JPS62158845A - High-strength ni-base alloy excellent in corrosion resistance - Google Patents

High-strength ni-base alloy excellent in corrosion resistance

Info

Publication number
JPS62158845A
JPS62158845A JP120086A JP120086A JPS62158845A JP S62158845 A JPS62158845 A JP S62158845A JP 120086 A JP120086 A JP 120086A JP 120086 A JP120086 A JP 120086A JP S62158845 A JPS62158845 A JP S62158845A
Authority
JP
Japan
Prior art keywords
less
content
alloy
cracking resistance
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP120086A
Other languages
Japanese (ja)
Other versions
JPH0674472B2 (en
Inventor
Masaaki Igarashi
正晃 五十嵐
Yasutaka Okada
康孝 岡田
Akio Ikeda
昭夫 池田
Shiro Mukai
向井 史朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP61001200A priority Critical patent/JPH0674472B2/en
Publication of JPS62158845A publication Critical patent/JPS62158845A/en
Publication of JPH0674472B2 publication Critical patent/JPH0674472B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve stress corrosion cracking resistance and hydrogen cracking resistance by adding a limited amount of Cu and by specifying the relationship among the additive quantities of Cr, Mo, and W as well as the relationship between the additive quantities of Mo and W in an Ni-base alloy having a specific composition. CONSTITUTION:The alloy has a composition consisting of, by weight ratio, <=0.1% C, >0.05-0.30% Si, <=2.0% Mn, <=0.030% P, <=0.0050% S, 45-60% Ni, 15-30% Cr, Mo and/or W so that Mo and W are <16% and <=5.0%, respectively, and inequality I is satisfied, 0.30-3.0% Cu, <=0.050% Ti, 0.30-3.0% Nb, <=1.0% Al, >0.050-0.25% N, and the balance Fe with inevitable impurities. Moreover, in the above composition, conditions represented by inequality II are satisfied. Further, Co, one or more elements among V, Ta, Zr, and Hf, and one or more elements among rare earth elements, Mg, Ca, and Y are incorporated, if necessary. This high-strength Ni-base alloy is applicable to material for oil well tubes, etc.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、腐食環境下、特に従来から注目されていた
所謂サワーガス環境(H2S −Co2− C1−環境
)よりも更に腐食性が苛酷な、イオウ(、S’)がFe
SやNiS等の硫化物としてではなく単体として混入す
るサワーガス環境下においても良好なlll1t応力腐
食割れ性及び耐水素割れ性を有する油井管用高強度Ni
基合金に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is applicable to a corrosive environment, which is more corrosive than the so-called sour gas environment (H2S-Co2-C1- environment), which has attracted attention in the past. Sulfur (,S') is Fe
High-strength Ni for oil country tubular goods that has good resistance to stress corrosion cracking and hydrogen cracking even in a sour gas environment where it is mixed in as a single substance rather than as a sulfide such as S or NiS.
It concerns base alloys.

〈従来技術並びにその問題点〉 近年のエネルギー事情は、油井の深井戸化やサワーガス
環境下での掘井が余儀なくされるところまできており、
高価ではあるが、上記苛酷な環境に十分耐えられるよう
な油井管用高強度・高耐性Ni基合金が開発され、適用
されるようになってきた(例えば、特開昭54−107
828号公報や特開昭54−127831号公報参照)
<Conventional technology and its problems> The energy situation in recent years has reached the point where oil wells have to be dug deeper and wells have to be drilled in sour gas environments.
Although expensive, high-strength, high-durability Ni-based alloys for oil country tubular goods have been developed and are now being applied, as they can withstand the harsh environments mentioned above (for example, Japanese Patent Laid-Open No. 54-107
(See Publication No. 828 and Japanese Unexamined Patent Publication No. 127831/1983)
.

ところが、最近の油井情報によれば、腐食性が苛酷であ
るとされてきた上記サワーガス環境とは別に、該サワー
ガス環境に更にイオウ(S)が単体として混入している
環境が見出され、このような環境においては、これまで
に提案された如き耐サワーガス用Ni基合金をもってし
ても耐食性の点で十分に満足できるものでないことが明
らかとなった。
However, according to recent oil well information, in addition to the above-mentioned sour gas environment, which has been considered to be severely corrosive, it has been found that there is also an environment in which sulfur (S) is mixed as a single substance. In such an environment, it has become clear that even the sour gas resistant Ni-based alloys proposed so far are not fully satisfactory in terms of corrosion resistance.

この点について更に詳述すると、先にも説明した如く、
近年の新しい油井やガス井では油や天然ガスのほか、水
や塩類(C7−、Br−等)と−緒にH2SやCo2等
の腐食性ガスの混在した環境が多くなる傾向にあったが
、地上にて実施されるこれら環境成分の分析結果による
と、最近、上記腐食性ガスや、水、塩類等にまじってイ
オウ(B)が単体(FeSやNiS等の硫化物形態をと
っていない)で認められるような新たな環境に属する油
井の存在も確認されるようになったのである。このよう
な環境に存在するイオウ(S)は、地中深くにおいてH
2SX二H2S + Bx−0 なる式で示される如く、ポリサルファイド(H2Sx)
になるとも、S単体のまま存在するとも言われているが
、温度や圧力(特にH2S分圧)の状態によっては、 4 S + 4 N20 ’3 3 H2S+ H2S
O4なる式の如くにS或いはH2SO4等の形態となっ
ていることも否定できない。
To elaborate more on this point, as explained earlier,
In recent years, new oil and gas wells have tended to have environments in which not only oil and natural gas but also corrosive gases such as H2S and Co2 are mixed together with water and salts (C7-, Br-, etc.). According to the analysis results of these environmental components conducted on the ground, recently, sulfur (B) has been found mixed with the above corrosive gases, water, salts, etc. as a simple substance (not in the form of sulfides such as FeS or NiS). ), the existence of oil wells that belong to a new environment has also been confirmed. Sulfur (S) that exists in such an environment is H
As shown by the formula 2SX2H2S + Bx-0, polysulfide (H2Sx)
It is also said that S exists as a simple substance, but depending on the temperature and pressure (particularly H2S partial pressure), 4 S + 4 N20 '3 3 H2S + H2S
It cannot be denied that it is in the form of S or H2SO4 as shown in the formula O4.

このうち、H2Sxは、H2Sガスのりサーバー(貯蔵
役)としてH2S濃度を増大させる働きがあり、一方、
H2SO,はpHを低下させる働きがある。
Among these, H2Sx has the function of increasing the H2S concentration as a H2S gas server (storage role), and on the other hand,
H2SO, has the effect of lowering the pH.

