JPWO2007138815A1 - Austenitic stainless steel - Google Patents

Austenitic stainless steel Download PDF

Info

Publication number
JPWO2007138815A1
JPWO2007138815A1 JP2008517811A JP2008517811A JPWO2007138815A1 JP WO2007138815 A1 JPWO2007138815 A1 JP WO2007138815A1 JP 2008517811 A JP2008517811 A JP 2008517811A JP 2008517811 A JP2008517811 A JP 2008517811A JP WO2007138815 A1 JPWO2007138815 A1 JP WO2007138815A1
Authority
JP
Japan
Prior art keywords
less
corrosion resistance
stainless steel
content
austenitic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008517811A
Other languages
Japanese (ja)
Other versions
JP5071384B2 (en
Inventor
貴代子 竹田
貴代子 竹田
雅之 相良
雅之 相良
正明 照沼
正明 照沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2008517811A priority Critical patent/JP5071384B2/en
Publication of JPWO2007138815A1 publication Critical patent/JPWO2007138815A1/en
Application granted granted Critical
Publication of JP5071384B2 publication Critical patent/JP5071384B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

質量%で、C:0.10%以下、Si:0.01〜1.0%、Mn:0.01〜2%、Cr:16〜18%、Ni:10%を超えて14%未満、Mo:2.0%を超えて3.0%以下、N:0.03〜0.10%、ならびにV、NbおよびTiの1種または2種以上を下記(1)式および(2)式を満たす量で含み、残部がFeおよび不純物からなり、不純物であるPが0.04%以下、Sが0.003%以下であるオーステナイト系ステンレス鋼は、耐食性、特に耐粒界腐食性に優れている。0.0013≦(V/51)+(Nb/93)+(Ti/48)≦0.0025・・・(1){(C/12)+(N/14)}−{(V/51)+(Nb/93)+(Ti/48)}≦0.0058・・・(2)ただし、(1)式および(2)式の中の元素記号は、その元素の含有量(質量%)である。なお、Nbは0.030%以下、Tiは0.050%以下であることが望ましい。By mass%, C: 0.10% or less, Si: 0.01 to 1.0%, Mn: 0.01 to 2%, Cr: 16 to 18%, Ni: more than 10% and less than 14%, Mo: more than 2.0% to 3.0 % Or less, N: 0.03 to 0.10%, and one or more of V, Nb and Ti are contained in an amount satisfying the following formulas (1) and (2), and the balance is composed of Fe and impurities. Austenitic stainless steels having a certain P of 0.04% or less and S of 0.003% or less have excellent corrosion resistance, particularly intergranular corrosion resistance. 0.0013 ≦ (V / 51) + (Nb / 93) + (Ti / 48) ≦ 0.0025 (1) {(C / 12) + (N / 14)}-{(V / 51) + (Nb /93)+(Ti/48)}≦0.0058 (2) However, the element symbol in the formulas (1) and (2) is the content (% by mass) of the element. It is desirable that Nb is 0.030% or less and Ti is 0.050% or less.

Description

本発明は、原子力プラントや化学プラント等の構造部材に用いられる、耐食性、特に耐粒界腐食性に優れるオーステナイト系ステンレス鋼に関する。   The present invention relates to an austenitic stainless steel having excellent corrosion resistance, particularly intergranular corrosion resistance, used for structural members such as nuclear power plants and chemical plants.

Moを含有するSUS316ステンレス鋼は、SUS304ステンレス鋼と比べて耐孔食性や耐全面腐食性といった耐食性に優れ、加工性や機械的特性も優れるため、原子力プラントや化学プラント等の構造部材として用いられている。しかし、溶接されたり高温加熱がなされた場合には、その溶接や高温加熱による熱影響部には顕著な粒界腐食を生じる場合がある。この粒界腐食を生じる現象は鋭敏化と呼ばれ、粒界へのCr炭化物の析出に伴い、その周囲のCr濃度が低下して、耐食性が不十分なCr欠乏層が生成するのが原因である。さらに、材料の応力状態によっては粒界応力腐食割れが生じることになる。   SUS316 stainless steel containing Mo is superior in corrosion resistance such as pitting corrosion resistance and overall corrosion resistance compared to SUS304 stainless steel, and is excellent in workability and mechanical properties. ing. However, when welding or high-temperature heating is performed, significant intergranular corrosion may occur in the heat-affected zone due to the welding or high-temperature heating. This phenomenon that causes intergranular corrosion is called sensitization, and as Cr carbide precipitates at the grain boundaries, the surrounding Cr concentration decreases, resulting in the formation of a Cr-deficient layer with insufficient corrosion resistance. is there. Furthermore, depending on the stress state of the material, intergranular stress corrosion cracking occurs.

