有し、かつ十分な高温強度(クリープ特性)を有するものの、耐力がかなり低いことを確認した。耐力が低いことは、例えば、ケーシングなどを据え付ける際にボルトの締め付けに起因する欠損が生じることを意味し、実用化の際に大きな問題となる。   The inventors of the present invention made a prototype of a thick specimen assuming a thick member such as a turbine casing by using Alloy 625 and found that it had good manufacturability with no macro defects. Although it has high-temperature strength (creep characteristics), it was confirmed that the proof stress was considerably low. The low proof stress means that, for example, a defect caused by tightening of a bolt occurs when installing a casing or the like, which becomes a big problem in practical use.

耐力の向上には、ホールペッチの法則に基づいて、結晶粒の微細化が一つの有効な手段となる。ところが、大型の鋳造部材の場合は凝固時の冷却速度が遅く結晶粒が荒くなる傾向がある。鉄系の材料であれば、熱処理(焼入れ・焼き戻し)により組織を微細化して耐力を向上することもできるが、ニッケル基合金では熱処理による結晶粒径の制御ができない。さらに、冷却速度が遅いとミクロ偏析が大きくなる傾向があり、デンドライトコアとデンドライト境界において成分の差が生じ、同じ結晶粒の中でもミクロ的な材料特性が異なってくることが予想される。   In order to improve the yield strength, refinement of crystal grains is one effective means based on Hall Petch's law. However, in the case of a large cast member, the cooling rate during solidification is slow and the crystal grains tend to be rough. In the case of an iron-based material, the structure can be refined by heat treatment (quenching / tempering) and the proof stress can be improved. However, in a nickel-based alloy, the crystal grain size cannot be controlled by heat treatment. Furthermore, when the cooling rate is slow, microsegregation tends to increase, and there is a difference in components at the boundary between the dendrite core and the dendrite, and it is expected that the microscopic material characteristics will be different even within the same crystal grain.

Alloy625は固溶強化材であるため、通常は溶体化処理のままで用いられ、時効熱処理は施されない。Alloy625は、500℃以下では耐熱性・耐食性に優れた合金であり、700℃未満の温度に曝すとγ”相(金属間化合物)を析出して高強度化する。しかし、長時間高温下に曝すと、析出したγ”相がδ相やラーベス相に変態してしまう。δ相やラーベス相は硬く脆いため、一般に脆化相とされ、析出することが望ましくないとされている。また、このような変態が起こることは材料特性が大きく変化することを意味しており、長時間の安定した特性を求められる蒸気タービンへの適用にあたり、信頼性が課題となる。   Since Alloy 625 is a solid solution strengthening material, it is usually used as it is, and is not subjected to aging heat treatment. Alloy 625 is an alloy having excellent heat resistance and corrosion resistance below 500 ° C., and when exposed to temperatures below 700 ° C., the γ ″ phase (intermetallic compound) precipitates to increase the strength. When exposed, the precipitated γ ”phase is transformed into a δ phase or a Laves phase. Since the δ phase and Laves phase are hard and brittle, they are generally considered to be embrittled phases and are not desired to be precipitated. Moreover, the occurrence of such a transformation means that the material characteristics change greatly, and reliability is an issue in application to a steam turbine that requires stable characteristics over a long period of time.

特許文献3には、合金625(Alloy625)からタービンバケットカバーを熱機械的に成形し、該タービンバケットカバーを約538℃〜760℃で約100時間以下、特に約677℃で約50時間熱処理する方法が記載されており、該熱処理は、転位構造の保存およびγ”析出物発現により二次強度を付与するのに用いられる旨、ならびに平衡δ相を形成しないようにしながらγ”を核形成させて成長させるのに十分な時間をとれるように行う旨が記載されている。しかし、上述のようにγ”相は準安定相であるため、長時間の特性の安定性には懸念がある。特にA−USCプラントでは蒸気温度が700℃を超えるため、長時間の使用でδ相やラーベス相が析出することが懸念される。   In Patent Document 3, a turbine bucket cover is thermo-mechanically formed from an alloy 625 (Alloy 625), and the turbine bucket cover is heat-treated at about 538 ° C. to 760 ° C. for about 100 hours or less, particularly at about 677 ° C. for about 50 hours. A method is described, the heat treatment being used to conserve the dislocation structure and to give secondary strength through the formation of γ ″ precipitates, and to nucleate γ ″ while not forming an equilibrium δ phase. It is described that it is performed so that sufficient time is allowed for growth. However, as described above, since the γ ″ phase is a metastable phase, there is a concern about the stability of the characteristics for a long time. Especially in the A-USC plant, the steam temperature exceeds 700 ° C. There is concern about the precipitation of δ phase and Laves phase.