ところで、これらの現象を確認するだめ、本発明者等も
H2S −Co2− Ct−環境下とH2S −Co2
−ct−−s m壇上でのNi基合金(含オーステナイ
ト系合金)に存ぼす耐食性の差異に関する調査実験を行
ったが、その結果、イオウ(S)添加の有無によってN
i基合金の耐食性に及ぼす影響が異なり、イオウ(S)
の存在がNi基合金の耐食性を著しく劣化すると言う事
実の確認はなされだが、イオウ(S)が共存した場合の
腐食機構については明晰な解明がなされず、大別して ■ H2Sxり→H2Sのリザーバー説式r H2S+
 5X−1#H2SXJに従ってポリサルファイド(H
2Sx )が高温環境で発生し、H2Sのリザーバーと
して働くので、H2Sxが材料に接すると高H2S環境
と同様の作用をする、■ H2SO4による低pH化説 H2Sが存在しない単体Sのみの環境下でも、水があれ
ば[4S +4H2003H2S + H2SO4Jな
る式に従ってH2Sが発生すると同時にH2SO4も生
成され、これがpHを低下させる、と言う2つの説のい
ずれかが有力であるとの推測の域を脱することはできな
かった。
By the way, in order to confirm these phenomena, the present inventors also conducted experiments under H2S -Co2- Ct- environment and H2S -Co2
-ct--s We conducted a research experiment on the difference in corrosion resistance that exists in Ni-based alloys (austenitic alloys) on a metal platter, and the results showed that N
Sulfur (S) has different effects on the corrosion resistance of i-based alloys.
Although the fact that the presence of sulfur (S) significantly deteriorates the corrosion resistance of Ni-based alloys has been confirmed, the corrosion mechanism when sulfur (S) coexists has not been clearly elucidated, and can be broadly classified into ■ H2Sx → H2S reservoir theory. Formula r H2S+
Polysulfide (H) according to 5X-1#H2SXJ
2Sx ) is generated in a high temperature environment and acts as a reservoir for H2S, so when H2Sx comes into contact with the material, it acts in the same way as in a high H2S environment.■ Low pH theory due to H2SO4 Even in an environment with only simple S in the absence of H2S. , if water is present, H2S is generated and H2SO4 is also generated at the same time according to the formula [4S + 4H2003H2S + H2SO4J, which lowers the pH.This is beyond the realm of speculation, as one of the two theories is likely. I couldn't.

〈問題点を解決するための手段〉 本発明者等は、上述のような観点から、通常のサワーガ
ス環境(H2S + Co2− C1−環境)のみなら
ず、これにイオウ(S)が単体で混入している環境にお
いても十分に満足し得る耐食性を有した高強度合金を提
供すべく更に研究を続けた結果、以下に示される知見を
得るに至ったのである。即ち、(a)  サワーガス環
境に更にイオウ(S)の単体が混入する環境においては
、間違いな〈従来のサワーガス環境におけるNi基合金
の腐食機構と異なった腐食形態が存在し、単体Sは温度
及び圧力(特にH2S分圧)に依存して「SX、 −4
−H2S * H2Sx Jの反応に従い3態(5x−
1、H2S及びH2Sx)に変化することとなり、5X
−1として遊離したイオウ(S)若しくはH2Sxが存
在すると、これが油井管部材に局所的に付着し、その部
分において著しい孔食が発生し、応力腐食割れを引き起
すこと、(b)  従来のサワーガス環境においては上
記反応式に示されるようなイオウ(S)の形態変化がほ
とんど認められず、従って5X−1或いはH2Sxによ
る待遠な腐食形態は生じないが、イオウ(S)の単体が
混入するサワーガス環境で上記のような特異な腐食形態
が起きる理由は、このような環境中においテtd r 
4 S + 4 N20j 3H2S + H2SO,
Jなる反応もなされて、H2Sが発生すると同時にH2
SO4も生じることとなシ、該環境のpHを低下させる
ためと考えられること、 (C)  このような特異な腐食形態を呈する環境にお
いて油井管用材料に十分な耐食性を発揮させるためには
、従来の耐サワーガス用Ni基合金において形成される
耐食性皮膜よりも更に強硬で、かつ修復性の良好な保護
皮膜を形成させることが不可欠であシ、一方では、合金
部材の破壊特性を向上させて孔食の進展を阻止し、応力
腐食割れを未然に防ぐ平置てを講じる必要があること、
(d)  サワーガス環境における従来のNi基油井管
用材料の保護皮膜強度やその修復能は、概ねCr。
<Means for solving the problem> From the above-mentioned viewpoint, the present inventors have developed not only a normal sour gas environment (H2S + Co2- C1- environment) but also a method in which sulfur (S) is mixed alone. As a result of further research in order to provide a high-strength alloy with sufficiently satisfactory corrosion resistance even in such environments, the following knowledge was obtained. That is, (a) In an environment where elemental sulfur (S) is further mixed into the sour gas environment, there is a corrosion form that is different from the corrosion mechanism of Ni-based alloys in the conventional sour gas environment, and elemental S is Depending on the pressure (particularly H2S partial pressure), "SX, -4
-H2S * H2Sx According to the reaction of J, three states (5x-
1, H2S and H2Sx), and 5X
-1 If free sulfur (S) or H2Sx is present, it will locally adhere to oil country tubular members, causing significant pitting corrosion in that area and causing stress corrosion cracking; (b) Conventional sour gas In the environment, there is almost no change in the form of sulfur (S) as shown in the reaction formula above, and therefore, long-awaited corrosion due to 5X-1 or H2Sx does not occur, but simple sulfur (S) may be mixed in. The reason why the above-mentioned peculiar form of corrosion occurs in a sour gas environment is that
4 S + 4 N20j 3H2S + H2SO,
A reaction called J also takes place, and at the same time H2S is generated, H2
(C) In order for OCTG materials to exhibit sufficient corrosion resistance in an environment exhibiting such a unique form of corrosion, conventional It is essential to form a protective film that is stronger and has better repairability than the corrosion-resistant film formed on Ni-based alloys for sour gas resistance. It is necessary to take measures to prevent corrosion from progressing and prevent stress corrosion cracking.
(d) The protective film strength and repair ability of conventional Ni-based oil country tubular materials in a sour gas environment are generally similar to that of Cr.

Mo、Wの含有量に比例して向上するが、単体Sを含む
環境では、これらに加えてCuの役割が翫めて重要であ
り、0.30 % (以下、成分割合を示すチは重量係
とする)以上のCuを含有させた上で、環境温度が25
0℃以下の場合には Cr(%)+ l0M0 (%)+ 5 W(%≧14
0を確保し、また環境温度がより高い300℃以下の場
合には Cr@)+ 10M0(%)+5WC@≧180を確保
しなければ、十分に強硬でしかも修復性の良好な保護皮
膜が形成されないこと、 (e)  更に、前記(C)項でも述べたように、特異
な腐食形態を緩和し合金部材の耐食性を向上させるには
保護皮膜強化策のみでは不十分であり、孔食の進展を阻
止する内質的改善が不可欠であるが、このためには前記
(d)項で示しだ成分調整に加えてNbの添加をも実施
し、これらによってMo −W −Cr−C系炭化物の
析出及びそのクラスター化を抑制することが極めて有効
であること、 (f)  通常は、上記のような高Cr −Mo系のN
i基合金において安価な)Iによる強化を図ろうとして
もその耐応力腐食割れ性に悪影響が及ぶのを防げなかっ
たが、Ni基合金中のTi含有量を特に0.050係以
下に抑えるとNによる固溶強化・加工硬化能が飛躍的に
向上することとなり、これとCr(%)+ 10 Mo
(%)+ 5 W(d≧140なる成分バランスの条件
とを組合わせると、優れた耐応力腐食割れ性と高強度と
を兼備したNi基合金が得られること。
The improvement is proportional to the content of Mo and W, but in an environment containing elemental S, the role of Cu is even more important in addition to these. When the environmental temperature is 25
If the temperature is below 0℃, Cr (%) + l0M0 (%) + 5 W (%≧14
0, and if the environmental temperature is higher than 300℃, Cr@) + 10M0 (%) + 5WC@≧180 is not ensured, otherwise a sufficiently tough protective film with good repairability will be formed. (e) Furthermore, as mentioned in item (C) above, measures to strengthen the protective film alone are insufficient to alleviate the unique forms of corrosion and improve the corrosion resistance of alloy members; It is essential to improve the internal quality to prevent the It is extremely effective to suppress precipitation and its clustering; (f) Normally, high Cr-Mo based N
Even if an attempt was made to strengthen the Ni-based alloy with I (which is inexpensive), it could not prevent the stress corrosion cracking resistance from being adversely affected, but if the Ti content in the Ni-based alloy is particularly suppressed to below 0.050%, Solid solution strengthening and work hardening ability due to N will be dramatically improved, and this and Cr (%) + 10 Mo
(%) + 5 W (When combined with the component balance condition of d≧140, a Ni-based alloy having both excellent stress corrosion cracking resistance and high strength can be obtained.