従来、この鋭敏化対策として、C含有量を低く抑えたり、CをTiやNbの化合物として粒内に固定して粒界でのCr炭化物の析出を抑制し、Cr欠乏層の生成を抑制する手法が取られているが、それでもなお粒界腐食の防止には不十分な場合があった。   Conventionally, as a countermeasure for sensitization, the C content is kept low, or C is fixed in the grains as a Ti or Nb compound to suppress the precipitation of Cr carbide at the grain boundary, thereby suppressing the formation of a Cr-deficient layer. Although approaches have been taken, there are still cases where it is insufficient to prevent intergranular corrosion.

C含有量を低く抑えたり、V、Nb、Ti等を添加したオーステナイト系ステンレス鋼が、例えば下記の文献に開示されている。   An austenitic stainless steel to which the C content is suppressed low or V, Nb, Ti or the like is added is disclosed in, for example, the following documents.

特許文献1(特開昭55−89458号公報)には、Nに基づく耐応力腐食割れ性の劣化を防止することを目的として、Ti、Nb、Ta、ZrおよびVの1種以上を0.1〜1%含有させた高温低塩素濃度環境用オーステナイト系ステンレス鋼が開示されている。これは、比較的Nが多く含まれる鋼において、Ti、Nb、Ta、ZrおよびV により窒化物を形成させることで、ステンレス鋼の母相中に固溶するNの量を低下させることにより、Nに基づく耐応力腐食割れを防止するというものである。しかし、Cによる鋭敏化に起因する耐応力腐食割れ性の劣化については、C含有量の低減だけしか考慮されていない。   In Patent Document 1 (Japanese Patent Laid-Open No. 55-89458), one or more of Ti, Nb, Ta, Zr and V is added in an amount of 0.1 to 0.1 for the purpose of preventing deterioration of stress corrosion cracking resistance based on N. An austenitic stainless steel for high temperature and low chlorine concentration environment containing 1% is disclosed. This is because, in a steel containing a relatively large amount of N, by forming a nitride with Ti, Nb, Ta, Zr and V, the amount of N dissolved in the matrix of the stainless steel is reduced. This is to prevent stress corrosion cracking based on N. However, only the reduction of the C content is considered for the deterioration of the stress corrosion cracking resistance caused by the sensitization by C.

特許文献2(特開2003−213379号公報)には、Tiまたは/およびNbを含有することにより粒界へのCr窒化物の析出が抑制された耐食性に優れるオーステナイト系ステンレス鋼が開示されている。しかし、同文献にはTiまたは/およびNbがNのみならずCも粒内に固定化すること、さらにVにも同様の効果のあることは考慮されていない。また、CおよびNの含有量に応じた適切なTiやNbの添加量についても開示されていない。   Patent Document 2 (Japanese Patent Laid-Open No. 2003-213379) discloses an austenitic stainless steel having excellent corrosion resistance in which precipitation of Cr nitrides at grain boundaries is suppressed by containing Ti or / and Nb. . However, this document does not consider that Ti and / or Nb immobilize not only N but also C in the grains, and that V has the same effect. Also, there is no disclosure of appropriate addition amounts of Ti and Nb depending on the contents of C and N.

特許文献3(特開平5−59494号公報)には、Ti、Zr、Hf、V、NbおよびTaの1種以上を含有する耐照射誘起偏析に優れたオーステナイト系ステンレス鋼が開示されている。この鋼では、Ti、Zr、Hf、V、NbおよびTaは、中性子照射によって生成される点欠陥を減少させ、粒界からのCrの移動や粒界へのNi、Si、PおよびSの移動を抑制すると記載されているだけで、上記元素がCやNを炭窒化物として粒内に固定する役割を有することは考慮されていない。また、Ti、Zr、Hf、V、NbおよびTaの多量の含有が必要とされている。   Patent Document 3 (Japanese Patent Laid-Open No. 5-59494) discloses an austenitic stainless steel excellent in irradiation-induced segregation containing at least one of Ti, Zr, Hf, V, Nb and Ta. In this steel, Ti, Zr, Hf, V, Nb, and Ta reduce point defects generated by neutron irradiation, and move Cr from grain boundaries and Ni, Si, P, and S to grain boundaries. However, it is not considered that the above elements have a role of fixing C or N as carbonitrides in the grains. Further, a large amount of Ti, Zr, Hf, V, Nb and Ta is required.

特許文献4(特開2005−23343号公報)には、V、Nb、TiおよびZrの1種または2種以上を含有し、表面が細粒のオーステナイト系ステンレス鋼が開示されている。この鋼には、V、Nb、TiおよびZrは、結晶粒を細粒化するために添加されているが、それらの添加量に関してCやNなど他元素との相互作用は考慮されていない。   Patent Document 4 (Japanese Patent Laid-Open No. 2005-23343) discloses austenitic stainless steel containing one or more of V, Nb, Ti and Zr and having a fine surface. In this steel, V, Nb, Ti, and Zr are added to make the crystal grains finer, but the interaction with other elements such as C and N is not considered regarding the amount of addition.