従って、本発明は高い耐力を有し、かつ高温下でも長時間安定した特性を有するAlloy625からなる大型鋳造部材を提供することを目的とする。   Accordingly, an object of the present invention is to provide a large-sized cast member made of Alloy 625 that has a high yield strength and has characteristics that are stable for a long time even at high temperatures.

本発明者らは上述したような問題を検討した結果、Alloy625を用いて製造した大型鋳造部材において、熱処理により予め積極的にδ相またはラーベス相を析出させることにより、耐力を向上させることができることを見出した。   As a result of examining the problems as described above, the present inventors have been able to improve the yield strength by positively precipitating a δ phase or a Laves phase by heat treatment in a large cast member manufactured using Alloy 625. I found.

本発明は、Cr:20〜23重量%、Mo:8〜10重量%、Nb+Ta:3.15〜4.15重量%、Fe:0〜5重量%、Co:0〜1重量%、Ti:0〜0.4重量%、Al:0〜0.4重量%および不可避の不純物を含む組成を有するニッケル基合金からなり、(1)デンドライト境界および粒界にδ相もしくはラーベス相が析出していること、または(2)粒界にMC型、M23型もしくはMC型炭化物が析出していることの少なくともいずれかの特徴を有する大型鋳造部材に関する。 The present invention is Cr: 20-23 wt%, Mo: 8-10 wt%, Nb + Ta: 3.15-4.15 wt%, Fe: 0-5 wt%, Co: 0-1 wt%, Ti: It consists of a nickel-base alloy having a composition containing 0 to 0.4% by weight, Al: 0 to 0.4% by weight, and inevitable impurities. (1) A δ phase or Laves phase is precipitated at the dendrite boundaries and grain boundaries. Or (2) a large cast member having at least one of the following characteristics: MC type, M 23 C 6 type or M 6 C type carbide is precipitated at the grain boundaries.

また、本発明は上記大型鋳造部材の製造方法であって、Cr:20〜23重量%、Mo:8〜10重量%、Nb+Ta:3.15〜4.15重量%、Fe:0〜5重量%、Co:0〜1重量%、Ti:0〜0.4重量%、Al:0〜0.4重量%および不可避の不純物を含む組成を有するニッケル基合金を用いて鋳造を行う工程、および得られた鋳造部材を、溶体化処理の後、700〜820℃で8〜200時間熱処理する工程を含む大型鋳造部材の製造方法に関する。   Moreover, this invention is a manufacturing method of the said large sized cast member, Comprising: Cr: 20-23 weight%, Mo: 8-10 weight%, Nb + Ta: 3.15-4.15 weight%, Fe: 0-5 weight %, Co: 0 to 1% by weight, Ti: 0 to 0.4% by weight, Al: 0 to 0.4% by weight, and casting using a nickel-based alloy having a composition containing inevitable impurities, and It is related with the manufacturing method of the large sized cast member including the process of heat-processing the obtained cast member at 700-820 degreeC for 8 to 200 hours after solution treatment.

本発明により、十分な耐力を有し、かつ高温下でも長時間安定した特性を有する大型鋳造部材を提供することができる。本発明の大型鋳造部材は、蒸気タービンの部材として、特に蒸気温度が700℃を超える蒸気タービンの部材として好適である。   According to the present invention, it is possible to provide a large-sized cast member having sufficient proof strength and stable characteristics for a long time even at high temperatures. The large cast member of the present invention is suitable as a member of a steam turbine, particularly as a member of a steam turbine having a steam temperature exceeding 700 ° C.

Alloy625の一般的なTTT(Time-Temperature-Transformation)図である。It is a general TTT (Time-Temperature-Transformation) diagram of Alloy625.

本発明で用いるニッケル基合金は、Crを20〜23重量%、Moを8〜10重量%、NbとTaをあわせて3.15〜4.15重量%、Feを0〜5重量%、Coを0〜1重量%、Tiを0〜0.4重量%、およびAlを0〜0.4重量%含み、さらに不可避の不純物を含む化学組成を有する。そのようなニッケル基合金はAlloy625と称され、市販されている。以下、本明細書においてこのような化学組成を有するニッケル基合金をAlloy625と称する。   The nickel-base alloy used in the present invention is composed of 20 to 23% by weight of Cr, 8 to 10% by weight of Mo, 3.15 to 4.15% by weight of Nb and Ta, 0 to 5% by weight of Fe, Co The chemical composition contains 0 to 1 wt% of Ti, 0 to 0.4 wt% of Ti, and 0 to 0.4 wt% of Al, and further contains inevitable impurities. Such a nickel-based alloy is called Alloy 625 and is commercially available. Hereinafter, a nickel-base alloy having such a chemical composition is referred to as Alloy 625 in this specification.