この発明は、上記知見に基づいてなされたものであり、 Ni基合金を、 C: 0.10%以下、  Sに〇、05超〜0.30
%、Mn:2.0%以下、   P : 0.030%
以下、S:0.0050係以下、 Ni:45〜60係
、Cr 二  15 〜30%  、 Mo及びWの1種以上。
This invention was made based on the above knowledge, and the Ni-based alloy is made of: C: 0.10% or less, S: 〇, over 05 to 0.30%.
%, Mn: 2.0% or less, P: 0.030%
Hereinafter, S: 0.0050% or less, Ni: 45 to 60%, Cr215 to 30%, and one or more of Mo and W.

Moは16%未満、Wは5.0%以下であって、かつ 12≦Mo(%)++W(勉<16 を満足する量、 Cu: o、 30〜3.0%、  Ti:o、050
%以下、Nb: 0.30〜3.0%、 Ae : 1
.0%以下、N:0.050超〜0.25係 を含有し、必要により、更に C○ 50%以下、 V 1Ta 、 Zr及びHfの1挿置上二各々1.0
%以下、 希土類元素: O,l O係以下、 My:0.10係以下、 ca: O,l O係以下、 Y : 0.20チ以下 のうちの1種以上をも含み、 Fe及び他の不可避的不純物:残り から成るとともに、 Cr (%)+ 10 Mo(%)+ 5 W(%)≧
140なる式を満足する成分組成に構成することによシ
、最近見出された油井やガス井における如き、イオウ(
S)を単体として含むところの250℃以下程度のサワ
ーガス環境下においても極めて浸れた耐応力腐食割れ性
及び耐水素割れ性と、高強度とを発揮せしめるようにし
だ点、 に特徴を有するものである。
Mo is less than 16%, W is less than 5.0%, and 12≦Mo(%)++W (an amount satisfying <16), Cu: o, 30 to 3.0%, Ti: o, 050
% or less, Nb: 0.30-3.0%, Ae: 1
.. 0% or less, N: more than 0.050 to 0.25%, and if necessary, C○ 50% or less, V 1Ta, Zr, and Hf 1 and 2 each 1.0
% or less, Rare earth elements: O, l O or less, My: 0.10 or less, ca: O, l O or less, Y: 0.20 or less, including one or more of the following, Fe and others Unavoidable impurities: consisting of the remainder, Cr (%) + 10 Mo (%) + 5 W (%) ≧
By configuring the component composition to satisfy the formula 140, sulfur (
It is characterized by the fact that it exhibits extremely high stress corrosion cracking resistance and hydrogen cracking resistance and high strength even in a sour gas environment of about 250°C or less when containing S) as a single substance. be.

次いで、この発明において、Ni基合金の成分組成を前
述のように数値限定した理由を説明する。
Next, the reason why the composition of the Ni-based alloy is numerically limited as described above in this invention will be explained.

ア) C 合金中のC含有量が0.10 %を超えるとM60タイ
プの炭化物量(但し、MはMo,Ni、Cr、W等であ
る)が著しく増加し、合金の延性並びに靭性を劣化する
ことから、C含有量は0.10 %以下と定めた。なお
、好ましくはC含有量を0.020 %以下にまで低減
することが推奨されるが、特にその含有量をo、 01
0 %以下に抑制すると延性、靭性並びに耐食性はより
一層顕著に改善される。
a) C When the C content in the alloy exceeds 0.10%, the amount of M60 type carbides (where M is Mo, Ni, Cr, W, etc.) increases significantly, deteriorating the ductility and toughness of the alloy. Therefore, the C content was set at 0.10% or less. It is recommended to reduce the C content to 0.020% or less, and in particular, reduce the C content to 0.020% or less.
When suppressed to 0% or less, ductility, toughness, and corrosion resistance are even more significantly improved.

イ)  5i Slは、脱酸剤として有効な成分であるために添加され
るものであるが、多量に添加するとσ、PlLaves
  相等の延性・靭性に対して好ましくない金属間化合
物(以下、b 生成しやすくなる。その上、S1含有量が特に0.30
係を超えると、凝固時のミクロ偏析が助長され1、前記
M、C及びP相の形成が著しく促進される傾向がみられ
る。このような理由で、S1含有量の上限を0.30 
%と定めたが、その含有量を010チ以下にまで低減す
れば、炭化物の粒界析出抑制効果も加わって延性、靭性
並びに耐食性が更に向上する。一方、S1含有量を0.
05 %以下にまで低減することは合金′製造上面倒な
操業を強いられることから、S1含有量は0.05%を
超える範囲と定めた。
b) 5i Sl is added because it is an effective component as a deoxidizing agent, but if it is added in a large amount, σ, Pl Laves
Intermetallic compounds (hereinafter referred to as b), which are unfavorable for the ductility and toughness of the phase, are likely to be formed. Moreover, if the S1 content is particularly 0.30
If the ratio exceeds 1, microsegregation during solidification is promoted, and the formation of the M, C, and P phases tends to be significantly promoted. For this reason, the upper limit of S1 content is set to 0.30.
%, but if the content is reduced to 0.10% or less, the effect of suppressing grain boundary precipitation of carbides is added, and ductility, toughness, and corrosion resistance are further improved. On the other hand, the S1 content was set to 0.
Since reducing the S1 content to 0.05% or less would require troublesome operations in the production of the alloy, the S1 content was set at a range exceeding 0.05%.

つ)  Mn Mnは、通常、脱硫剤として添加される成分であるが、
その含有量が2.0%を超えるとTCP相生酸生成進す
る場合があることから、この発明の合金でf′iMn含
有量を2.0チ以下と定めた。
) Mn Mn is a component usually added as a desulfurizing agent, but
If the content exceeds 2.0%, TCP-phase acid formation may occur, so the f'iMn content in the alloy of the present invention was set at 2.0% or less.

工)P、及びS P及びSは不可避的に混入してくる不純物であシ、合金
中に多量に存在すると粒界偏析により熱間加工性を低下
させ、また耐食性をも劣化させることから、P含有量は
0.030%以下、S含有量は0.0050%以下とそ
れぞれ定めた。
Engineering) P and S P and S are impurities that inevitably enter the alloy, and if they exist in large quantities in an alloy, they reduce hot workability due to grain boundary segregation and also deteriorate corrosion resistance. The P content was determined to be 0.030% or less, and the S content was determined to be 0.0050% or less.