特許文献5(特開昭57−158359号公報)には、Nb+Taを0.05〜0.10%含有させた耐食性オーステナイト系ステンレス鋼が開示されている。同文献では、NbとTaの複合添加で炭化物や窒化物の粒界析出が抑制されると記載されているが、Nbを0.05%以上含有させた場合は、孔食や地キズの発生が懸念される。   Patent Document 5 (Japanese Patent Laid-Open No. 57-158359) discloses a corrosion-resistant austenitic stainless steel containing 0.05 to 0.10% of Nb + Ta. This document states that the combined addition of Nb and Ta suppresses grain boundary precipitation of carbides and nitrides, but if Nb is contained in an amount of 0.05% or more, there is a concern about the occurrence of pitting corrosion or scratches. Is done.

特開昭55−89458号公報JP-A-55-89458 特開2003−213379号公報JP2003-213379 特開平5−59494号公報JP-A-5-59494 特開2005−23343号公報JP 2005-23343 特開昭57−158359号公報JP-A-57-158359

本発明の目的は、耐食性、特に耐粒界腐食性に優れたオーステナイト系ステンレス鋼を提供することにある。   An object of the present invention is to provide an austenitic stainless steel having excellent corrosion resistance, particularly intergranular corrosion resistance.

本発明の基本思想は、Cを粒内の炭窒化物として析出させることにより、粒界へのCr炭窒化物の析出を抑制して、オーステナイト系ステンレス鋼の鋭敏化による粒界腐食を防止する点にある。   The basic idea of the present invention is to prevent precipitation of Cr carbonitrides at grain boundaries by precipitating C as intragranular carbonitrides, thereby preventing intergranular corrosion due to sensitization of austenitic stainless steel. In the point.

SUS316系ステンレス鋼における粒界へのCr系炭窒化物の析出の抑制には、炭窒化物形成の源となるCやNを、CrよりもCやNとの親和力の高いV、Nb、Tiと結合させて粒内に炭窒化物として固定化することが好ましい。標準生成自由エネルギーからは、V、Nb、Tiは炭化物よりも窒化物を形成しやすい。   In order to suppress the precipitation of Cr-based carbonitrides at grain boundaries in SUS316 stainless steel, C, N, which is the source of carbonitride formation, V, Nb, Ti, which have higher affinity for C and N than Cr It is preferable to fix it as a carbonitride in the grains. From the standard free energy of formation, V, Nb, and Ti form nitrides more easily than carbides.

また、SUS316系ステンレス鋼を構造部材に用いる場合、強度確保のためNを0.03〜0.10%程度含有させているが、Nを添加したSUS316系ステンレス鋼にV、Nb、Tiを添加した場合は窒化物を優先的に形成する。従って、Cを炭化物として粒内に固定化して粒界腐食を抑制するためには、Nを窒化物として固定化する量に加えて、さらにCを炭化物として固定することができる多量のV、Nb、Tiの添加が必要と考えられていた。   When using SUS316 stainless steel as a structural member, N is contained in an amount of about 0.03 to 0.10% to ensure strength. However, when V, Nb, or Ti is added to SUS316 stainless steel to which N is added, nitriding is performed. Form things preferentially. Therefore, in order to suppress intergranular corrosion by immobilizing C as carbide in the grains, in addition to the amount of immobilizing N as nitride, a large amount of V, Nb that can further immobilize C as carbide. It was thought that addition of Ti was necessary.

一方、V、Nb、Tiの含有量が増え、粒内析出物(炭窒化物)が多くなると、耐孔食性の低下や地キズといった製造欠陥が助長されるおそれがある。このことを考慮すれば、V、Nb、Tiの多量添加は好ましくない。   On the other hand, when the contents of V, Nb, and Ti increase and the amount of intragranular precipitates (carbonitrides) increases, production defects such as a decrease in pitting resistance and a scratch on the ground may be promoted. Considering this, it is not preferable to add a large amount of V, Nb and Ti.

そこで、炭窒化物形成元素であるV、Nb、Tiに着目して鋭敏化抑制効果が得られる適切な含有量について検討したところ下記の新しい知見が得られた。   Then, when the appropriate content with which the sensitization suppression effect is acquired paying attention to carbonitride formation elements V, Nb, and Ti, the following new knowledge was obtained.

(a) 実際に鋼材を製造した際の炭窒化物の析出状況を確認した結果、Nと窒化物を形成する量のV、Nb、Tiを添加した場合でも、V、Nb、TiはCとも結合し、炭窒化物を形成していることが確認された。これは、上記の平衡論だけでなく速度論が加わるため、平衡論によるNとの結合のみが優先的に行われるのではなく、V、Nb、TiはNのみならずCとも結合しているものと考えられる。   (a) As a result of confirming the precipitation state of carbonitride when steel material was actually produced, even when V and Nb and Ti were added in amounts to form N and nitride, V, Nb and Ti were both C It was confirmed that they bonded to form a carbonitride. This is because not only the above-mentioned equilibrium theory but also kinetics are added, so not only the binding with N by the equilibrium theory is preferentially performed, but V, Nb, and Ti are also bonded with C as well as N. It is considered a thing.