通常、Alloy625は溶体化処理のままで使用され、優れた耐食性および耐熱性を有するが、600℃以上の高温環境下では金属間化合物や炭化物が析出し、特性が大きく変化することが知られている。図1にAlloy625の一般的なTTT(Time-Temperature-Transformation)図を示す。   Normally, Alloy 625 is used as a solution treatment and has excellent corrosion resistance and heat resistance. However, it is known that intermetallic compounds and carbides precipitate in a high temperature environment of 600 ° C. or more, and the characteristics change greatly. Yes. FIG. 1 shows a general TTT (Time-Temperature-Transformation) diagram of Alloy 625.

上述した特許文献3に記載の方法では、Alloy625を熱処理してγ”相を析出させることにより強度の向上を図っている。特許文献3の方法の熱処理条件は、図1のTTT図からもわかるように、δ相やラーベス相が析出しにくい条件である。実際、特許文献3には、δ相を形成しないようにしなければならないこと、および649℃未満の運転温度であればγ”相は安定であり望ましくないδ相に戻ることがないことが明記されている。しかし、γ”相は準安定相であるため、高温に長時間曝されるとδ相やラーベス相といった別の金属間化合物に変化してしまう。図1のTTT図によれば、例えば700℃の状態が長時間続くと、先にγ”相が析出するものの、100時間程度が経過するとラーベス相やδ相の析出が始まる。熱力学的にはγ”相よりもラーベス相やδ相のほうが安定相であるため、いずれγ”相は消滅してしまう。γ”相は強度を高めるために有用な相として、他の合金(Alloy718など)でも利用されている。しかしγ”からδ相やラーベス相への相変化が起こってしまうと、部材の特性が大きく変化することが懸念される。これは長時間(数万〜数十万時間)運転する機器(例えば蒸気タービンなど)にとっては、信頼性の低下を招きかねず好ましくない。   In the method described in Patent Document 3, the strength is improved by heat-treating Alloy 625 to precipitate the γ ″ phase. The heat treatment conditions of the method of Patent Document 3 can also be seen from the TTT diagram of FIG. Thus, it is a condition that the δ phase and the Laves phase are difficult to precipitate.In fact, Patent Document 3 states that the δ phase must not be formed, and that the γ ”phase has an operating temperature of less than 649 ° C. It is specified that it is stable and does not return to the undesirable δ phase. However, since the γ ″ phase is a metastable phase, when it is exposed to a high temperature for a long time, it changes to another intermetallic compound such as δ phase or Laves phase. According to the TTT diagram of FIG. If this state continues for a long time, the γ ”phase is precipitated first, but after about 100 hours, the Laves phase and the δ phase start to precipitate. Thermodynamically, the Laves phase and the δ phase are more stable than the γ ″ phase, so the γ ″ phase will eventually disappear. The γ ″ phase is also used in other alloys (such as Alloy 718) as a useful phase for increasing the strength. However, if the phase change from γ ″ to δ phase or Laves phase occurs, the characteristics of the member There are concerns that it will change significantly. This is not preferable for a device (for example, a steam turbine) that operates for a long time (tens of thousands to hundreds of thousands of hours), which may cause a decrease in reliability.

特に大型の鋳造品の場合は、凝固速度が遅いため、組織(デンドライト、結晶粒)が大きくなり、ミクロ偏析も大きくなる。これは同じ結晶粒の中で組成的なバラつきがあることを意味し、析出挙動に関しても図1のTTT図のような挙動を示さないことが懸念される。   In particular, in the case of a large cast product, since the solidification rate is slow, the structure (dendrites, crystal grains) increases, and the microsegregation also increases. This means that there is compositional variation among the same crystal grains, and there is a concern that the precipitation behavior does not show the behavior as shown in the TTT diagram of FIG.