しかしながら、S含有量を特にO,0O07%以下に抑
制すると合金の熱間加工性が飛躍的に向上し、またP含
有量を0.0030%に抑制することで合金の耐水素割
れ性が著しく改善されるので、好ましljP及びSの含
有量をこのようなレベルにマチ低減するのが良い。
However, when the S content is suppressed to 7% or less, the hot workability of the alloy is dramatically improved, and when the P content is suppressed to 0.0030%, the hydrogen cracking resistance of the alloy is significantly improved. Therefore, it is preferable to reduce the contents of ljP and S to such a level.

なお、第1図は、この発明で規定される成分内にてP量
のみ変化させた合金を調整し、30%程度の冷間加工に
よって高強度としたものより、平行部が4.0朋φでG
Lが30.、の試験片を採取し、これに対して10気圧
でH2Sを飽和させたところのH2S −5% NaC
4溶液(25℃)中にて5mA/cm”の陰極電流を付
加した状態でI X 10−71/seeの定歪速度で
の引張試験を行い、その耐水素割れ性を評価したもので
ある。
In addition, Figure 1 shows that the parallel part is 4.0 mm from an alloy prepared by changing only the amount of P within the composition specified by this invention and made high strength by cold working of about 30%. G in φ
L is 30. A test piece of H2S -5% NaC was taken and saturated with H2S at 10 atm.
A tensile test was conducted at a constant strain rate of I x 10-71/see with a cathode current of 5 mA/cm" applied in a 4 solution (25°C) to evaluate its hydrogen cracking resistance. .

また、第2図は、この発明で規定される成分内にてSl
のみ変化させた合金を調整し、1150℃にて高温延性
試験(試験片10mtttφ、歪み速度: 11/ s
ee )を行って熱間加工性に及ぼす影響を示したもの
である。
In addition, FIG. 2 shows that Sl in the components defined by this invention.
A high temperature ductility test was conducted at 1150°C (test piece 10mtttφ, strain rate: 11/s).
ee) to show the effect on hot workability.

この第1図及び第2図からも、P及びS含有量は、でき
れば極低域にまで低減するのが好ましいことが明らかで
ある。
It is clear from FIGS. 1 and 2 that it is preferable to reduce the P and S contents to extremely low levels if possible.

オ)  Ni この発明の合金は、Niマトリックスに固溶強化及び加
工硬化能の良好な元素たるMolCr、W。
e) Ni The alloy of the present invention contains MolCr and W, which are elements with good solid solution strengthening and work hardening ability, in the Ni matrix.

Nb等を添加して強化することを基本としているが、上
記元素の多量添加はオーステナイトの不安定化を招くた
め、オーステナイト基地を安定化するに足るNi量であ
る45%をその含有量の下限と定めた。一方、Niはそ
れ自身加工硬化能を向上させる元素であるが、60%を
超えて含有させると耐水素割れ性が劣化することから、
Ni含有量の上限を60チと定めた。
The basic rule is to add Nb, etc. to strengthen it, but since adding large amounts of the above elements leads to destabilization of austenite, the lower limit of the content is set at 45%, which is the amount of Ni that is sufficient to stabilize the austenite base. It was determined that On the other hand, Ni itself is an element that improves work hardening ability, but if it is contained in excess of 60%, hydrogen cracking resistance deteriorates.
The upper limit of the Ni content was set at 60 inches.

力)  Cr Crは、 Moと共に合金の耐食性及び強度を向上させ
る成分であるが、この効果は15%以上の割合で含有さ
せることにより顕著である。一方、30%を超えてCr
を含有させると合金の熱間加工性が低下し、更にTCP
相が生成しゃすくなることから、Cr含有量?′i15
〜30%と定めた。
Strength) Cr Cr is a component that improves the corrosion resistance and strength of the alloy together with Mo, and this effect is more noticeable when it is contained in a proportion of 15% or more. On the other hand, if Cr exceeds 30%
When containing TCP, the hot workability of the alloy decreases, and TCP
Since phases are less likely to form, the Cr content? 'i15
It was set at ~30%.

キ)  Mo、及びW これらの成分は、Crとの共存下で合金の強度と耐食性
、特に耐孔食性を著しく向上させる作用を有しているの
で1種以上添加含有せしめられるものであるが、その含
有量が(Mo(%)41−W(%)〕 の値で12未満
であると上記作用に所望の効果が得られず、他方、Mo
含有量が16係以上であったり、W含有量が5.0%を
超えたり、或いは(Mo(%) +4rw(イ)〕の値
が16以上である場合には、Crの多量添加の場合にみ
られるようなオーステナイト基地の不安定化を招く。従
って、MoとWの添加においては、Moは16%未満、
Wは、5.○チ以下であって、かつ 12≦Mo(%)+−)W(%)<16を満足する値に
その含有量を定めた。
G) Mo and W These components have the effect of significantly improving the strength and corrosion resistance of the alloy, especially the pitting corrosion resistance, in coexistence with Cr, so one or more of these components may be added. If the content is less than 12 (Mo (%) 41 - W (%)), the desired effect cannot be obtained from the above action, and on the other hand, Mo
If the content is 16 or more, the W content exceeds 5.0%, or the value of (Mo (%) + 4rw (a)) is 16 or more, a large amount of Cr is added. This leads to the destabilization of the austenite base as seen in
W is 5. The content was determined to be less than ◯ and satisfy 12≦Mo(%)+−)W(%)<16.

り)  Cu イオウ(S)が単体で認められるサワーガス環境下では
、Cr、MolWと共にCuは耐食性向上に極めて有効
な成分であるが、Cu含有量が0.30 %未満では所
望の耐食性が得られず、一方、3.0%を超えてCuを
含有させてもその効果が飽和してしまうことから、Cu
含有量は0.30〜3.0係と定めた。
Cu) In a sour gas environment where sulfur (S) is observed alone, Cu, along with Cr and MolW, is an extremely effective component for improving corrosion resistance, but if the Cu content is less than 0.30%, the desired corrosion resistance cannot be obtained. On the other hand, since the effect is saturated even if Cu is contained in an amount exceeding 3.0%, Cu
The content was determined to be between 0.30 and 3.0.

ケ)  Ti この発明の1社基合金においてNによる強化を有効に行
わせるためには粗大なTiNの生成を極力抑制する必要
があるが、Ti含有量が0.050チを超えると上記粗
大TiNが生成する傾向となることから、T1含有量は
0.050 %以下に抑えることと定めた。
i) Ti In order to effectively strengthen the N-based alloy of the present invention with N, it is necessary to suppress the formation of coarse TiN as much as possible, but if the Ti content exceeds 0.050 Ti, the coarse TiN Therefore, it was decided that the T1 content should be suppressed to 0.050% or less.

コ)   Nb Nbは、イオウ(S)が単体で認められるサワーガス環
境下での合金の耐食性能を著しく向上させる成分であり
、その上Cの安定化作用を有し、また強度上昇に寄与す
るものであるが、その含有量が0.30係未満では上記
作用に所望の効果が得られず、一方、3,0係を越えて
含有させるとTCP相が生成しやすくなることから、N
b含有量は0.30〜3.0係と定めた。
e) Nb Nb is a component that significantly improves the corrosion resistance of the alloy in a sour gas environment where sulfur (S) is found alone, and also has a stabilizing effect on C, and also contributes to increased strength. However, if the content is less than 0.30%, the desired effect cannot be obtained in the above action, while if the content exceeds 3.0%, TCP phase is likely to be generated.
The b content was determined to be between 0.30 and 3.0.