(b) 次いで、種々のV、Nb、Tiの含有量のSUS316系ステンレス鋼を用いて耐粒界腐食性を調査した結果、下記の(1)式を満たすような適切な量のV、Nb、Tiを含有させた上で、下記の(2)式を満たすようにCおよびNの含有量とV、Nb、Tiの含有量との関係も特定範囲とすることで、耐粒界腐食性に優れたステンレス鋼を得られることが確認された。   (b) Next, as a result of investigating the intergranular corrosion resistance using SUS316 stainless steel having various V, Nb, and Ti contents, an appropriate amount of V, Nb satisfying the following formula (1): In addition to containing Ti, the relationship between the C and N content and the V, Nb, and Ti content to satisfy the following formula (2) is also within a specific range, thereby preventing intergranular corrosion resistance. It was confirmed that excellent stainless steel can be obtained.

0.0013≦(V/51)+(Nb/93)+(Ti/48)≦0.0025・・・(1)
{(C/12)+(N/14)}−{(V/51)+(Nb/93)+(Ti/48)}≦0.0058・・・(2)
ただし、(1)式および(2)式の中の元素記号は、その元素の含有量(質量%)である。
0.0013 ≦ (V / 51) + (Nb / 93) + (Ti / 48) ≦ 0.0025 (1)
{(C / 12) + (N / 14)}-{(V / 51) + (Nb / 93) + (Ti / 48)} ≦ 0.0058 (2)
However, the element symbol in the formulas (1) and (2) is the content (% by mass) of the element.

上記(1)式の(V/51)+(Nb/93)+(Ti/48)の値が0.0013より小さいと、耐粒界腐食性の効果が得られない。一方、V、Nb、Tiの含有量が増えすぎて、粒内析出物が多くなると、耐孔食性の低下や地キズといった製造欠陥が助長されるため好ましくない。従って、(V/51)+(Nb/93)+(Ti/48)の値の上限を0.0025とした。   If the value of (V / 51) + (Nb / 93) + (Ti / 48) in the above formula (1) is smaller than 0.0013, the intergranular corrosion resistance effect cannot be obtained. On the other hand, if the contents of V, Nb, and Ti are excessively increased and the amount of intragranular precipitates is increased, manufacturing defects such as a decrease in pitting resistance and scratches are promoted. Therefore, the upper limit of the value of (V / 51) + (Nb / 93) + (Ti / 48) is set to 0.0025.

さらに、CおよびNの含有量とV、Nb、Tiの含有量との関係で、(2)式の左辺の値が0.0058を超えると、粒界に析出する炭窒化物が多くなり耐粒界腐食性が劣化する。   Furthermore, if the value on the left side of equation (2) exceeds 0.0058 due to the relationship between the content of C and N and the content of V, Nb, and Ti, the amount of carbonitride that precipitates at the grain boundary increases and the grain boundary Corrosiveness deteriorates.

また、NbおよびTiは、Vと比べてCとの親和力が強いため、炭化物の形成が容易であるが、粒内析出物が成長し耐孔食性が劣化するため、NbおよびTiの過剰な添加は避け、Nbは0.030%以下、Tiは0.050%以下とするのがより好ましい。   In addition, Nb and Ti have a stronger affinity with C than V, so carbide formation is easy, but intragranular precipitates grow and pitting corrosion resistance deteriorates, so excessive addition of Nb and Ti More preferably, Nb is 0.030% or less and Ti is 0.050% or less.

本発明は、上記の知見を基礎としてなされたもので、その要旨は下記のオーステナイト系ステンレス鋼にある。   The present invention has been made on the basis of the above findings, and the gist thereof is the following austenitic stainless steel.

(1)質量%で、C:0.10%以下、Si:0.01〜1.0%、Mn:0.01〜2%、Cr:16〜18%、Ni:10%を超えて14%未満、Mo:2.0%を超えて3.0%以下、N:0.03〜0.10%、ならびにV、NbおよびTiの1種または2種以上を下記(1)式および(2)式を満たす量で含み、残部がFeおよび不純物からなり、不純物であるPが0.04%以下、Sが0.003%以下であるオーステナイト系ステンレス鋼。   (1) By mass%, C: 0.10% or less, Si: 0.01 to 1.0%, Mn: 0.01 to 2%, Cr: 16 to 18%, Ni: more than 10% and less than 14%, Mo: 2.0% Exceeding 3.0% or less, N: 0.03-0.10%, and one or more of V, Nb, and Ti are contained in an amount that satisfies the following formulas (1) and (2), with the balance being Fe and impurities An austenitic stainless steel in which P as an impurity is 0.04% or less and S is 0.003% or less.