本発明者らは、実際にAlloy625の大型鋳造部材を作製し、溶体化処理後、各種条件(時間と温度)で時効熱処理を行う試験を実施したところ、デンドライト境界とデンドライトコア、粒界など、場所によって析出挙動が異なることを確認した。また、簡易的な機械的特性評価として硬度を測定したところ、場所によって硬度が大きく異なることを確認した。これは、デンドライト境界部にはNbなどの元素が濃縮するために析出物が析出しやすく、逆にデンドライトコアについては所定の化学成分に達していないため析出物が析出しにくいことによるものと考えられる。従って、大型鋳造部材の場合、ミクロ的には、これまで知られている図1のTTT図に表されるようなAlloy625の析出挙動は当てはまらないといえる。   The inventors actually made a large cast member of Alloy 625, and after performing solution treatment, and conducted a test for aging heat treatment under various conditions (time and temperature), dendritic boundary and dendritic core, grain boundaries, It was confirmed that the precipitation behavior differs depending on the location. Moreover, when the hardness was measured as a simple mechanical property evaluation, it was confirmed that the hardness greatly varied depending on the location. This is considered to be due to the fact that precipitates are likely to precipitate because the elements such as Nb are concentrated at the dendritic boundary, and conversely, because the dendritic core does not reach the prescribed chemical composition, it is difficult for the precipitates to precipitate. It is done. Therefore, in the case of a large cast member, it can be said that the precipitation behavior of Alloy 625 as represented in the TTT diagram of FIG.

本発明者らは、Alloy625の大型鋳造部材を各種条件で時効熱処理したものについて、特にデンドライトコアおよびデンドライト境界に着目して組織観察を行った。すると、特定条件下で熱処理したものにおいて、デンドライトコアにはほとんど組織変化がない一方でデンドライト境界に析出物が多く見られるものは、耐力が向上しており、かつ大きな延性の低下もみられないことを発見した。該析出物は、過去の報告などからδ相またはラーベス相であると推定された。すなわち、本発明は、従来脆化相と考えられていたδ相およびラーベス相が予め適度に析出しているほうがAlloy625の耐力の向上には有利であり、延性にも大きな影響はないという予想外の発見に基づいている。   The inventors of the present invention have observed the structure of an alloy 625 large-sized cast member subjected to aging heat treatment under various conditions, particularly focusing on the dendrite core and the dendrite boundary. When heat treatment is performed under specific conditions, the dendrite core has almost no structural change, but a large amount of precipitates are seen at the dendrite boundary, the proof stress is improved, and there is no significant decrease in ductility. I found The precipitate was estimated to be δ phase or Laves phase from past reports. That is, according to the present invention, it is unexpected that the δ phase and Laves phase, which were conventionally considered to be embrittled phases, are appropriately precipitated in advance to improve the yield strength of Alloy 625 and have no significant effect on ductility. Based on the discovery.

本発明は、Alloy625からなる大型鋳造部材であって、(1)デンドライト境界および粒界にδ相またはラーベス相が析出しているか、または(2)粒界にMC型、M23型もしくはMC型炭化物が析出していることを特徴とする。本発明の大型鋳造部材は(1)と(2)の特徴の両方を有していてもよい。δ相および/またはラーベス相と炭化物が両方析出していると、より優れた耐力向上効果が得られると考えられる。またこれらの他にγ”相が析出してしてもよい。 The present invention is a large cast member made of Alloy 625, wherein (1) δ phase or Laves phase is precipitated at the dendrite boundary and grain boundary, or (2) MC type, M 23 C 6 type or M 6 C-type carbide is precipitated. The large cast member of the present invention may have both the features (1) and (2). If both the δ phase and / or Laves phase and carbide are precipitated, it is considered that a more excellent yield strength improving effect can be obtained. In addition to these, a γ ″ phase may be precipitated.

Alloy625におけるγ”相、δ相およびラーベス相を構成する金属間化合物、ならびにMC型、M23型もしくはMC型炭化物の主たる成分は当業者に公知である。金属間化合物は2種以上、特に3種以上、とりわけ4種以上析出していることが好ましい。炭化物は1種以上析出していることが好ましい。 The main components of the intermetallic compounds constituting the γ ″ phase, δ phase and Laves phase, and MC type, M 23 C 6 type or M 6 C type carbide in Alloy 625 are known to those skilled in the art. Two types of intermetallic compounds are known. In particular, it is preferable that three or more types, particularly four or more types, are precipitated, and one or more types of carbides are preferably precipitated.

本明細書における「大型鋳造部材」とは、例えば部材重量や最大肉厚部の厚みにより定義することができる。部材重量であれば1トン以上、特に5トン以上、とりわけ10トン以上のものが該当する。最大肉厚部であれば50mmm以上、特に100mm以上、とりわけ200mm以上のものが該当する。本明細書において「大型鋳造部材」とは上記の定義のうちの少なくともいずれかに該当するものを意味する。   The “large cast member” in this specification can be defined by, for example, the member weight or the thickness of the maximum thickness portion. The weight of the member corresponds to 1 ton or more, particularly 5 ton or more, especially 10 ton or more. If it is the maximum thickness part, the thing of 50 mm or more, especially 100 mm or more, especially 200 mm or more corresponds. In the present specification, “large cast member” means a member corresponding to at least one of the above definitions.