なお、第3図は、この発明で規定される成分内にてNl
)量のみを変化させ、耐応力腐食割れに及ぼすNbの効
果をみたものである。供試材は、強度(0,2%耐力)
を100〜105 krf/*m”にほぼ一定としたも
のを用い、4,0朋φ、GL:30mmの試験片を作成
した後、20係NaCt−0,5%CH3Co0H−l
 9 /lS−10atmH2fEt −2QatmC
○2の溶液(250℃)中にてl X 10−71/冠
の定歪速度引張試験を行って伸びを測定し、これを大気
中での伸びと比較して耐応力腐食割れ性を評価した。
In addition, FIG. 3 shows that Nl in the components defined by this invention.
) The effect of Nb on stress corrosion cracking resistance was examined by changing only the amount of Nb. The strength of the sample material (0.2% yield strength)
After making a test piece of 4.0 mm φ and GL: 30 mm using a test piece with a constant value of 100 to 105 krf/*m'', 20% NaCt-0.5% CH3CoOH-l
9 /lS-10atmH2fEt-2QatmC
○Measure the elongation by carrying out a constant strain rate tensile test of l x 10-71/crown in the solution of 2 (250℃), and evaluate the stress corrosion cracking resistance by comparing this with the elongation in the atmosphere. did.

この第3図からも、Nb含有量が0.30%を越えだ場
合に優れた耐応力腐食割れ性が得られることは明らかで
ある。
It is clear from FIG. 3 that excellent stress corrosion cracking resistance can be obtained when the Nb content exceeds 0.30%.

す)AC AQ ld有効な脱酸剤として添加されるものであるが
、その含有量が1.0%を越えるとTCP相が生成しや
すくなることから、AA含有量は10%以下と定めだ。
AC AQ ld is added as an effective deoxidizing agent, but if its content exceeds 1.0%, TCP phase tends to form, so the content of AA is set at 10% or less. .

シ) N この発明のNi基合金はNを積原的に添加して強化を図
ったものであるが、この場合、N含有量が0、050 
%を超えて始めて固溶強化が顕著となるとともに加工硬
化能が向上して高強度化が達成できるが、0.25 %
を超えて含有させると靭性等を劣化させる窒化物の析出
が顕著となることから、N含有量は0050超〜0.2
5 %と定めた。
C) N The Ni-based alloy of this invention is strengthened by adding N as an additive, but in this case, the N content is 0.050.
Solid solution strengthening becomes noticeable and work hardening ability improves to achieve high strength only when the content exceeds 0.25%.
If the N content exceeds 0.050 to 0.2, the precipitation of nitrides that deteriorate toughness etc. will become significant.
It was set at 5%.

なお、第4図は、この発明で規定される成分内にてN以
外の成分をほぼ一定とし、Nのみを変化させたNi基合
金について、その冷間加工度を15チ程度に一定とした
場合の強度(0,2%耐力)及びハ刃性の変化を示した
グラフであり、まだ第5図は、同じNi基合金について
冷間加工度を種々変化させ、加工硬化特性に及ぼすNの
効果を確認したグラフである。
In addition, Fig. 4 shows a Ni-based alloy in which the components other than N are kept almost constant among the components specified in this invention, and only N is changed, and the degree of cold working is constant at about 15 inches. Figure 5 is a graph showing the changes in strength (0.2% yield strength) and cutting edge properties when the same Ni-based alloy is changed in cold working degree, and the effect of N on work hardening properties is shown in Figure 5. This is a graph that confirms the effect.

この第4図並びに第5図からも、N含有量を0、050
超〜0,25%に調整することによって、靭性をそれほ
ど劣化させることなく合金強度を向上させ得ることがわ
かる。
From these Figures 4 and 5, it is clear that the N content is 0,050.
It can be seen that by adjusting the content to 0.25%, the alloy strength can be improved without significantly deteriorating the toughness.

ス)  Co、V、Ta、Zr、及びHfこれらの成分
には、合金の延性・靭性を改善するとともに耐食性をも
改善する作用があるので、必要により1種以上含有せし
められるものであるが、以下、個々の元素について含有
割合を限定した理由を特徴的な作用とともに説明する。
S) Co, V, Ta, Zr, and Hf These components have the effect of improving the ductility and toughness of the alloy as well as improving the corrosion resistance, so one or more of these components may be included if necessary. The reason why the content ratio of each element is limited will be explained below along with the characteristic effects.

i)  C。i) C.

Co成分は、特に合金の耐水素割れ注の向上に有効なも
のであるが、その含有量が、5.0 %を超えるとTC
P相が生成しやすくなることから、Co含含有上5.0
係以下と定めた。
The Co component is particularly effective in improving the hydrogen cracking resistance of the alloy, but if its content exceeds 5.0%, the TC
Since the P phase is likely to be generated, the Co content is 5.0.
Section below.

ii)  V、Ta1Zr、及びHf これらの成分はCの安定化に有効なものでちるが、それ
ぞれ1%を超えて含有させるとTCP相が生成しやすく
なることから、V 、 Ta 、 Zr及びHfのうち
の1種以上の含有量は1.0%以下と定めた。
ii) V, Ta1Zr, and Hf These components are effective for stabilizing C, but if each is contained in an amount exceeding 1%, TCP phase is likely to be generated, so V, Ta, Zr, and Hf are The content of one or more of these was determined to be 1.0% or less.

セ)希土類元素(RKM)、Mf、Ca 1及びYこれ
らの成分は、少なくとも1種の微量添加によシ合金の熱
間加工性を向上させる作用を有しているので、必要によ
シ1種以上含有せしめられるものであるが、希土類元素
含有量が0.10 %を、M2含有量が0.10%を、
Ca含有量が0,10%を、そしてY含有量が0.20
%をそれぞれ越えた場合には、低融点化合物を生成しや
すくなって逆に熱間加工性を劣化するようになることか
ら、希土類元素含有量は0.10 %以下と、M?含有
量は0.1゜係以下と、Ca含有量は0.10%以下と
、そしてY含有量は0.20 %以下とそれぞれ定めた
C) Rare earth elements (RKM), Mf, Ca 1 and Y These components have the effect of improving the hot workability of the alloy by adding at least one kind of trace amount. The rare earth element content is 0.10%, the M2 content is 0.10%,
Ca content is 0.10% and Y content is 0.20
%, the rare earth element content is set at 0.10% or less, as low melting point compounds are likely to be formed and hot workability deteriorates. The content was determined to be 0.1% or less, the Ca content to be 0.10% or less, and the Y content to be 0.20% or less.

ン)   Fe Feには、合金の強度を確保するとともに、Ni含有量
を低減ならしめて合金価格を引き下げる効果があるので
、残部成分は実質的にFeとした。
(n) Fe Since Fe has the effect of ensuring the strength of the alloy and reducing the Ni content to lower the price of the alloy, the remaining component was substantially made of Fe.