0.0013≦(V/51)+(Nb/93)+(Ti/48)≦0.0025・・・(1)
{(C/12)+(N/14)}−{(V/51)+(Nb/93)+(Ti/48)}≦0.0058・・・(2)
ただし、(1)式および(2)式の中の元素記号は、その元素の含有量(質量%)である。
0.0013 ≦ (V / 51) + (Nb / 93) + (Ti / 48) ≦ 0.0025 (1)
{(C / 12) + (N / 14)}-{(V / 51) + (Nb / 93) + (Ti / 48)} ≦ 0.0058 (2)
However, the element symbol in the formulas (1) and (2) is the content (% by mass) of the element.

(2)質量%で、Nbが0.030%以下もしくはTiが0.050%以下、またはNbが0.030%以下で、かつTiが0.050%以下であることを特徴とする上記(1)のオーステナイト系ステンレス鋼。   (2) The austenitic stainless steel according to (1) above, characterized by mass%, Nb being 0.030% or less or Ti being 0.050% or less, or Nb being 0.030% or less and Ti being 0.050% or less.

上記本発明のオーステナイト系ステンレス鋼は、特に耐粒界腐食性に優れている。従って、粒界腐食が懸念される環境で使用する部材としてきわめて好適である。   The austenitic stainless steel of the present invention is particularly excellent in intergranular corrosion resistance. Therefore, it is very suitable as a member used in an environment where intergranular corrosion is a concern.

以下に本発明のオーステナイト系ステンレス鋼の化学組成を規定した理由を述べる。なお、各成分の含有量に関する「%」は「質量%」を意味する。   The reason why the chemical composition of the austenitic stainless steel of the present invention is specified will be described below. In addition, "%" regarding content of each component means "mass%".

C:0.10%以下
Cは、鋼の脱酸および強度確保の目的で用いられる。しかし、耐食性の観点から炭化物の析出を防止するために、その含有量はできる限り低くするのがよい。従って、0.10%を上限とした。より好ましいのは0.05%以下である。しかし、Cで構造部材としての強度を確保する場合は、0.01%以上、さらには0.015%以上の含有が好ましい。
C: 0.10% or less C is used for the purpose of deoxidizing steel and securing strength. However, in order to prevent the precipitation of carbides from the viewpoint of corrosion resistance, the content should be as low as possible. Therefore, 0.10% was made the upper limit. More preferred is 0.05% or less. However, when the strength as a structural member is ensured with C, the content is preferably 0.01% or more, and more preferably 0.015% or more.

Si:0.01〜1.0%
Siは、鋼の脱酸の目的で用いられる。本発明鋼では、その含有量を0.01%以上とする。ただし、Siを過剰に含有すると介在物の生成を促すので、その含有量はできるだけ低い方が望ましく、0.01〜1.0%とした。
Si: 0.01-1.0%
Si is used for the purpose of deoxidizing steel. In the steel of the present invention, the content is set to 0.01% or more. However, since excessive inclusion of Si promotes the formation of inclusions, the content is desirably as low as possible, and is set to 0.01 to 1.0%.

Mn:0.01〜2%
Mnは、鋼の脱酸およびオーステナイト相の安定に有効な元素で、0.01%以上の含有でその効果が得られる。一方、MnはSと硫化物を形成し、その硫化物は非金属介在物となる。また、鋼材が溶接される際には溶接部の表面に優先的に濃化して鋼材の耐食性を低下させる。従って、Mnの適正な含有量は0.01〜2%である。
Mn: 0.01-2%
Mn is an element effective for deoxidizing steel and stabilizing the austenite phase, and its effect can be obtained with a content of 0.01% or more. On the other hand, Mn forms a sulfide with S, and the sulfide becomes a non-metallic inclusion. Moreover, when steel materials are welded, it concentrates preferentially on the surface of a welding part, and reduces the corrosion resistance of steel materials. Therefore, the proper content of Mn is 0.01-2%.

Cr:16〜18%
Crは、鋼の耐食性を保つために不可欠な元素である。16%未満では十分な耐食性が得られない。本発明鋼の想定される使用環境では18%までの含有量であれば十分であり、これを超えると加工性の低下、実用鋼としての価格およびオーステナイト相安定の面から問題がある。従って、含有量の上限は18%とした。より好ましいのは17.5%以下である。
Cr: 16-18%
Cr is an indispensable element for maintaining the corrosion resistance of steel. If it is less than 16%, sufficient corrosion resistance cannot be obtained. In the assumed use environment of the steel of the present invention, a content of up to 18% is sufficient, and beyond this, there is a problem in terms of workability degradation, cost as a practical steel and austenite phase stability. Therefore, the upper limit of the content is 18%. More preferred is 17.5% or less.