本発明における大型鋳造部材の具体例としては、例えば蒸気タービンなどにおけるタービンケーシング、タービンバルブケーシング、ノズルボックス、エルボのような、特に高温下で用いられるものが挙げられる。本発明の大型鋳造部材は、680℃以上、特に700℃以上、とりわけ750℃以上の高温に長時間曝されても大きな特性の変化を起こしにくいため、蒸気タービンの部材として好適である。   Specific examples of the large cast member in the present invention include those used particularly at high temperatures such as a turbine casing, a turbine valve casing, a nozzle box, and an elbow in a steam turbine. The large cast member of the present invention is suitable as a member of a steam turbine because it does not easily change a large characteristic even when exposed to a high temperature of 680 ° C. or higher, particularly 700 ° C. or higher, particularly 750 ° C. or higher for a long time.

本発明の大型鋳造部材は、Alloy625を用いて鋳造を行う工程、および得られた鋳造部材を700〜820℃で8〜200時間熱処理する工程を含む方法により製造することができる。   The large cast member of the present invention can be produced by a method including a step of casting using Alloy 625 and a step of heat-treating the obtained cast member at 700 to 820 ° C. for 8 to 200 hours.

鋳造は真空雰囲気下やアルゴンなどの不活性雰囲気下で行うことができる。鋳造後、通常の溶体化処理を施した後に熱処理(時効熱処理)を行う。溶体化処理は、例えば1050〜1250℃で1〜20時間加熱した後に水冷で冷却することにより行う。この溶体化処理の後の熱処理により、耐性の向上に寄与するδ相もしくはラーベス相および/またはMC型、M23型もしくはMC型炭化物が析出する。 Casting can be performed in a vacuum atmosphere or an inert atmosphere such as argon. After casting, a normal solution treatment is performed, followed by heat treatment (aging heat treatment). The solution treatment is performed, for example, by heating at 1050 to 1250 ° C. for 1 to 20 hours and then cooling with water. By the heat treatment after the solution treatment, δ phase or Laves phase and / or MC type, M 23 C 6 type or M 6 C type carbide contributing to the improvement of the resistance are precipitated.

鋳造部材の熱処理は、700℃未満の温度では、析出速度が遅いため熱処理に長時間を要し、短時間ではγ”相の析出のみとなってしまう。一方、820℃超の温度では、析出速度が速いため、延性の低下が懸念される。従って、熱処理条件は、材料特性および製造コストなどを考慮して700〜820℃(より好ましくは750〜800℃、さらに好ましくは760〜800℃)で8〜200時間(より好ましくは16〜120時間)とすることが好ましい。   The heat treatment of the cast member requires a long time for the heat treatment at a temperature lower than 700 ° C. because the precipitation rate is slow, and only a γ ″ phase is precipitated in a short time. On the other hand, at a temperature higher than 820 ° C. Since the speed is high, there is a concern that the ductility may be lowered.Therefore, the heat treatment conditions are 700 to 820 ° C. (more preferably 750 to 800 ° C., more preferably 760 to 800 ° C.) in consideration of material characteristics and manufacturing cost. 8 to 200 hours (more preferably 16 to 120 hours).

より効率的に金属間化合物を析出させるために、熱処理を2段階で行うこともできる。例えば、1段階目はδ相およびラーベス相が効率的に析出する780〜820℃で熱処理を行って核を生成させ、次いで2段階目で析出したδ相およびラーベス相を増やすべく700〜750℃で熱処理を行うことができる。熱処理時間は、1段階目は1〜4時間、2段階目は4〜120時間とするのが好ましい。   In order to precipitate the intermetallic compound more efficiently, the heat treatment can be performed in two stages. For example, heat treatment is performed at 780 to 820 ° C. in which the δ phase and Laves phase are efficiently precipitated in the first stage to generate nuclei, and then 700 to 750 ° C. in order to increase the δ phase and Laves phase precipitated in the second stage. Heat treatment can be performed. The heat treatment time is preferably 1 to 4 hours for the first stage and 4 to 120 hours for the second stage.

以下、実施例を用いて本発明をより詳細に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example, this invention is not limited to these Examples.

鋳造により試作したインコネル625(IN625)からなる大型部材に650〜850℃の範囲の温度で熱処理を施した。熱処理時間は8〜200時間の範囲とした。熱処理後、JIS Z 2241に従って室温下で引張試験を行い、0.2%耐力を測定した。また、対照として熱処理を施さなかったものについても、同様に0.2%耐力を測定した。結果を表1にまとめた。   A large-sized member made of Inconel 625 (IN625) produced by casting was heat-treated at a temperature in the range of 650 to 850 ° C. The heat treatment time was in the range of 8 to 200 hours. After heat treatment, a tensile test was performed at room temperature in accordance with JIS Z 2241 to measure 0.2% yield strength. Moreover, 0.2% yield strength was similarly measured about the thing which did not heat-process as a control | contrast. The results are summarized in Table 1.