り)  Cr 、 Mo、及びWの含有量バランスH2
S −Co2− C6−−8環境でのN土合金の溶出(
腐食)は、 Cr 、 Ni 、 Mo、W、並びにC
u及びNbに依存する。即ち、耐食性はこれらの元素か
ら成る表面皮膜によって確保されるものであり、この表
面皮膜中のこれらの元素の含有バランスが耐食性を左右
する上で最も重要な因子となる。上記油井環境下での応
力腐食割れに対しては、MoはCrの10倍の効果があ
シ、またWはCrの5倍の効果をもっており、このCr
、 Mo及びWが、式1式% をそれぞれ満たすとともに、Crが15〜30係、Cu
が0.30〜3.0 %、Nbが0.30〜3.0%、
Niが45%以上であれば、単体イオウ(S)を含んだ
環境においても応力腐食割れに対して優れた抵抗性を有
する耐食性皮膜を得ることができる。
ri) Content balance of Cr, Mo, and W H2
Elution of N soil alloy in S -Co2- C6--8 environment (
Corrosion) is Cr, Ni, Mo, W, and C
Depends on u and Nb. That is, corrosion resistance is ensured by a surface film made of these elements, and the balance of content of these elements in this surface film is the most important factor in determining corrosion resistance. Mo is 10 times more effective than Cr against stress corrosion cracking in the above oil well environment, and W is 5 times more effective than Cr.
, Mo and W satisfy the formula 1 formula % respectively, Cr is 15 to 30%, Cu
is 0.30 to 3.0%, Nb is 0.30 to 3.0%,
If the Ni content is 45% or more, a corrosion-resistant film can be obtained that has excellent resistance to stress corrosion cracking even in an environment containing elemental sulfur (S).

つまり、Cr 、 Mo及びWの含有量バランスがCr
%)+ 10 Mo(%)+ 5W(%) (140の
範囲では、250℃以下程度のH2S −Co2−Ct
−S環境において十分な耐食性能を示さなくなる。
In other words, the content balance of Cr, Mo and W is Cr
%) + 10 Mo (%) + 5W (%) (In the range of 140, H2S -Co2-Ct at about 250°C or less
-Sufficient corrosion resistance performance will not be exhibited in the S environment.

なお、その他のB 、 an 、 Zn 、 Pb等の
元素は、微量ではこの発明の合金の特性に何ら悪影響を
与えることがないので、不純物としてそれぞれ0.10
チまで許容されるが、この上°限値を越えると加工性や
耐食性に悪影響を与えることになるので注意を要する。
It should be noted that other elements such as B, an, Zn, and Pb do not have any adverse effect on the properties of the alloy of the present invention in trace amounts, so they should be contained as impurities at a concentration of 0.10% each.
It is permissible to exceed this upper limit, but care must be taken as exceeding this upper limit will have an adverse effect on workability and corrosion resistance.

続いて、この発明を、実施例によって比較例と対比しな
がら説明する。
Next, the present invention will be explained using examples and comparing with comparative examples.

〈実施例〉  ′ まず、第1表に示される化学成分組成の各合金を溶製し
た後、熱間加工によって板材とし、これに20%程度の
冷間加工を施して所望の強度(室温To0.2%耐力に
て80〜11ok2f/朋2)を得た。この板材から、
引張試験、衝撃試験及び腐食試験に供する各試験片を採
取し、下記要領にて各種試験を実施した。
〈Example〉' First, each alloy having the chemical composition shown in Table 1 is melted and then hot-worked into a plate material, which is cold-worked by about 20% to achieve the desired strength (room temperature To0 80-11ok2f/Tomo2) was obtained at .2% proof stress. From this board,
Each test piece to be subjected to a tensile test, an impact test, and a corrosion test was taken, and various tests were conducted in the following manner.

なお、耐水素割れ試験【供した材料は、300℃にて1
000hrの長時間加熱処理を施した後試験片とした。
In addition, hydrogen cracking resistance test [The materials used were tested at 300℃ for 1
After performing a long-term heat treatment for 000 hours, a test piece was prepared.

(A)  引張試験 試験温度:室温、 試験片:4.0朋φで、GLが20朋、(B)  シャ
ルピー衝撃試験 試験温度:0℃、 試験片: 10mmX I Ommx 55)++mの
2 mmVノツチ付、 (C)  耐応力腐食割れ試験 腐食溶液:20% NaCA −19/lS −(0,
1,1,l O)  atmH2S−2Q atm C
o2、 試験温度:250℃、 浸漬時間:50Q hr、 付加窓カニ1σy、 試験片=10朋福X2朋厚x 75 mm長のRo、2
5Uノツチ付、 (D)  耐水素割れ試験 NACE条件: 5 % NaCA −0,5%CH3
Co0H−1atm H2S 。
(A) Tensile test test temperature: room temperature, test piece: 4.0mm φ, GL 20mm, (B) Charpy impact test test temperature: 0°C, test piece: 10mmX I Ommx 55)++m 2mmV notch (C) Stress corrosion cracking test Corrosion solution: 20% NaCA -19/lS -(0,
1,1,l O) atmH2S-2Q atm C
o2, test temperature: 250℃, immersion time: 50Q hr, additional window crab 1σy, test piece = 10 mm x 2 mm thickness x 75 mm length Ro, 2
With 5U notch (D) Hydrogen cracking resistance test NACE conditions: 5% NaCA -0.5%CH3
Co0H-1atm H2S.

試験温度:25℃、 浸漬時間ニア20hr。Test temperature: 25℃, Soaking time is near 20 hours.

付加応カニ1σy1 試験片:101m幅×2間厚×75朋長のR0,25U
ノツチ付。
Addition resistance 1σy1 Test piece: 101m width x 2 thickness x 75mm length R0,25U
With notch.

このようにして得られた試験結果を、第1表に併せて示
す。
The test results thus obtained are also shown in Table 1.

なお、腐食試験の結果は、″割れ又は孔食のみられなか
ったもの″をわ」、゛′試試験−割れ又は孔食の発生し
たもの″を「×」で示した。
In addition, the results of the corrosion test are shown as "those in which no cracking or pitting corrosion was observed" and "x" in the test test where cracking or pitting corrosion occurred.

第1表に示される結果からも、本発明合金は苛酷な腐食
環境下であっても優れた耐食性を示すことが明らかであ
るのに対して、合金の成分組成が本発明で規′定する条
件から外れた比較合金では、いずれも十分な耐食性を示
さないことがわかる。
From the results shown in Table 1, it is clear that the alloy of the present invention exhibits excellent corrosion resistance even in a severe corrosive environment. It can be seen that none of the comparative alloys that deviate from the conditions exhibit sufficient corrosion resistance.