Ni:10%を超えて14%未満
Niは、オーステナイト相を安定させ耐食性を維持するために重要な元素である。耐食性の観点から10%を超える含有量が必要である。Ni含有量の上限は溶接性の観点からCr含有量との相関があり、14%未満とした。より好ましい下限は10.5%、より好ましい上限は13%である。
Ni: Over 10% and less than 14%
Ni is an important element for stabilizing the austenite phase and maintaining the corrosion resistance. From the viewpoint of corrosion resistance, a content exceeding 10% is necessary. The upper limit of the Ni content has a correlation with the Cr content from the viewpoint of weldability, and is set to less than 14%. A more preferred lower limit is 10.5%, and a more preferred upper limit is 13%.

Mo:2.0%を超えて3.0%以下
Moは、不働態皮膜の安定化に効果があり、耐孔食性や耐全面腐食性を維持するためには不可欠な元素である。ただし、Fe、Ni、Cr等と一緒に金属間化合物として粒界に析出すると、耐粒界腐食性を低下させる。そこで、耐粒界腐食性に悪影響がなく全面腐食性を維持する範囲として2.0%を超えて3.0%以下とする。より好ましい上限は2.5%である。
Mo: 2.0% to 3.0% or less
Mo is effective in stabilizing the passive film, and is an indispensable element for maintaining pitting corrosion resistance and overall corrosion resistance. However, if it precipitates at the grain boundary as an intermetallic compound together with Fe, Ni, Cr, etc., the intergranular corrosion resistance is lowered. Therefore, the range of maintaining the overall corrosion resistance without adversely affecting the intergranular corrosion resistance is more than 2.0% and not more than 3.0%. A more preferred upper limit is 2.5%.

N:0.03〜0.10%
Nの含有量は、鋼の強度確保のために0.03%以上とする。ただし、Nは鋼中のCrと結合して窒化物を形成し、耐粒界腐食性を低下させるので、その含有量は0.10%以下とする。より好ましい下限は0.04%、より好ましい上限は0.08%である。
N: 0.03-0.10%
The N content is 0.03% or more to ensure the strength of the steel. However, since N combines with Cr in the steel to form a nitride and lowers the intergranular corrosion resistance, its content is made 0.10% or less. A more preferred lower limit is 0.04%, and a more preferred upper limit is 0.08%.

V、TiおよびNb:1種以上で前記(1)式と(2)式を満たす範囲
V、TiおよびNbの含有量を前記(1)式および(2)式を満たす範囲の含有量とする理由は、前述のとおりである。また、NbおよびTiがそれぞれ0.030%以下、0.050%以下であることが望ましい理由も前述のとおりである。
V, Ti, and Nb: a range that satisfies the above formulas (1) and (2) when at least one kind is satisfied. A content of V, Ti, and Nb is a content that satisfies the above formulas (1) and (2). The reason is as described above. The reason why Nb and Ti are preferably 0.030% or less and 0.050% or less is also as described above.

本発明のステンレス鋼は、上記の成分のほか、残部がFeと不純物からなる。ただし、不純物のPとSは、下記のように規制する必要がある。   In addition to the above components, the balance of the stainless steel of the present invention consists of Fe and impurities. However, impurities P and S must be regulated as follows.

P:0.04%以下
Pの含有量が多くなると耐食性が低下するので、その含有量はできるだけ少ないことが望ましい。従って、上限を0.04%とした。
P: 0.04% or less Since the corrosion resistance decreases when the P content increases, the content is preferably as low as possible. Therefore, the upper limit was made 0.04%.

S:0.003%以下
Sは、非金属介在物である硫化物を形成し、また、熱間加工性を阻害する元素であるので、できるだけ少ないことが望ましい。従って、上限を0.003%とした。
S: 0.003% or less S is an element that forms sulfides that are non-metallic inclusions and that inhibits hot workability. Therefore, the upper limit was made 0.003%.

表1に示す化学組成のステンレス鋼を溶解し、熱間鍛造および熱間圧延で厚さ6mmの板を作製した。この熱間圧延材を厚さ4mmに冷間圧延し、1060℃にて15分保持した後に水冷する溶体化処理を施した。その後、650℃において2時間加熱してから空冷する鋭敏化処理を施し、代表的な耐粒界腐食性の評価法である硫酸・硫酸第二鉄腐食試験(JIS G 0572)にて腐食速度を測定した。表1には(1)式の「(V/51)+(Nb/93)+(Ti/48)」の値と(2)式の左辺の値も合わせて示す。   Stainless steel having the chemical composition shown in Table 1 was melted, and a 6 mm thick plate was produced by hot forging and hot rolling. This hot-rolled material was cold-rolled to a thickness of 4 mm, held at 1060 ° C. for 15 minutes, and then subjected to a solution treatment that was water-cooled. After that, sensitization treatment was performed by heating at 650 ° C for 2 hours and then air cooling, and the corrosion rate was evaluated by sulfuric acid / ferric sulfate corrosion test (JIS G 0572) which is a typical evaluation method of intergranular corrosion resistance. It was measured. Table 1 also shows the value of “(V / 51) + (Nb / 93) + (Ti / 48)” in equation (1) and the value on the left side of equation (2).