Figure 2014070276
Figure 2014070276

650℃では析出物の析出速度が遅く、十分な強度の向上が見られなかった一方、850℃では、耐力は向上したものの、別途測定した延性の低下が顕著であった。熱処理温度を700℃〜820℃の範囲とした場合は、所期の耐力向上効果が得られ、かつ延性にも特に問題がみられなかった。熱処理時間は8時間から耐力向上効果がみられ、特に熱処理温度が820℃の場合には8時間で十分な耐力向上効果がみられた。また、熱処理温度が700〜800℃の範囲である場合は、熱処理時間を48時間以上とした場合に特に耐力向上効果がみられた。   At 650 ° C., the precipitation rate of the precipitates was slow, and a sufficient improvement in strength was not observed. On the other hand, at 850 ° C., although the yield strength was improved, the decrease in ductility measured separately was significant. When the heat treatment temperature was in the range of 700 ° C. to 820 ° C., the desired yield strength improvement effect was obtained, and no particular problem was found in ductility. The effect of improving the yield strength was seen from 8 hours, and when the heat treatment temperature was 820 ° C., the effect of improving the yield strength was seen in 8 hours. In addition, when the heat treatment temperature was in the range of 700 to 800 ° C., particularly when the heat treatment time was 48 hours or more, the effect of improving the yield strength was observed.

Claims (5)

Cr:20〜23重量%、Mo:8〜10重量%、Nb+Ta:3.15〜4.15重量%、Fe:0〜5重量%、Co:0〜1重量%、Ti:0〜0.4重量%、Al:0〜0.4重量%および不可避の不純物を含む組成を有するニッケル基合金からなり、
(1)デンドライト境界および粒界にδ相もしくはラーベス相が析出していること、または
(2)粒界にMC型、M23型もしくはMC型炭化物が析出していること
の少なくともいずれかの特徴を有する大型鋳造部材。
Cr: 20-23% by weight, Mo: 8-10% by weight, Nb + Ta: 3.15-4.15% by weight, Fe: 0-5% by weight, Co: 0-1% by weight, Ti: 0-0. 4% by weight, Al: 0 to 0.4% by weight and a nickel-base alloy having a composition containing inevitable impurities,
(1) δ phase or Laves phase is precipitated at the dendrite boundary and grain boundary, or (2) at least MC type, M 23 C 6 type or M 6 C type carbide is precipitated at the grain boundary. A large cast member having any of the characteristics.
上記(1)および(2)の特徴を両方有する、請求項1に記載の大型鋳造部材。   The large cast member according to claim 1, which has both the features (1) and (2). Cr:20〜23重量%、Mo:8〜10重量%、Nb+Ta:3.15〜4.15重量%、Fe:0〜5重量%、Co:0〜1重量%、Ti:0〜0.4重量%、Al:0〜0.4重量%および不可避の不純物を含む組成を有するニッケル基合金を用いて鋳造を行う工程、および
得られた鋳造部材を、溶体化処理の後、700〜820℃で8〜200時間熱処理する工程
を含む、請求項1または2に記載の大型鋳造部材の製造方法。
Cr: 20-23% by weight, Mo: 8-10% by weight, Nb + Ta: 3.15-4.15% by weight, Fe: 0-5% by weight, Co: 0-1% by weight, Ti: 0-0. 4% by weight, Al: 0 to 0.4% by weight and a step of casting using a nickel-base alloy having a composition containing inevitable impurities, and the obtained cast member is subjected to 700 to 820 after solution treatment. The manufacturing method of the large sized cast member of Claim 1 or 2 including the process heat-processed at 8 degreeC for 8-200 hours.
前記熱処理が2段階の熱処理からなり、1段階目の熱処理温度が780〜820℃であり、2段階目の熱処理温度が700〜750℃である、請求項3に記載の方法。   4. The method according to claim 3, wherein the heat treatment comprises a two-step heat treatment, a heat treatment temperature of the first step is 780 to 820 ° C., and a heat treatment temperature of the second step is 700 to 750 ° C. 5. 蒸気タービンのタービンケーシング、タービンバルブケーシング、ノズルボックスまたはエルボ部材である、請求項1または2に記載の大型鋳造部材。   The large cast member according to claim 1 or 2, which is a turbine casing, a turbine valve casing, a nozzle box or an elbow member of a steam turbine.
JP2012220365A 2012-10-02 2012-10-02 Large cast member made of nickel base alloy and method for producing the same Expired - Fee Related JP6148843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012220365A JP6148843B2 (en) 2012-10-02 2012-10-02 Large cast member made of nickel base alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012220365A JP6148843B2 (en) 2012-10-02 2012-10-02 Large cast member made of nickel base alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014070276A true JP2014070276A (en) 2014-04-21
JP6148843B2 JP6148843B2 (en) 2017-06-14