く総括的な効果〉 以上に説明した如く、この発明によれば、イオウ(E’
)が単体として存在するサワーガス環境下においても抜
群に優れた耐食性、特に耐応力腐食割れ性及び耐水素割
れ性を有する油井管用として好適な高強度Ni基合金が
得られるなど、産業上極めて有用な効果が得られるので
ある。
Overall effect> As explained above, according to the present invention, sulfur (E'
) is present as a single substance in a sour gas environment, it is possible to obtain a high-strength Ni-based alloy suitable for use in oil country tubular goods that has outstanding corrosion resistance, especially resistance to stress corrosion cracking and resistance to hydrogen cracking, making it extremely useful in industry. The effect can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明合金におけるP含有量と耐水素割れ性
(腐食性溶液中での伸び/大気中での伸び)との関係を
示すグラフ、 第2図は、本発明合金におけるS含有量と熱間加工性(
1150℃における絞り率)との関係を示すグラフ、 第3図は、Nbを除いては本発明と同様組成の合金にお
けるNb含有量と耐応力腐食割れ性(腐食性溶液中での
伸び/大気中での伸び)との関係を示すグラス、 第4図は、Nを除いては本発明と同様成分組成の合金に
おけるN含有量と強度(0,2%耐力)及び靭性との関
係を示すグラフ、 第5図は、各種N含有量のNi基合金における冷間加工
度と強度(’0.2 %耐力)、即ち加工硬化特性との
関係を示すグラフである。 チ3ζ  ν  1慕  (%) 】グJ′Pvnlすぴ/大気ナマ・・θ搾び。
Figure 1 is a graph showing the relationship between P content and hydrogen cracking resistance (elongation in a corrosive solution/elongation in the atmosphere) in the alloy of the present invention. Figure 2 shows the S content in the alloy of the present invention. quantity and hot workability (
Figure 3 is a graph showing the relationship between Nb content and stress corrosion cracking resistance (elongation in corrosive solution/atmosphere) in an alloy having the same composition as the present invention except for Nb. Figure 4 shows the relationship between N content and strength (0.2% proof stress) and toughness in an alloy having the same composition as the present invention except for N. FIG. 5 is a graph showing the relationship between the degree of cold work and the strength ('0.2% proof stress), that is, the work hardening properties, in Ni-based alloys with various N contents. Chi 3 ζ ν 1 柕 (%) ] gu J'Pvnl supi/atmosphere raw... θ squeeze.

Claims (4)

【特許請求の範囲】[Claims] (1)重量割合にて C:0.10%以下、Si:0.05超〜0.30%、
Mn:2.0%以下、P:0.030%以下、S:0.
0050%以下、Ni:45〜60%、Cr:15〜3
0%、 Mo及びWの1種以上: Moは16%未満、Wは5.0%以下であつて、かつ 12≦Mo(%)+1/2W(%)<16 を満足する量、 Cu:0.30〜3.0%、Ti:0.050%以下、
Nb:0.30〜3.0%、Al:1.0%以下、N:
0.050超〜0.25% Fe及び他の不可避的不純物:残り から成るとともに、 Cr(%)+10Mo(%)+5W(%)≧140なる
式を満足する成分組成に構成されたことを特徴とする、
耐応力腐食割れ性及び耐水素割れ性に優れた高強度Ni
基合金。
(1) C: 0.10% or less, Si: more than 0.05 to 0.30% by weight,
Mn: 2.0% or less, P: 0.030% or less, S: 0.
0050% or less, Ni: 45-60%, Cr: 15-3
0%, one or more of Mo and W: Mo is less than 16%, W is 5.0% or less, and the amount that satisfies 12≦Mo (%) + 1/2 W (%) < 16, Cu: 0.30 to 3.0%, Ti: 0.050% or less,
Nb: 0.30-3.0%, Al: 1.0% or less, N:
More than 0.050 to 0.25% Fe and other unavoidable impurities: Consists of the remainder, and is characterized by having a component composition that satisfies the formula: Cr (%) + 10 Mo (%) + 5 W (%) ≧ 140 and
High strength Ni with excellent stress corrosion cracking resistance and hydrogen cracking resistance
Base alloy.
(2)重量割合にて、 C:0.10%以下、Si:0.05超〜0.30%、
Mn:2.0%以下、P:0.030%以下、S:0.
0050%以下、Ni:45〜60%、Cr:15〜3
0%、 Mo及びWの1種以上: Moは16%未満、Wは5.0%以下であつて、かつ 12≦Mo(%)+1/2W(%)<16 を満足する量、 Cu:0.30〜3.0%、Ti:0.050%以下、
Nb:0.30〜3.0%、Al:1.0%以下、N:
0.050超〜0.25% を含有し、更に Co:5.0%以下、 V、Ta、Zr及びHfの1種以上:各々1.0%以下
のうちの1種以上をも含み、 Fe及び他の不可避的不純物:残り から成るとともに、 Cr(%)+10Mo(%)+5W(%)≧140なる
式を満足する成分組成に構成されたことを特徴とする、
耐応力腐食割れ性及び耐水素割れ性に優れた高強度Ni
基合金。
(2) In terms of weight percentage, C: 0.10% or less, Si: more than 0.05 to 0.30%,
Mn: 2.0% or less, P: 0.030% or less, S: 0.
0050% or less, Ni: 45-60%, Cr: 15-3
0%, one or more of Mo and W: Mo is less than 16%, W is 5.0% or less, and the amount that satisfies 12≦Mo (%) + 1/2 W (%) < 16, Cu: 0.30 to 3.0%, Ti: 0.050% or less,
Nb: 0.30-3.0%, Al: 1.0% or less, N:
Contains more than 0.050 to 0.25%, and further contains one or more of Co: 5.0% or less, V, Ta, Zr, and Hf: 1.0% or less each, Fe and other unavoidable impurities: The composition is characterized by being composed of the remainder and having a composition satisfying the following formula: Cr (%) + 10 Mo (%) + 5 W (%) ≧ 140,
High strength Ni with excellent stress corrosion cracking resistance and hydrogen cracking resistance
Base alloy.
(3)重量割合にて、 C:0.10%以下、Si:0.05超〜0.30%、
Mn:2.0%以下、P:0.030%以下、S:0.
0050%以下、Ni:45〜60%、Cr:15〜3
0%、 Mo及びWの1種以上: Moは16%未満、Wは5.0%以下であつて、かつ 12≦Mo(%)+1/2W(%)<16 を満足する量、 Cu:0.30〜3.0%、Ti:0.050%以下、
Nb:0.30〜3.0%、Al:1.0%以下、N:
0.050超〜0.25% を含有し、更に 希土類元素:0.10%以下、 Mg:0.10%以下、 Ca:0.10%以下、 Y:0.20%以下、 のうちの1種以上をも含み、 Fe及び他の不可避的不純物:残り から成るとともに、 Cr(%)+10Mo(%)+5W(%)≧140なる
式を満足する成分組成に構成されたことを特徴とする、
耐応力腐食割れ性及び耐水素割れ性に優れた高強度Ni
基合金。
(3) In terms of weight percentage, C: 0.10% or less, Si: more than 0.05 to 0.30%,
Mn: 2.0% or less, P: 0.030% or less, S: 0.
0050% or less, Ni: 45-60%, Cr: 15-3
0%, one or more of Mo and W: Mo is less than 16%, W is 5.0% or less, and the amount that satisfies 12≦Mo (%) + 1/2 W (%) < 16, Cu: 0.30 to 3.0%, Ti: 0.050% or less,
Nb: 0.30-3.0%, Al: 1.0% or less, N:
Contains more than 0.050 to 0.25%, and further contains rare earth elements: 0.10% or less, Mg: 0.10% or less, Ca: 0.10% or less, Y: 0.20% or less, Fe and other unavoidable impurities: Fe and other unavoidable impurities. ,
High strength Ni with excellent stress corrosion cracking resistance and hydrogen cracking resistance
Base alloy.
(4)重量割合にて、 C:0.10%以下、Si:0.05超〜0.30%、
Mn:2.0%以下、P:0.030%以下、S:0.
0050%以下、Ni:45〜60%、Cr:15〜3
0%、 Mo及びWの1種以上: Moは16%未満、Wは5.0%以下であつて、かつ 12≦Mo(%)+1/2W(%)<16 を満足する量、 Cu:0.30〜3.0%、Ti:0.050%以下、
Nb:0.30〜3.0%、Al:1.0%以下、N:
0.050超〜0.25% を含有し、更に Co:5.0%以下、 V、Ta、Zr及びHfの1種以上:各々1.0%以下
のうちの1種以上、並びに 希土類元素:0.10%以下、 Mg:0.10%以下、 Ca:0.10%以下、 Y:0.20%以下、 のうちの1種以上をも含み、 Fe及び他の不可避的不純物:残り から成るとともに、 Cr(%)+10Mo(%)+5W(%)≧140なる
式を満足する成分組成に構成されたことを特徴とする、
耐応力腐食割れ性及び耐水素割れ性に優れた高強度Ni
基合金。
(4) In terms of weight percentage, C: 0.10% or less, Si: more than 0.05 to 0.30%,
Mn: 2.0% or less, P: 0.030% or less, S: 0.
0050% or less, Ni: 45-60%, Cr: 15-3
0%, one or more of Mo and W: Mo is less than 16%, W is 5.0% or less, and the amount that satisfies 12≦Mo (%) + 1/2 W (%) < 16, Cu: 0.30 to 3.0%, Ti: 0.050% or less,
Nb: 0.30-3.0%, Al: 1.0% or less, N:
more than 0.050 to 0.25%, and further contains Co: 5.0% or less, one or more of V, Ta, Zr, and Hf: each 1.0% or less, and rare earth elements. : 0.10% or less, Mg: 0.10% or less, Ca: 0.10% or less, Y: 0.20% or less, Fe and other unavoidable impurities: the remainder Cr (%) + 10 Mo (%) + 5 W (%) ≧ 140.
High strength Ni with excellent stress corrosion cracking resistance and hydrogen cracking resistance
Base alloy.
JP61001200A 1986-01-07 1986-01-07 High-strength Ni-based alloy with excellent corrosion resistance Expired - Lifetime JPH0674472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61001200A JPH0674472B2 (en) 1986-01-07 1986-01-07 High-strength Ni-based alloy with excellent corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61001200A JPH0674472B2 (en) 1986-01-07 1986-01-07 High-strength Ni-based alloy with excellent corrosion resistance