Figure 2007138815
Figure 2007138815

表2に、耐粒界腐食性の試験結果およびその評価結果を示す。耐粒界腐食性試験において、本発明例は、繰り返し数2でバラツキが小さかったが、比較例は、繰り返し数2でバラツキが大きかったため、さらに4ヶの試験を追加し、繰り返し数6で評価した。比較例でバラツキが大きいのは、耐粒界腐食性が劣り、脱粒が起きるためである。なお、耐粒界腐食性の評価は、腐食速度が複数の試験全てで3g/m・h未満の場合を「○」、複数の試験の中で一つでも3g/m・h以上であった場合を「×」とした。Table 2 shows the intergranular corrosion resistance test results and evaluation results. In the intergranular corrosion resistance test, the variation of the example of the present invention was small at the number of repetitions 2, but the variation of the comparative example was large at the number of repetitions of 2, so four more tests were added and the evaluation was performed at the number of repetitions of 6. did. The reason why the variation is large in the comparative example is that the intergranular corrosion resistance is inferior and degranulation occurs. The evaluation of intergranular corrosion resistance, the case where the corrosion rate is less than in all the plurality of test 3g / m 2 · h "○", one with even 3g / m 2 · h or more among the plurality of test The case where there existed was made into "x".

Figure 2007138815
Figure 2007138815

表2から明らかなように、No.1〜5の本発明例は、いずれも低い腐食速度を呈し、耐粒界腐食性に優れている。一方、比較例のNo.6およびNo.7は、化学組成が本発明で規定する (1)式または(2)式から外れている鋼であり、そのために耐粒界腐食性が不良であった。   As is apparent from Table 2, the inventive examples Nos. 1 to 5 all exhibit a low corrosion rate and are excellent in intergranular corrosion resistance. On the other hand, No. 6 and No. 7 in the comparative examples are steels whose chemical compositions deviate from the formula (1) or (2) defined in the present invention, and therefore the intergranular corrosion resistance is poor. It was.

本発明によれば、耐粒界腐食性に優れ、優れた耐孔食性および耐全面腐食性も備えたオーステナイト系ステンレス鋼が得られる。このステンレス鋼は、原子力プラントや化学プラント等の構造部材として優れた効果を発揮する。
According to the present invention, an austenitic stainless steel having excellent intergranular corrosion resistance and excellent pitting corrosion resistance and overall corrosion resistance can be obtained. This stainless steel exhibits an excellent effect as a structural member of a nuclear power plant or a chemical plant.

Claims (2)

質量%で、C:0.10%以下、Si:0.01〜1.0%、Mn:0.01〜2%、Cr:16〜18%、Ni:10%を超えて14%未満、Mo:2.0%を超えて3.0%以下、N:0.03〜0.10%、ならびにV、NbおよびTiの1種または2種以上を下記(1)式および(2)式を満たす量で含み、残部がFeおよび不純物からなり、不純物であるPが0.04%以下、Sが0.003%以下であるオーステナイト系ステンレス鋼。
0.0013≦(V/51)+(Nb/93)+(Ti/48)≦0.0025・・・(1)
{(C/12)+(N/14)}−{(V/51)+(Nb/93)+(Ti/48)}≦0.0058・・・(2)
ただし、(1)式および(2)式の中の元素記号は、その元素の含有量(質量%)である。
In mass%, C: 0.10% or less, Si: 0.01 to 1.0%, Mn: 0.01 to 2%, Cr: 16 to 18%, Ni: more than 10% and less than 14%, Mo: more than 2.0% to 3.0 % Or less, N: 0.03 to 0.10%, and one or more of V, Nb and Ti are contained in an amount satisfying the following formulas (1) and (2), and the balance is composed of Fe and impurities. An austenitic stainless steel in which some P is 0.04% or less and S is 0.003% or less.
0.0013 ≦ (V / 51) + (Nb / 93) + (Ti / 48) ≦ 0.0025 (1)
{(C / 12) + (N / 14)}-{(V / 51) + (Nb / 93) + (Ti / 48)} ≦ 0.0058 (2)
However, the element symbol in the formulas (1) and (2) is the content (% by mass) of the element.
質量%で、Nbが0.030%以下もしくはTiが0.050%以下、またはNbが0.030%以下で、かつTiが0.050%以下であることを特徴とする請求項1に記載のオーステナイト系ステンレス鋼。
2. The austenitic stainless steel according to claim 1, wherein, in mass%, Nb is 0.030% or less or Ti is 0.050% or less, or Nb is 0.030% or less and Ti is 0.050% or less.
JP2008517811A 2006-05-30 2007-04-26 Austenitic stainless steel Active JP5071384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008517811A JP5071384B2 (en) 2006-05-30 2007-04-26 Austenitic stainless steel