Family

ID=50745769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012220365A Expired - Fee Related JP6148843B2 (en) 2012-10-02 2012-10-02 Large cast member made of nickel base alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP6148843B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105543747A (en) * 2015-12-21 2016-05-04 西北工业大学 Preparation method of material increase manufactured nickel-based high-temperature alloy reserved with Laves phase
EP3290536A1 (en) * 2016-08-31 2018-03-07 General Electric Company Grain refinement in in706 using laves phase precipitation
CN108893689A (en) * 2018-06-20 2018-11-27 中国第二重型机械集团德阳万航模锻有限责任公司 Inconel718 alloy disc forging homogenizes manufacturing method
CN109022925A (en) * 2018-08-23 2018-12-18 重庆材料研究院有限公司 A method of reducing Laves phase in nickel base superalloy steel ingot
CN109967742A (en) * 2019-04-30 2019-07-05 西北工业大学 A kind of nickel base superalloy and preparation method thereof
CN115298335A (en) * 2020-04-03 2022-11-04 日本冶金工业株式会社 Ni-Cr-Mo-Nb alloy

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63137133A (en) * 1986-11-28 1988-06-09 Sumitomo Metal Ind Ltd Highly corrosion-resistant precipitation hardening-type ni-base alloy
JPH02290954A (en) * 1989-04-28 1990-11-30 Nisshin Steel Co Ltd Manufacture of sheet material of ni-base alloy
JPH0711404A (en) * 1993-06-29 1995-01-13 Sumitomo Metal Ind Ltd Production of ni-base alloy having intergranular fracture resistance
JPH0711403A (en) * 1993-06-29 1995-01-13 Sumitomo Metal Ind Ltd Production of ni-base alloy having intergranular fracture resistance
JP2002302726A (en) * 2001-04-05 2002-10-18 Daido Steel Co Ltd HIGH HARDNESS- AND HIGH CORROSION-RESISTANT Ni ALLOY
JP2010261104A (en) * 2009-05-06 2010-11-18 General Electric Co <Ge> NiCrMoNb ALLOY WITH EXCELLENT MECHANICAL PROPERTY
JP2011052303A (en) * 2009-09-04 2011-03-17 Hitachi Ltd Ni-BASED CASTING ALLOY AND TURBINE CASING
JP2011084805A (en) * 2009-09-17 2011-04-28 Toshiba Corp Ni-BASED ALLOY TO BE FORGED OR ROLLED, AND COMPONENT FOR STEAM TURBINE FORMED BY USING THE ALLOY AS MATERIAL
JP2012517524A (en) * 2009-02-06 2012-08-02 オウベル・アンド・デュヴァル Method for manufacturing parts made from nickel-based superalloys and corresponding parts

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63137133A (en) * 1986-11-28 1988-06-09 Sumitomo Metal Ind Ltd Highly corrosion-resistant precipitation hardening-type ni-base alloy
JPH02290954A (en) * 1989-04-28 1990-11-30 Nisshin Steel Co Ltd Manufacture of sheet material of ni-base alloy
JPH0711404A (en) * 1993-06-29 1995-01-13 Sumitomo Metal Ind Ltd Production of ni-base alloy having intergranular fracture resistance
JPH0711403A (en) * 1993-06-29 1995-01-13 Sumitomo Metal Ind Ltd Production of ni-base alloy having intergranular fracture resistance
JP2002302726A (en) * 2001-04-05 2002-10-18 Daido Steel Co Ltd HIGH HARDNESS- AND HIGH CORROSION-RESISTANT Ni ALLOY
JP2012517524A (en) * 2009-02-06 2012-08-02 オウベル・アンド・デュヴァル Method for manufacturing parts made from nickel-based superalloys and corresponding parts
JP2010261104A (en) * 2009-05-06 2010-11-18 General Electric Co <Ge> NiCrMoNb ALLOY WITH EXCELLENT MECHANICAL PROPERTY
JP2011052303A (en) * 2009-09-04 2011-03-17 Hitachi Ltd Ni-BASED CASTING ALLOY AND TURBINE CASING
JP2011084805A (en) * 2009-09-17 2011-04-28 Toshiba Corp Ni-BASED ALLOY TO BE FORGED OR ROLLED, AND COMPONENT FOR STEAM TURBINE FORMED BY USING THE ALLOY AS MATERIAL