Publications (2)

Publication Number Publication Date
JPS62158845A true JPS62158845A (en) 1987-07-14
JPH0674472B2 JPH0674472B2 (en) 1994-09-21

Family

ID=11494819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61001200A Expired - Lifetime JPH0674472B2 (en) 1986-01-07 1986-01-07 High-strength Ni-based alloy with excellent corrosion resistance

Country Status (1)

Country Link
JP (1) JPH0674472B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01272737A (en) * 1988-03-03 1989-10-31 Vdm Nickel Technol Ag Nickel/chromium/molybdenum alloy and use thereof
US5529642A (en) * 1993-09-20 1996-06-25 Mitsubishi Materials Corporation Nickel-based alloy with chromium, molybdenum and tantalum
JP2007084895A (en) * 2005-09-26 2007-04-05 Nippon Yakin Kogyo Co Ltd Ni-base alloy material with excellent workability and high temperature strength, and its manufacturing method
JP2009185352A (en) * 2008-02-07 2009-08-20 Nippon Yakin Kogyo Co Ltd Ni-BASED ALLOY MATERIAL HAVING COLD STRENGTH AND WORKABILITY AND CREEP PROPERTY AND METHOD FOR PRODUCING THE SAME
CN103243243A (en) * 2013-05-22 2013-08-14 江苏启迪合金有限公司 Nickel-based anti-corrosion electric arc wire material
WO2019146504A1 (en) 2018-01-26 2019-08-01 日本製鉄株式会社 Cr-Ni ALLOY AND SEAMLESS STEEL PIPE FORMED OF Cr-Ni ALLOY

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210938A (en) * 1981-06-17 1982-12-24 Sumitomo Metal Ind Ltd Precipitation hardening type alloy for high strength oil well pipe with superior stress corrosion cracking resistance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210938A (en) * 1981-06-17 1982-12-24 Sumitomo Metal Ind Ltd Precipitation hardening type alloy for high strength oil well pipe with superior stress corrosion cracking resistance

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01272737A (en) * 1988-03-03 1989-10-31 Vdm Nickel Technol Ag Nickel/chromium/molybdenum alloy and use thereof
US5529642A (en) * 1993-09-20 1996-06-25 Mitsubishi Materials Corporation Nickel-based alloy with chromium, molybdenum and tantalum
JP2007084895A (en) * 2005-09-26 2007-04-05 Nippon Yakin Kogyo Co Ltd Ni-base alloy material with excellent workability and high temperature strength, and its manufacturing method
JP2009185352A (en) * 2008-02-07 2009-08-20 Nippon Yakin Kogyo Co Ltd Ni-BASED ALLOY MATERIAL HAVING COLD STRENGTH AND WORKABILITY AND CREEP PROPERTY AND METHOD FOR PRODUCING THE SAME
CN103243243A (en) * 2013-05-22 2013-08-14 江苏启迪合金有限公司 Nickel-based anti-corrosion electric arc wire material
WO2019146504A1 (en) 2018-01-26 2019-08-01 日本製鉄株式会社 Cr-Ni ALLOY AND SEAMLESS STEEL PIPE FORMED OF Cr-Ni ALLOY
US11286545B2 (en) 2018-01-26 2022-03-29 Nippon Steel Corporation Cr-Ni alloy and seamless steel pipe made of Cr-Ni alloy

Also Published As

Publication number Publication date
JPH0674472B2 (en) 1994-09-21

Similar Documents

Publication Publication Date Title
US4487744A (en) Corrosion resistant austenitic alloy
JP2500162B2 (en) High strength duplex stainless steel with excellent corrosion resistance
EP0132055B1 (en) Precipitation-hardening nickel-base alloy and method of producing same
EP0262673A2 (en) Corrosion resistant high strength nickel-base alloy
JPWO2007138815A1 (en) Austenitic stainless steel
PL165989B1 (en) Austenitic stainless steel
JPS625976B2 (en)
JP3166798B2 (en) Duplex stainless steel with excellent corrosion resistance and phase stability
JPS62158844A (en) Highly corrosion resistant ni-base alloy
JPS62158845A (en) High-strength ni-base alloy excellent in corrosion resistance
KR100778132B1 (en) Austenitic alloy
JPS6261107B2 (en)
JPH0639650B2 (en) High corrosion resistance Ni-based alloy with excellent toughness
JPS61113749A (en) High corrosion resistance alloy for oil well
GB2133419A (en) Nickel-based alloys
JPH0114992B2 (en)
JPS6199660A (en) High strength welded steel pipe for line pipe
JPS62158847A (en) Highly corrosion resistant ni-base alloy
JP3470418B2 (en) High strength austenitic alloy with excellent seawater corrosion resistance and hydrogen sulfide corrosion resistance
JPS6363608B2 (en)
JPH0371506B2 (en)
JPS62158846A (en) Highly corrosion resistant ni-base alloy excellent in toughness
JPH05255784A (en) Ni-base alloy for oil well excellent in corrosion resistance
JPH0524218B2 (en)
JPS62158848A (en) High-strength ni-base alloy excellent in corrosion resistance

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term