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006150122 2006-05-30
JP2006150122 2006-05-30
PCT/JP2007/059094 WO2007138815A1 (en) 2006-05-30 2007-04-26 Austenitic stainless steel
JP2008517811A JP5071384B2 (en) 2006-05-30 2007-04-26 Austenitic stainless steel

Publications (2)

Publication Number Publication Date
JPWO2007138815A1 true JPWO2007138815A1 (en) 2009-10-01
JP5071384B2 JP5071384B2 (en) 2012-11-14

Family

ID=38778336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008517811A Active JP5071384B2 (en) 2006-05-30 2007-04-26 Austenitic stainless steel

Country Status (4)

Country Link
US (1) US20090081069A1 (en)
JP (1) JP5071384B2 (en)
CN (1) CN101460643A (en)
WO (1) WO2007138815A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2412841B1 (en) 2009-03-27 2018-11-14 Nippon Steel & Sumitomo Metal Corporation Austenitic stainless steel
WO2011062152A1 (en) * 2009-11-18 2011-05-26 住友金属工業株式会社 Austenite stainless steel sheet and method for producing same
CN103386452B (en) * 2013-08-11 2016-04-27 山西太钢不锈钢股份有限公司 The method of a kind of TWZ series stainless steel warm forging
CN105960479B (en) * 2014-02-07 2018-02-23 新日铁住金株式会社 Oil well high alloy
WO2015159554A1 (en) * 2014-04-17 2015-10-22 新日鐵住金株式会社 Austenitic stainless steel and method for producing same
CN104152814A (en) * 2014-05-28 2014-11-19 无锡兴澄华新钢材有限公司 Explosion-proof austenitic stainless steel mesh
CN106222581B (en) * 2016-08-27 2018-06-29 宝鼎科技股份有限公司 316 austenitic stainless steel overlength marine propeller forging shafts and forging method
CN110273104A (en) * 2019-07-29 2019-09-24 哈尔滨锅炉厂有限责任公司 Austenitic heat-resistance steel applied to advanced ultra-supercritical boiler
CN110846595A (en) * 2019-11-14 2020-02-28 深圳市特发信息光电技术有限公司 Stainless steel strip, method and apparatus for manufacturing the same, and method of forming microtube
JP7210516B2 (en) * 2020-09-01 2023-01-23 株式会社特殊金属エクセル Manufacturing method of austenitic stainless steel sheet

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55119154A (en) * 1979-03-03 1980-09-12 Sumitomo Metal Ind Ltd Austenite series steel for casting
JPH0694583B2 (en) * 1984-10-03 1994-11-24 株式会社東芝 Heat-resistant austenitic cast steel
JPH08165545A (en) * 1994-12-14 1996-06-25 Hitachi Ltd Structural member used under neutron irradiation
JP4026554B2 (en) * 2003-06-30 2007-12-26 住友金属工業株式会社 Pipe welded joint of low carbon stainless steel pipe and its manufacturing method

Also Published As

Publication number Publication date
CN101460643A (en) 2009-06-17
JP5071384B2 (en) 2012-11-14
US20090081069A1 (en) 2009-03-26
WO2007138815A1 (en) 2007-12-06

Similar Documents

Publication Publication Date Title
JP5071384B2 (en) Austenitic stainless steel
EP2199420B1 (en) Austenitic stainless steel
EP1873270B1 (en) Low alloy steel
KR100512757B1 (en) Duplex stainless steel for urea manufacturing plants
JP2005023353A (en) Austenitic stainless steel for high temperature water environment
JP2007239094A (en) Acid corrosion resistant steel
KR20110128924A (en) Austenitic stainless steel
JP2013213279A (en) Ferritic stainless steel sheet excellent in oxidation resistance
JP2018119186A (en) Duplex stainless clad steel and method for manufacturing the same
US8865060B2 (en) Austenitic stainless steel
EP2803741B1 (en) Method of post weld heat treatment of a low alloy steel pipe
US11866814B2 (en) Austenitic stainless steel
US10201880B2 (en) Welding material and welding joint
JP2010159438A (en) High corrosion-resistant alloy excellent in grain-boundary corrosion resistance
JP5035831B2 (en) High nitrogen austenitic stainless steel
JP5857894B2 (en) Austenitic heat-resistant alloy
JP6201731B2 (en) Austenitic heat-resistant casting alloy
JP2003213379A (en) Stainless steel having excellent corrosion resistance
JP2014040669A (en) High corrosion-resistant alloy excellent in intergranular corrosion resistance
JP5365499B2 (en) Duplex stainless steel and urea production plant for urea production plant
JPH0674472B2 (en) High-strength Ni-based alloy with excellent corrosion resistance
JP6172077B2 (en) Method for producing Ni alloy clad steel with excellent intergranular corrosion resistance
JP4184860B2 (en) Stainless steel and structures
JP4530112B1 (en) Austenitic stainless steel
JPS6115147B2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120806

R150 Certificate of patent or registration of utility model

Ref document number: 5071384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250