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105543747A (en) * 2015-12-21 2016-05-04 西北工业大学 Preparation method of material increase manufactured nickel-based high-temperature alloy reserved with Laves phase
KR102325136B1 (en) 2016-08-31 2021-11-15 제네럴 일렉트릭 컴퍼니 Grain refinement in in706 using laves phase precipitation
KR20180025206A (en) * 2016-08-31 2018-03-08 제네럴 일렉트릭 컴퍼니 Grain refinement in in706 using laves phase precipitation
CN107794471A (en) * 2016-08-31 2018-03-13 通用电气公司 The crystal grain refinement in IN706 is separated out using Laves phases
JP2018059184A (en) * 2016-08-31 2018-04-12 ゼネラル・エレクトリック・カンパニイ Grain refinement in in706 using laves phase precipitation
EP3290536A1 (en) * 2016-08-31 2018-03-07 General Electric Company Grain refinement in in706 using laves phase precipitation
CN107794471B (en) * 2016-08-31 2021-11-30 通用电气公司 Grain refinement IN IN706 using Laves phase precipitation
JP7134606B2 (en) 2016-08-31 2022-09-12 ゼネラル・エレクトリック・カンパニイ Grain refinement in IN706 by Laves phase precipitation
CN108893689A (en) * 2018-06-20 2018-11-27 中国第二重型机械集团德阳万航模锻有限责任公司 Inconel718 alloy disc forging homogenizes manufacturing method
CN108893689B (en) * 2018-06-20 2020-09-04 中国第二重型机械集团德阳万航模锻有限责任公司 Inconel718 alloy disc forging homogenizing manufacturing method
CN109022925A (en) * 2018-08-23 2018-12-18 重庆材料研究院有限公司 A method of reducing Laves phase in nickel base superalloy steel ingot
CN109967742A (en) * 2019-04-30 2019-07-05 西北工业大学 A kind of nickel base superalloy and preparation method thereof
CN115298335A (en) * 2020-04-03 2022-11-04 日本冶金工业株式会社 Ni-Cr-Mo-Nb alloy

Also Published As

Publication number Publication date
JP6148843B2 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
JP5232492B2 (en) Ni-base superalloy with excellent segregation
JP5478601B2 (en) Ni-based forged alloy and gas turbine using the same
Xu et al. Progress in application of rare metals in superalloys
CA2901259C (en) Nickel-cobalt alloy
JP6148843B2 (en) Large cast member made of nickel base alloy and method for producing the same
US20130206287A1 (en) Co-based alloy
US8685316B2 (en) Ni-based heat resistant alloy, gas turbine component and gas turbine
JP5500452B2 (en) Ni-based alloy manufacturing method and Ni-based alloy
JP5921401B2 (en) Ni-based alloy, method for producing the same, and turbine component
KR20200002965A (en) Precipitation Hardening Cobalt-Nickel Base Superalloys and Articles Made therefrom
JP2009084684A (en) Nickel-based alloy for turbine rotor of steam turbine, and turbine rotor of steam turbine
Lee et al. Microstructural changes by heat treatment for single crystal superalloy exposed at high temperature
JP2013208628A (en) Ni-BASED ALLOY WELDING MATERIAL, AND WELDING WIRE, ROD AND POWDER USING THE SAME
Zhang et al. Effects of aluminum and molybdenum content on the microstructure and properties of multi-component γ′-strengthened cobalt-base superalloys
JP4387331B2 (en) Ni-Fe base alloy and method for producing Ni-Fe base alloy material
JP2018059184A (en) Grain refinement in in706 using laves phase precipitation
JP6068935B2 (en) Ni-base casting alloy and steam turbine casting member using the same
JP2014070230A (en) METHOD FOR PRODUCING Ni-BASED SUPERALLOY
JP5932622B2 (en) Austenitic heat resistant steel and turbine parts
WO2017170433A1 (en) Method for producing ni-based super heat-resistant alloy
KR20150104318A (en) super heat resistant alloy and the manufacturing method thereof
JP2014051698A (en) Ni-BASED FORGING ALLOY, AND GAS TURBINE USING THE SAME
KR20180081313A (en) Directional solidification ni base superalloy and manufacturing method therefor
JP6688598B2 (en) Austenitic steel and cast austenitic steel using the same
JP2015086432A (en) Austenitic heat resistant steel and turbine component

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140123

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140206

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140828

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170522

R150 Certificate of patent or registration of utility model

Ref document number: 6148843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees