JP3166798B2 - Duplex stainless steel with excellent corrosion resistance and phase stability - Google Patents

Duplex stainless steel with excellent corrosion resistance and phase stability

Info

Publication number
JP3166798B2
JP3166798B2 JP29384492A JP29384492A JP3166798B2 JP 3166798 B2 JP3166798 B2 JP 3166798B2 JP 29384492 A JP29384492 A JP 29384492A JP 29384492 A JP29384492 A JP 29384492A JP 3166798 B2 JP3166798 B2 JP 3166798B2
Authority
JP
Japan
Prior art keywords
prew
less
given
index
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29384492A
Other languages
Japanese (ja)
Other versions
JPH06116684A (en
Inventor
友希 森
邦夫 近藤
昌克 植田
和博 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP29384492A priority Critical patent/JP3166798B2/en
Publication of JPH06116684A publication Critical patent/JPH06116684A/en
Application granted granted Critical
Publication of JP3166798B2 publication Critical patent/JP3166798B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、耐応力腐食割れ性、
耐孔食性等の耐食性ならびに溶接性に優れたフェライト
相とオーステナイト相とからなるステンレス鋼(以下二
相ステンレス鋼という)に関する。
The present invention relates to stress corrosion cracking resistance,
The present invention relates to a stainless steel comprising a ferrite phase and an austenitic phase having excellent corrosion resistance such as pitting corrosion resistance and weldability (hereinafter referred to as a duplex stainless steel).

【0002】[0002]

【従来の技術】近年、海水を使用する熱交換器および耐
海水性が要求される化学機器や構造物、各種化学プラン
ト用配管、ラインパイプ、油井管等として、耐食性なら
びに溶接性に優れた二相ステンレス鋼の需要が増大して
おり、特に耐食性に対する要求はますます厳しくなって
きている。従来、実用化されている二相ステンレス鋼
は、数多く存在するが、それらを解説するために溶接可
能な二相ステンレス鋼を総覧した文献(オランダ溶接協
会編、溶接用二相ステンレス鋼およびスーパー二相ステ
ンレス鋼、L.van Nassau,H.Meelk
er,J.Hilker ’91)を引用すれば、現在
までに開発されている二相ステンレス鋼は、下記の
(a)〜(d)の4種類に分類できるとしている。ただ
し、PRENは、%Cr+3.3×%Mo+16×%N
で与えられる耐食性の指標である。
2. Description of the Related Art In recent years, heat exchangers using seawater, chemical equipment and structures requiring seawater resistance, piping for various chemical plants, line pipes, oil well pipes, and the like, have excellent corrosion resistance and weldability. The demand for duplex stainless steels is increasing, especially the requirements for corrosion resistance are becoming more stringent. Conventionally, there are a number of duplex stainless steels that have been put into practical use, but in order to explain them, a comprehensive list of weldable duplex stainless steels (edited by the Dutch Welding Society, duplex stainless steel for welding and super duplex stainless steel). Duplex stainless steel, L. van Nassau, H. Meelk
er, J. et al. Referring to Hilker '91), the duplex stainless steels developed to date can be classified into the following four types (a) to (d). However, PREN is:% Cr + 3.3 ×% Mo + 16 ×% N
Is an index of corrosion resistance given by

【0003】 (a). 23%Cr、Mo無添加二相ステンレス鋼 PREN 〜25 (b). 22%Cr二相ステンレス鋼 PREN 30 〜36 (c). 25%Cr(0〜2.5%Cu)二相ステンレス鋼 PR EN 32〜40 (d). 25%Crスーパー二相ステンレス鋼 PREN > 41 上記(a)〜(d)は、それぞれ対応するグレードが記
載されているので(a)〜(d)を表1ないし表4を引
用して説明する。
(A). 23% Cr, Mo-free Duplex Stainless Steel PREN-25 (b). 22% Cr duplex stainless steel PREN 30-36 (c). 25% Cr (0-2.5% Cu) duplex stainless steel PREN 32-40 (d). 25% Cr super duplex stainless steel PREN> 41 Since corresponding grades are described in the above (a) to (d), (a) to (d) will be described with reference to Tables 1 to 4. .

【0004】[0004]

【表1】 [Table 1]

【0005】[0005]

【表2】 [Table 2]

【0006】[0006]

【表3】 [Table 3]

【0007】[0007]

【表4】 [Table 4]

【0008】表1〜表4に示すとおり、二相ステンレス
鋼は、耐食性の低い順に、(a)23%Cr−Mo無添
加系、(b).(a)の23%Cr、Mo無添加系を基
本としてさらにMoを約3%添加して耐食性を向上させ
た22%Cr−3%Mo系、(c).(b)の22%C
r−3%Mo系を基本としてさらにCrを25%に増量
して耐食性を高めた25%Cr−3%Mo系、(d).
さらに(c)の25%Cr−3%Mo系にCuないしは
Mo、Nを添加した究極の耐食性を有するスーパー二相
ステンレス鋼が開発されている。表4に示すとおり、ス
ーパー二相ステンレス鋼は、良好な耐食性を有するよう
に、PRENが40以上であって、いずれも25%Cr
鋼を基本としてMo、Nを多く含有させることを基本思
想としている。
As shown in Tables 1 to 4, the duplex stainless steels are (a) 23% Cr-Mo-free, (b). (C) a 22% Cr-3% Mo-based alloy having improved corrosion resistance by adding about 3% of Mo, based on the 23% Cr- and Mo-free system; 22% C of (b)
25% Cr-3% Mo-based, in which the corrosion resistance is enhanced by further increasing Cr to 25% based on the r-3% Mo-based, (d).
Further, a super duplex stainless steel having the ultimate corrosion resistance by adding Cu or Mo, N to the 25% Cr-3% Mo system of (c) has been developed. As shown in Table 4, the super duplex stainless steel has a PREN of 40 or more and has a Cr content of 25% or more so as to have good corrosion resistance.
The basic philosophy is to include a large amount of Mo and N based on steel.

【0009】また、スーパー二相ステンレス鋼として
は、C:0.05%以下、Cr:23〜27%、Ni:
5.5〜9%、N:0.25〜0.40%、Si:0.
8%以下、Mn:1.2%以下、Mo:3.5〜4.9
%、Cu:0.5%以下、W:0.5%以下、S:0.
010%以下、V:0.5%未満、Ce:0.18%未
満および下記条件(1)〜(6)を満たすように合金元
素の含有度を調整した状態での通常の不純物と添加物以
外に残留しているFeを含有している二相ステンレス鋼 (1) %Cr+3.3×%Mo+16×%N−1.6
×%Mn−122×%S>39.1 (2) (%Cr+0.51×%Mn+0.22×%M
o−1.04×%Si−0.22×%Ni−2.89×
%C)/(3.7×%N)>18.9 (3) (%Cr+0.3×%Mn−2×%Si−0.
2×%Ni)/(4.31×%N)>1000 (4) (%Mn)/(%N)<3 (5) 1075℃の液熱処理後のフェライト含有度=
30〜50% (6) %Cr+(%Mo)1.5+5×%Si+%W+
0.2×%Mn}/(50×%N+%フェライト)<
0.75 (特開昭62−56556号公報)が提案されている
が、実質的には24.5%以上のCrを含有させること
が基本思想となっている。
As the super duplex stainless steel, C: 0.05% or less, Cr: 23 to 27%, Ni:
5.5-9%, N: 0.25-0.40%, Si: 0.
8% or less, Mn: 1.2% or less, Mo: 3.5 to 4.9
%, Cu: 0.5% or less, W: 0.5% or less, S: 0.
010% or less, V: less than 0.5%, Ce: less than 0.18%, and ordinary impurities and additives in a state where the alloying element content is adjusted so as to satisfy the following conditions (1) to (6). Duplex stainless steel containing residual Fe in addition to (1)% Cr + 3.3 ×% Mo + 16 ×% N-1.6
×% Mn−122 ×% S> 39.1 (2) (% Cr + 0.51 ×% Mn + 0.22 ×% M
o-1.04x% Si-0.22x% Ni-2.89x
% C) / (3.7 ×% N)> 18.9 (3) (% Cr + 0.3 ×% Mn-2 ×% Si-0.
2 ×% Ni) / (4.31 ×% N)> 1000 (4) (% Mn) / (% N) <3 (5) Ferrite content after liquid heat treatment at 1075 ° C. =
30 to 50% (6)% Cr + (% Mo) 1.5 + 5 ×% Si +% W +
0.2 ×% Mn} / (50 ×% N +% ferrite) <
Although 0.75 (Japanese Patent Application Laid-Open No. 62-56556) has been proposed, the basic idea is to substantially contain 24.5% or more of Cr.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、25%
Cr鋼にMo、Nを多量に添加すると、σ相を主体とす
る金属間化合物の析出が著しく加速されるという大きな
問題点が発生する。金属間化合物の析出は、分塊、圧延
後のビレットの硬化、著しい切削性の低下、材料の脆化
による脆性破壊を生じるばかりでなく、溶接後の熱影響
部(HAZ)の耐食性の低下を引き起こす。したがっ
て、25%Cr鋼を基本としてMo、Nを多く含有させ
る二相ステンレス鋼は、工業的な製造を困難にしている
ばかりでなく、PRENが40以上という良好な耐食性
能が溶接部では十分に発揮されていないのが実情であ
る。
However, 25%
If a large amount of Mo and N are added to the Cr steel, there is a serious problem that the precipitation of intermetallic compounds mainly composed of the σ phase is remarkably accelerated. Precipitation of intermetallic compounds not only causes agglomeration, hardening of billet after rolling, remarkable reduction in machinability, brittle fracture due to embrittlement of the material, but also lowers the corrosion resistance of the heat-affected zone (HAZ) after welding. cause. Therefore, the duplex stainless steel containing a large amount of Mo and N on the basis of 25% Cr steel not only makes industrial production difficult, but also has a good corrosion resistance of PREN of 40 or more in the welded portion. The fact is that it has not been demonstrated.

【0011】この発明の目的は、従来のスーパー二相ス
テンレス鋼よりもさらに耐食性を向上させ、特に溶接後
の熱影響部の耐食性を改善し、相安定性に優れ、金属間
化合物の析出し難い二相ステンレス鋼を提供することに
ある。
An object of the present invention is to further improve the corrosion resistance of the conventional super duplex stainless steel, particularly to improve the corrosion resistance of the heat-affected zone after welding, to have excellent phase stability, and to prevent precipitation of intermetallic compounds. It is to provide a duplex stainless steel.

【0012】[0012]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく、Cr、Mo、Ni、N、Wのσ相等の金
属間化合物析出に及ぼす影響について調査すべく、表5
に示す組成の14種の二相ステンレス鋼を溶製し、厚さ
100mmに圧延したのち、σ相等の金属間化合物が析
出しないように水冷した材料と、σ相等の金属間化合物
が析出するように空冷した材料のビッカース硬度差を求
め、σ相等の金属間化合物析出による硬度上昇を測定し
た。その結果、Ni添加量が変化するとσ相等の金属間
化合物の析出量が大きく変化するので、表5に示す14
種の二相ステンレス鋼のうち、7%Ni系12種につい
てCr、Mo量と硬度変化との関係を調査した。その結
果を図1に示す。
Means for Solving the Problems To achieve the above object, the present inventors investigated the effects of Cr, Mo, Ni, N and W on the precipitation of intermetallic compounds such as the σ phase in Table 5 below.
After melting 14 types of duplex stainless steel having the composition shown in the following, and rolling to a thickness of 100 mm, a water-cooled material such that intermetallic compounds such as σ phase do not precipitate, and an intermetallic compound such as σ phase are precipitated. The difference in Vickers hardness of the air-cooled material was determined, and the increase in hardness due to precipitation of intermetallic compounds such as the σ phase was measured. As a result, when the amount of added Ni changes, the amount of precipitation of intermetallic compounds such as the σ phase greatly changes.
Among the two types of duplex stainless steels, the relationship between the amounts of Cr and Mo and the change in hardness was investigated for 12 types of 7% Ni-based. The result is shown in FIG.

【0013】[0013]

【表5】 [Table 5]

【0014】図1に示すとおり、Mo添加量を増加させ
た場合の硬度上昇、すなわち、σ相等の金属間化合物の
析出量は、Cr添加量に大きく依存しており、Cr添加
量が多いほど高くなるこが判明した。したがって、単純
には一次の回帰が使えないので、%Cr×%Moの項を
加えて、表5に示す14鋼種について回帰分析を行っ
た。その結果、σ相等の金属間化合物が析出しないよう
に水冷した材料と、σ相等の金属間化合物が析出するよ
うに空冷した材料のビッカース硬度差(ΔHv(σ))
として、 ΔHv(σ)=4.9×%Cr×%Mo+4.5×%Cr−103.4×%M o+19.3×%Ni−10.7×%N− 3.6×%W−228. 6 が得られた。表5の硬度変化と切削性との対応から、通
常のビレット製造プロセスにおいて切削性を有するため
には、ΔHv(σ)≦65が必要である。すなわち、上
記式で表されるようにσ相に代表される金属間化合物を
析出し難い成分系を指向するためには、Cr量は従来の
25%よりも低減し、Mo、Nの多量添加によって、耐
食性を確保する方法が有利であることを見い出した。
As shown in FIG. 1, the increase in hardness when the amount of Mo added is increased, ie, the amount of precipitation of intermetallic compounds such as the σ phase, largely depends on the amount of Cr added. It turned out to be high. Therefore, since linear regression cannot be used simply, regression analysis was performed on 14 steel types shown in Table 5 by adding a term of% Cr ×% Mo. As a result, Vickers hardness difference (ΔHv (σ)) between a material cooled with water so that intermetallic compounds such as σ phase does not precipitate and a material cooled by air so that intermetallic compounds such as σ phase precipitates
ΔHv (σ) = 4.9 ×% Cr ×% Mo + 4.5 ×% Cr-103.4 ×% Mo + 19.3 ×% Ni-10.7 ×% N-3.6 ×% W-228 . 6 was obtained. From the correspondence between the change in hardness and the machinability in Table 5, ΔHv (σ) ≦ 65 is required to have machinability in a normal billet manufacturing process. That is, in order to aim at a component system in which an intermetallic compound represented by the σ phase is unlikely to be precipitated as represented by the above formula, the amount of Cr is reduced to less than 25%, and a large amount of Mo and N are added. Have found that a method for ensuring corrosion resistance is advantageous.

【0015】また、ステンレス鋼の耐食性評価方法とし
てASTM−G48を用いて試験片表面にピッティング
が生じる最低温度(Critical Pitting
Temperature、以下CPTという)を求め
る方法を導入し、母材部、ボンド部、継手熱影響部の耐
食性を比較したところ、母材部>ボンド部>継手熱影響
部の順で耐食性が良好であり、周溶接を考慮すると、継
手熱影響部の耐食性を確保する必要があることを明らか
にした。そこで継手熱影響部の試験片を用いて腐食減量
と耐孔食性指数(PREW)との関係を求めた。その結
果を図2に示す。図2に示すとおり、継手熱影響部の耐
食性を確保するためには、 PREW=%Cr+3.3×(%Mo+0.5×%W)+16×%N≧43 が必要であることを見い出した。
As a method for evaluating the corrosion resistance of stainless steel, the lowest temperature at which pitting occurs on the test piece surface (Critical Pitting) using ASTM-G48.
A method for determining the temperature (hereinafter referred to as CPT) was introduced, and the corrosion resistance of the base material portion, the bond portion, and the joint heat-affected zone was compared. It was clarified that considering the girth welding, it is necessary to ensure the corrosion resistance of the joint heat affected zone. Therefore, the relationship between the corrosion weight loss and the pitting resistance index (PREW) was determined using a test piece in the joint heat affected zone. The result is shown in FIG. As shown in FIG. 2, it was found that PREW =% Cr + 3.3 × (% Mo + 0.5 ×% W) + 16 ×% N ≧ 43 is necessary to secure the corrosion resistance of the joint heat affected zone.

【0016】さらに、二相ステンレス鋼がフェライトと
オーステナイトの二相組織からなるので、各相での耐食
性を確保する必要があると考え、Electro Pr
obe Micro Analysier(以下EPM
Aという)分析により、各相中のCr、Mo、Ni、
W、Nの含有量およびそのときのフェライト量(%)を
測定し、フェライト中での耐孔食性指数(以下PREW
(α)という)とオーステナイト中での耐孔食性指数
(以下PREW(γ)という)が次の式で計算できるこ
とを見い出した。 PREW(α)=(3×%α−1000)/{0.03
×(%α)2−2×%α−800}×%Cr+3.3×
(3×%α−1360)/{0.03×(%α)2
5.6×%α−800}×%Mo+1.65×(30
0)/(%α+200)×%W PREW(γ)=(−800)/{0.03×(%α)
2−2×%α−800}×%Cr+3.3×(−80
0)/{0.03×(%α)2−5.6×%α−80
0}×%Mo+1.65×(200)/(%α+20
0)×%W+16×(100)/(100−%α)×%
N %α=5.8×%Cr+4×%Mo+1.2×%W−
5.7×%Ni−63.8×%N−54.4 上記式に基いてPREW(α)、PREW(γ)を計算
し、その差ΔPREWを求め、腐食減量との関係を求め
たところ、図3に示すとおり、ΔPREWが所定値以下
の場合、すなわち、−3≦ΔPREW≦3の領域におい
て、非常に優れた耐食性を示すことを見い出し、この発
明に到達した。
Further, since the duplex stainless steel has a dual phase structure of ferrite and austenite, it is necessary to ensure corrosion resistance in each phase.
ob Micro Analyzer (hereinafter EPM)
A) analysis showed that Cr, Mo, Ni,
The W and N contents and the ferrite content (%) at that time were measured, and the pitting resistance index (hereinafter referred to as PREW) in the ferrite was measured.
(Α)) and the pitting resistance index in austenite (hereinafter referred to as PREW (γ)) can be calculated by the following formula. PREW (α) = (3 ×% α−1000) / {0.03
× (% α) 2 -2 ×% α-800} ×% Cr + 3.3 ×
(3 ×% α-1360) / {0.03 × (% α) 2
5.6 ×% α−800 ° ×% Mo + 1.65 × (30
0) / (% α + 200) ×% W PREW (γ) = (− 800) / {0.03 × (% α)
2 -2 ×% α-800} ×% Cr + 3.3 × (-80
0) / {0.03 × (% α) 2 −5.6 ×% α−80
0} ×% Mo + 1.65 × (200) / (% α + 20
0) ×% W + 16 × (100) / (100−% α) ×%
N% α = 5.8 ×% Cr + 4 ×% Mo + 1.2 ×% W−
5.7 ×% Ni-63.8 ×% N-54.4 Based on the above formulas, PREW (α) and PREW (γ) were calculated, the difference ΔPREW was obtained, and the relationship with the corrosion weight loss was obtained. As shown in FIG. 3, when ΔPREW is equal to or less than a predetermined value, that is, in a range of −3 ≦ ΔPREW ≦ 3, it has been found that extremely excellent corrosion resistance is exhibited, and the present invention has been achieved.

【0017】すなわちこの発明は、C:0.03%以
下、Si:0.10〜2.00%、Mn:0.10〜
2.00%、P:0.05%以下、S:0.005%以
下、Cr:18.0〜25.0%、Ni:2.0〜8.
0%、Mo:3.0〜7.0%、Al:0.001〜
0.04%、N:0.10〜0.40%を含有し、残部
が不可避的不純物とFeからなり、かつ、下記(1)式
で与えられる耐孔食性指数(PREW)が43以上、下
記(2)式で与えられるσ相等の金属間化合物が析出し
ないように水冷した材料とσ相等の金属間化合物が析出
するように空冷した材料とのビッカース硬度差の指標Δ
Hv(σ)が65以下、下記(3)式で与えられるフェ
ライト中での耐孔食性指数(PREW(α))と、下記
(4)式で与えられるオーステナイト中での耐孔食性指
数(PREW(γ))との差(ΔPREW)が−3.0
以上3.0以下の条件を満足していることを特徴とする
耐食性、相安定性に優れた二相ステンレス鋼である。 PREW=%Cr+3.3×(%Mo+0.5×%W)
+16×%N…(1)式 ΔHv(σ)=4.9×%Cr×%Mo+4.5×%C
r−103.4×%Mo+19.3×%Ni−10.7
×%N−3.6×%W−228.6…(2)式 PREW(α)=(3×%α−1000)/{0.03
×(%α)2−2×%α−800}×%Cr+3.3×
(3×%α−1360)/{0.03×(%α)2
5.6×%α−800}×%Mo+1.65×(30
0)/(%α+200)×%W…(3)式 PREW(γ)=(−800)/{0.03×(%α)
2−2×%α−800}×%Cr+3.3×(−80
0)/{0.03×(%α)2−5.6×%α−80
0}×%Mo+1.65×(200)/(%α+20
0)×%W+16×(100)/(100−%α)×%
N…(4)式 ただし、%α=5.8×%Cr+4×%Mo+1.2×
%W−5.7×%Ni−63.8×%N−54.4
That is, according to the present invention, C: 0.03% or less, Si: 0.10 to 2.00%, Mn: 0.10 to 0.10%
2.00%, P: 0.05% or less, S: 0.005% or less, Cr: 18.0 to 25.0%, Ni: 2.0 to 8.
0%, Mo: 3.0 to 7.0%, Al: 0.001
0.04%, N: 0.10 to 0.40%, the balance consists of unavoidable impurities and Fe, and the pitting resistance index (PREW) given by the following formula (1) is 43 or more, An index Δ of the difference in Vickers hardness between a water-cooled material that does not precipitate an intermetallic compound such as a σ phase and an air-cooled material that precipitates an intermetallic compound such as a σ phase, which is given by the following equation (2).
Hv (σ) is 65 or less, a pitting resistance index (PREW (α)) in ferrite given by the following equation (3) and a pitting corrosion index (PREW) in austenite given by the following equation (4) (Γ)) is −3.0.
It is a duplex stainless steel excellent in corrosion resistance and phase stability, which satisfies the condition of not less than 3.0. PREW =% Cr + 3.3 × (% Mo + 0.5 ×% W)
+ 16 ×% N (1) Expression ΔHv (σ) = 4.9 ×% Cr ×% Mo + 4.5 ×% C
r-103.4 ×% Mo + 19.3 ×% Ni-10.7
×% N−3.6 ×% W−228.6 (2) Formula PREW (α) = (3 ×% α−1000) / {0.03
× (% α) 2 -2 ×% α-800} ×% Cr + 3.3 ×
(3 ×% α-1360) / {0.03 × (% α) 2
5.6 ×% α−800 ° ×% Mo + 1.65 × (30
0) / (% α + 200) ×% W (3) Formula PREW (γ) = (− 800) / {0.03 × (% α)
2 -2 ×% α-800} ×% Cr + 3.3 × (-80
0) / {0.03 × (% α) 2 −5.6 ×% α−80
0} ×% Mo + 1.65 × (200) / (% α + 20
0) ×% W + 16 × (100) / (100−% α) ×%
N ... (4) where% α = 5.8 ×% Cr + 4 ×% Mo + 1.2 ×
% W-5.7 ×% Ni-63.8 ×% N-54.4

【0018】また、C:0.03%以下、Si:0.1
0〜2.00%、Mn:0.10〜2.00%、P:
0.05%以下、S:0.005%以下、Cr:18.
0〜25.0%、Ni:2.0〜8.0%、Mo:3.
0〜7.0%、Al:0.001〜0.04%、N:
0.10〜0.40%と、Cu:0.01〜2.00
%、W:0.01〜1.50%のうちの1種または2種
を含有し、残部が不可避的不純物とFeからなり、か
つ、下記(1)式で与えられる耐孔食性指数(PRE
W)が43以上、下記(2)式で与えられるσ相等の金
属間化合物が析出しないように水冷した材料とσ相等の
金属間化合物が析出するように空冷した材料とのビッカ
ース硬度差の指標ΔHv(σ)が65以下、下記(3)
式で与えられるフェライト中での耐孔食性指数(PRE
W(α))と、下記(4)式で与えられるオーステナイ
ト中での耐孔食性指数(PREW(γ))との差(ΔP
REW)が−3.0以上3.0以下の条件を満足してい
ることを特徴とする耐食性、相安定性に優れた二相ステ
ンレス鋼である。 PREW=%Cr+3.3×(%Mo+0.5×%W)
+16×%N…(1)式 ΔHv(σ)=4.9×%Cr×%Mo+4.5×%C
r−103.4×%Mo+19.3×%Ni−10.7
×%N−3.6×%W−228.6…(2)式 PREW(α)=(3×%α−1000)/{0.03
×(%α)2−2×%α−800}×%Cr+3.3×
(3×%α−1360)/{0.03×(%α)2
5.6×%α−800}×%Mo+1.65×(30
0)/(%α+200)×%W…(3)式 PREW(γ)=(−800)/{0.03×(%α)
2−2×%α−800}×%Cr+3.3×(−80
0)/{0.03×(%α)2−5.6×%α−80
0}×%Mo+1.65×(200)/(%α+20
0)×%W+16×(100)/(100−%α)×%
N…(4)式 ただし、%α=5.8×%Cr+4×%Mo+1.2×
%W−5.7×%Ni−63.8×%N−54.4
Further, C: 0.03% or less, Si: 0.1
0 to 2.00%, Mn: 0.10 to 2.00%, P:
0.05% or less, S: 0.005% or less, Cr: 18.
0 to 25.0%, Ni: 2.0 to 8.0%, Mo: 3.
0 to 7.0%, Al: 0.001 to 0.04%, N:
0.10 to 0.40% and Cu: 0.01 to 2.00
%, W: one or two of 0.01 to 1.50%, the balance consisting of unavoidable impurities and Fe, and a pitting corrosion resistance index (PRE) given by the following formula (1).
W) is 43 or more, and is an index of the Vickers hardness difference between a water-cooled material that does not precipitate an intermetallic compound such as a σ phase and an air-cooled material that precipitates an intermetallic compound such as a σ phase, which is given by the following formula (2). ΔHv (σ) is 65 or less, the following (3)
The pitting resistance index (PRE) in ferrite given by the equation
W (α)) and the pitting resistance index (PREW (γ)) in austenite given by the following equation (4) (ΔP
REW) which satisfies the condition of -3.0 or more and 3.0 or less, and is a duplex stainless steel excellent in corrosion resistance and phase stability. PREW =% Cr + 3.3 × (% Mo + 0.5 ×% W)
+ 16 ×% N (1) Expression ΔHv (σ) = 4.9 ×% Cr ×% Mo + 4.5 ×% C
r-103.4 ×% Mo + 19.3 ×% Ni-10.7
×% N−3.6 ×% W−228.6 (2) Formula PREW (α) = (3 ×% α−1000) / {0.03
× (% α) 2 -2 ×% α-800} ×% Cr + 3.3 ×
(3 ×% α-1360) / {0.03 × (% α) 2
5.6 ×% α−800 ° ×% Mo + 1.65 × (30
0) / (% α + 200) ×% W (3) Formula PREW (γ) = (− 800) / {0.03 × (% α)
2 -2 ×% α-800} ×% Cr + 3.3 × (-80
0) / {0.03 × (% α) 2 −5.6 ×% α−80
0} ×% Mo + 1.65 × (200) / (% α + 20
0) ×% W + 16 × (100) / (100−% α) ×%
N ... (4) where% α = 5.8 ×% Cr + 4 ×% Mo + 1.2 ×
% W-5.7 ×% Ni-63.8 ×% N-54.4

【0019】さらに、C:0.03%以下、Si:0.
10〜2.00%、Mn:0.10〜2.00%、P:
0.05%以下、S:0.005%以下、Cr:18.
0〜25.0%、Ni:2.0〜8.0%、Mo:3.
0〜7.0%、Al:0.001〜0.04%、N:
0.10〜0.40%と、V:0.01〜0.50%、
Ti:0.01〜0.50%、Nb:0.01〜0.5
0%のうちの1種または2種以上を含有し、残部が不可
避的不純物とFeからなり、かつ、下記(1)式で与え
られる耐孔食性指数(PREW)が43以上、下記
(2)式で与えられるσ相等の金属間化合物が析出しな
いように水冷した材料とσ相等の金属間化合物が析出す
るように空冷した材料とのビッカース硬度差の指標ΔH
v(σ)が65以下、下記(3)式で与えられるフェラ
イト中での耐孔食性指数(PREW(α))と、下記
(4)式で与えられるオーステナイト中での耐孔食性指
数(PREW(γ))との差(ΔPREW)が−3.0
以上3.0以下の条件を満足していることを特徴とする
耐食性、相安定性に優れた二相ステンレス鋼である。 PREW=%Cr+3.3×(%Mo+0.5×%W)
+16×%N…(1)式 ΔHv(σ)=4.9×%Cr×%Mo+4.5×%C
r−103.4×%Mo+19.3×%Ni−10.7
×%N−3.6×%W−228.6…(2)式 PREW(α)=(3×%α−1000)/{0.03
×(%α)2−2×%α−800}×%Cr+3.3×
(3×%α−1360)/{0.03×(%α)2
5.6×%α−800}×%Mo+1.65×(30
0)/(%α+200)×%W…(3)式 PREW(γ)=(−800)/{0.03×(%α)
2−2×%α−800}×%Cr+3.3×(−80
0)/{0.03×(%α)2−5.6×%α−80
0}×%Mo+1.65×(200)/(%α+20
0)×%W+16×(100)/(100−%α)×%
N…(4)式 ただし、%α=5.8×%Cr+4×%Mo+1.2×
%W−5.7×%Ni−63.8×%N−54.4
Further, C: 0.03% or less, Si: 0.
10 to 2.00%, Mn: 0.10 to 2.00%, P:
0.05% or less, S: 0.005% or less, Cr: 18.
0 to 25.0%, Ni: 2.0 to 8.0%, Mo: 3.
0 to 7.0%, Al: 0.001 to 0.04%, N:
0.10 to 0.40%, V: 0.01 to 0.50%,
Ti: 0.01 to 0.50%, Nb: 0.01 to 0.5
0%, one or more of them, the balance consists of unavoidable impurities and Fe, and the pitting resistance index (PREW) given by the following formula (1) is 43 or more, and the following (2) The index ΔH of the difference in Vickers hardness between a water-cooled material and an air-cooled material such that the intermetallic compound such as the σ phase is precipitated, which is given by the following formula:
The pitting resistance index (PREW (α)) in ferrite given by the following equation (3) and the pitting corrosion index (PREW) in austenite given by the following equation (4) when v (σ) is 65 or less. (Γ)) is −3.0.
It is a duplex stainless steel excellent in corrosion resistance and phase stability, which satisfies the condition of not less than 3.0. PREW =% Cr + 3.3 × (% Mo + 0.5 ×% W)
+ 16 ×% N (1) Expression ΔHv (σ) = 4.9 ×% Cr ×% Mo + 4.5 ×% C
r-103.4 ×% Mo + 19.3 ×% Ni-10.7
×% N−3.6 ×% W−228.6 (2) Formula PREW (α) = (3 ×% α−1000) / {0.03
× (% α) 2 -2 ×% α-800} ×% Cr + 3.3 ×
(3 ×% α-1360) / {0.03 × (% α) 2
5.6 ×% α−800 ° ×% Mo + 1.65 × (30
0) / (% α + 200) ×% W (3) Formula PREW (γ) = (− 800) / {0.03 × (% α)
2 -2 ×% α-800} ×% Cr + 3.3 × (-80
0) / {0.03 × (% α) 2 −5.6 ×% α−80
0} ×% Mo + 1.65 × (200) / (% α + 20
0) ×% W + 16 × (100) / (100−% α) ×%
N ... (4) where% α = 5.8 ×% Cr + 4 ×% Mo + 1.2 ×
% W-5.7 ×% Ni-63.8 ×% N-54.4

【0020】さらにまた、C:0.03%以下、Si:
0.10〜2.00%、Mn:0.10〜2.00%、
P:0.05%以下、S:0.005%以下、Cr:1
8.0〜25.0%、Ni:2.0〜8.0%、Mo:
3.0〜7.0%、Al:0.001〜0.04%、
N:0.10〜0.40%と、Ca:0.0005〜
0.010%、Mg:0.0005〜0.010%、
B:0.0005〜0.010%、希土類金属:0.0
005〜0.010%のうちの1種または2種以上を含
有し、残部が不可避的不純物とFeからなり、かつ、下
記(1)式で与えられる耐孔食性指数(PREW)が4
3以上、下記(2)式で与えられるσ相等の金属間化合
物が析出しないように水冷した材料とσ相等の金属間化
合物が析出するように空冷した材料とのビッカース硬度
差の指標ΔHv(σ)が65以下、下記(3)式で与え
られるフェライト中での耐孔食性指数(PREW
(α))と、下記(4)式で与えられるオーステナイト
中での耐孔食性指数(PREW(γ))との差(ΔPR
EW)が−3.0以上3.0以下の条件を満足している
ことを特徴とする耐食性、相安定性に優れた二相ステン
レス鋼である。 PREW=%Cr+3.3×(%Mo+0.5×%W)
+16×%N…(1)式 ΔHv(σ)=4.9×%Cr×%Mo+4.5×%C
r−103.4×%Mo+19.3×%Ni−10.7
×%N−3.6×%W−228.6…(2)式 PREW(α)=(3×%α−1000)/{0.03
×(%α)2−2×%α−800}×%Cr+3.3×
(3×%α−1360)/{0.03×(%α)2
5.6×%α−800}×%Mo+1.65×(30
0)/(%α+200)×%W…(3)式 PREW(γ)=(−800)/{0.03×(%α)
2−2×%α−800}×%Cr+3.3×(−80
0)/{0.03×(%α)2−5.6×%α−80
0}×%Mo+1.65×(200)/(%α+20
0)×%W+16×(100)/(100−%α)×%
N…(4)式 ただし、%α=5.8×%Cr+4×%Mo+1.2×
%W−5.7×%Ni−63.8×%N−54.4
Further, C: 0.03% or less, Si:
0.10 to 2.00%, Mn: 0.10 to 2.00%,
P: 0.05% or less, S: 0.005% or less, Cr: 1
8.0 to 25.0%, Ni: 2.0 to 8.0%, Mo:
3.0 to 7.0%, Al: 0.001 to 0.04%,
N: 0.10 to 0.40%, Ca: 0.0005 to
0.010%, Mg: 0.0005 to 0.010%,
B: 0.0005 to 0.010%, rare earth metal: 0.0
005-0.010%, and the balance consists of unavoidable impurities and Fe, and the pitting resistance index (PREW) given by the following formula (1) is 4
3 or more, an index ΔHv (σ) of the difference in Vickers hardness between a water-cooled material and an air-cooled material such that a σ phase or the like intermetallic compound is precipitated, which is given by the following formula (2). ) Is 65 or less and the pitting resistance index (PREW) in ferrite given by the following equation (3) is given.
(Α)) and the difference (ΔPR) between the pitting resistance index (PREW (γ)) in austenite given by the following equation (4):
EW) satisfying the condition of -3.0 or more and 3.0 or less, is a duplex stainless steel excellent in corrosion resistance and phase stability. PREW =% Cr + 3.3 × (% Mo + 0.5 ×% W)
+ 16 ×% N (1) Expression ΔHv (σ) = 4.9 ×% Cr ×% Mo + 4.5 ×% C
r-103.4 ×% Mo + 19.3 ×% Ni-10.7
×% N−3.6 ×% W−228.6 (2) Formula PREW (α) = (3 ×% α−1000) / {0.03
× (% α) 2 -2 ×% α-800} ×% Cr + 3.3 ×
(3 ×% α-1360) / {0.03 × (% α) 2
5.6 ×% α−800 ° ×% Mo + 1.65 × (30
0) / (% α + 200) ×% W (3) Formula PREW (γ) = (− 800) / {0.03 × (% α)
2 -2 ×% α-800} ×% Cr + 3.3 × (-80
0) / {0.03 × (% α) 2 −5.6 ×% α−80
0} ×% Mo + 1.65 × (200) / (% α + 20
0) ×% W + 16 × (100) / (100−% α) ×%
N ... (4) where% α = 5.8 ×% Cr + 4 ×% Mo + 1.2 ×
% W-5.7 ×% Ni-63.8 ×% N-54.4

【0021】また、C:0.03%以下、Si:0.1
0〜2.00%、Mn:0.10〜2.00%、P:
0.05%以下、S:0.005%以下、Cr:18.
0〜25.0%、Ni:2.0〜8.0%、Mo:3.
0〜7.0%、Al:0.001〜0.04%、N:
0.10〜0.40%と、Cu:0.01〜2.00
%、W:0.01〜1.50%のうちの1種または2種
以上、V:0.01〜0.50%、Ti:0.01〜
0.50%、Nb:0.01〜0.50%のうちの1種
または2種以上を含有し、残部が不可避的不純物とFe
からなり、かつ、下記(1)式で与えられる耐孔食性指
数(PREW)が43以上、下記(2)式で与えられる
σ相等の金属間化合物が析出しないように水冷した材料
とσ相等の金属間化合物が析出するように空冷した材料
とのビッカース硬度差の指標ΔHv(σ)が65以下、
下記(3)式で与えられるフェライト中での耐孔食性指
数(PREW(α))と、下記(4)式で与えられるオ
ーステナイト中での耐孔食性指数(PREW(γ))と
の差(ΔPREW)が−3.0以上3.0以下の条件を
満足していることを特徴とする耐食性、相安定性に優れ
た二相ステンレス鋼である。 PREW=%Cr+3.3×(%Mo+0.5×%W)
+16×%N…(1)式 ΔHv(σ)=4.9×%Cr×%Mo+4.5×%C
r−103.4×%Mo+19.3×%Ni−10.7
×%N−3.6×%W−228.6…(2)式 PREW(α)=(3×%α−1000)/{0.03
×(%α)2−2×%α−800}×%Cr+3.3×
(3×%α−1360)/{0.03×(%α)2
5.6×%α−800}×%Mo+1.65×(30
0)/(%α+200)×%W…(3)式 PREW(γ)=(−800)/{0.03×(%α)
2−2×%α−800}×%Cr+3.3×(−80
0)/{0.03×(%α)2−5.6×%α−80
0}×%Mo+1.65×(200)/(%α+20
0)×%W+16×(100)/(100−%α)×%
N…(4)式 ただし、%α=5.8×%Cr+4×%Mo+1.2×
%W−5.7×%Ni−63.8×%N−54.4
C: 0.03% or less, Si: 0.1
0 to 2.00%, Mn: 0.10 to 2.00%, P:
0.05% or less, S: 0.005% or less, Cr: 18.
0 to 25.0%, Ni: 2.0 to 8.0%, Mo: 3.
0 to 7.0%, Al: 0.001 to 0.04%, N:
0.10 to 0.40% and Cu: 0.01 to 2.00
%, W: one or more of 0.01 to 1.50%, V: 0.01 to 0.50%, Ti: 0.01 to
0.50%, Nb: contains one or more of 0.01 to 0.50%, with the balance being unavoidable impurities and Fe
And a water-cooled material having a pitting corrosion index (PREW) of 43 or more given by the following formula (1) and an intermetallic compound such as a σ phase given by the following formula (2): The index ΔHv (σ) of the difference in Vickers hardness between the air-cooled material and the intermetallic compound precipitated is 65 or less;
The difference between the pitting resistance index (PREW (α)) in ferrite given by the following equation (3) and the pitting corrosion index (PREW (γ)) in austenite given by the following equation (4) ( ΔPREW) satisfying the condition of -3.0 or more and 3.0 or less is a duplex stainless steel excellent in corrosion resistance and phase stability. PREW =% Cr + 3.3 × (% Mo + 0.5 ×% W)
+ 16 ×% N (1) Expression ΔHv (σ) = 4.9 ×% Cr ×% Mo + 4.5 ×% C
r-103.4 ×% Mo + 19.3 ×% Ni-10.7
×% N−3.6 ×% W−228.6 (2) Formula PREW (α) = (3 ×% α−1000) / {0.03
× (% α) 2 -2 ×% α-800} ×% Cr + 3.3 ×
(3 ×% α-1360) / {0.03 × (% α) 2
5.6 ×% α−800 ° ×% Mo + 1.65 × (30
0) / (% α + 200) ×% W (3) Formula PREW (γ) = (− 800) / {0.03 × (% α)
2 -2 ×% α-800} ×% Cr + 3.3 × (-80
0) / {0.03 × (% α) 2 −5.6 ×% α−80
0} ×% Mo + 1.65 × (200) / (% α + 20
0) ×% W + 16 × (100) / (100−% α) ×%
N ... (4) where% α = 5.8 ×% Cr + 4 ×% Mo + 1.2 ×
% W-5.7 ×% Ni-63.8 ×% N-54.4

【0022】さらに、C:0.03%以下、Si:0.
10〜2.00%、Mn:0.10〜2.00%、P:
0.05%以下、S:0.005%以下、Cr:18.
0〜25.0%、Ni:2.0〜8.0%、Mo:3.
0〜7.0%、Al:0.001〜0.04%、N:
0.10〜0.40%と、Cu:0.01〜2.00
%、W:0.01〜1.50%のうちの1種または2種
以上、Ca:0.0005〜0.010%、Mg:0.
0005〜0.010%、B:0.0005〜0.01
0%、希土類金属:0.0005〜0.010%の1種
または2種以上を含有し、残部が不可避的不純物とFe
からなり、かつ、下記(1)式で与えられる耐孔食性指
数(PREW)が43以上、下記(2)式で与えられる
σ相等の金属間化合物が析出しないように水冷した材料
とσ相等の金属間化合物が析出するように空冷した材料
とのビッカース硬度差の指標ΔHv(σ)が65以下、
下記(3)式で与えられるフェライト中での耐孔食性指
数(PREW(α))と、下記(4)式で与えられるオ
ーステナイト中での耐孔食性指数(PREW(γ))と
の差(ΔPREW)が−3.0以上3.0以下の条件を
満足していることを特徴とする耐食性、相安定性に優れ
た二相ステンレス鋼である。 PREW=%Cr+3.3×(%Mo+0.5×%W)
+16×%N…(1)式 ΔHv(σ)=4.9×%Cr×%Mo+4.5×%C
r−103.4×%Mo+19.3×%Ni−10.7
×%N−3.6×%W−228.6…(2)式 PREW(α)=(3×%α−1000)/{0.03
×(%α)2−2×%α−800}×%Cr+3.3×
(3×%α−1360)/{0.03×(%α)2
5.6×%α−800}×%Mo+1.65×(30
0)/(%α+200)×%W…(3)式 PREW(γ)=(−800)/{0.03×(%α)
2−2×%α−800}×%Cr+3.3×(−80
0)/{0.03×(%α)2−5.6×%α−80
0}×%Mo+1.65×(200)/(%α+20
0)×%W+16×(100)/(100−%α)×%
N…(4)式 ただし、%α=5.8×%Cr+4×%Mo+1.2×
%W−5.7×%Ni−63.8×%N−54.4
Further, C: 0.03% or less, Si: 0.
10 to 2.00%, Mn: 0.10 to 2.00%, P:
0.05% or less, S: 0.005% or less, Cr: 18.
0 to 25.0%, Ni: 2.0 to 8.0%, Mo: 3.
0 to 7.0%, Al: 0.001 to 0.04%, N:
0.10 to 0.40% and Cu: 0.01 to 2.00
%, W: one or more of 0.01 to 1.50%, Ca: 0.0005 to 0.010%, Mg: 0.
0005-0.010%, B: 0.0005-0.01
0%, rare earth metal: 0.0005 to 0.010%, one or more of which are inevitable impurities and Fe
And a water-cooled material having a pitting corrosion index (PREW) of 43 or more given by the following formula (1) and an intermetallic compound such as a σ phase given by the following formula (2): The index ΔHv (σ) of the difference in Vickers hardness between the air-cooled material and the intermetallic compound precipitated is 65 or less;
The difference between the pitting resistance index (PREW (α)) in ferrite given by the following equation (3) and the pitting corrosion index (PREW (γ)) in austenite given by the following equation (4) ( ΔPREW) satisfying the condition of -3.0 or more and 3.0 or less is a duplex stainless steel excellent in corrosion resistance and phase stability. PREW =% Cr + 3.3 × (% Mo + 0.5 ×% W)
+ 16 ×% N (1) Expression ΔHv (σ) = 4.9 ×% Cr ×% Mo + 4.5 ×% C
r-103.4 ×% Mo + 19.3 ×% Ni-10.7
×% N−3.6 ×% W−228.6 (2) Formula PREW (α) = (3 ×% α−1000) / {0.03
× (% α) 2 -2 ×% α-800} ×% Cr + 3.3 ×
(3 ×% α-1360) / {0.03 × (% α) 2
5.6 ×% α−800 ° ×% Mo + 1.65 × (30
0) / (% α + 200) ×% W (3) Formula PREW (γ) = (− 800) / {0.03 × (% α)
2 -2 ×% α-800} ×% Cr + 3.3 × (-80
0) / {0.03 × (% α) 2 −5.6 ×% α−80
0} ×% Mo + 1.65 × (200) / (% α + 20
0) ×% W + 16 × (100) / (100−% α) ×%
N ... (4) where% α = 5.8 ×% Cr + 4 ×% Mo + 1.2 ×
% W-5.7 ×% Ni-63.8 ×% N-54.4

【0023】さらにまた、C:0.03%以下、Si:
0.10〜2.00%、Mn:0.10〜2.00%、
P:0.05%以下、S:0.005%以下、Cr:1
8.0〜25.0%、Ni:2.0〜8.0%、Mo:
3.0〜7.0%、Al:0.001〜0.04%、
N:0.10〜0.40%と、V:0.01〜0.50
%、Ti:0.01〜0.50%、Nb:0.01〜
0.50%のうちの1種または2種以上、Ca:0.0
005〜0.010%、Mg:0.0005〜0.01
0%、B:0.0005〜0.010%、希土類金属:
0.0005〜0.010%の1種または2種以上を含
有し、残部が不可避的不純物とFeからなり、かつ、下
記(1)式で与えられる耐孔食性指数(PREW)が4
3以上、下記(2)式で与えられるσ相等の金属間化合
物が析出しないように水冷した材料とσ相等の金属間化
合物が析出するように空冷した材料とのビッカース硬度
差の指標ΔHv(σ)が65以下、下記(3)式で与え
られるフェライト中での耐孔食性指数(PREW
(α))と、下記(4)式で与えられるオーステナイト
中での耐孔食性指数(PREW(γ))との差(ΔPR
EW)が−3.0以上3.0以下の条件を満足している
ことを特徴とする耐食性、相安定性に優れた二相ステン
レス鋼である。 PREW=%Cr+3.3×(%Mo+0.5×%W)
+16×%N…(1)式 ΔHv(σ)=4.9×%Cr×%Mo+4.5×%C
r−103.4×%Mo+19.3×%Ni−10.7
×%N−3.6×%W−228.6…(2)式 PREW(α)=(3×%α−1000)/{0.03
×(%α)2−2×%α−800}×%Cr+3.3×
(3×%α−1360)/{0.03×(%α)2
5.6×%α−800}×%Mo+1.65×(30
0)/(%α+200)×%W…(3)式 PREW(γ)=(−800)/{0.03×(%α)
2−2×%α−800}×%Cr+3.3×(−80
0)/{0.03×(%α)2−5.6×%α−80
0}×%Mo+1.65×(200)/(%α+20
0)×%W+16×(100)/(100−%α)×%
N…(4)式 ただし、%α=5.8×%Cr+4×%Mo+1.2×
%W−5.7×%Ni−63.8×%N−54.4
Further, C: 0.03% or less, Si:
0.10 to 2.00%, Mn: 0.10 to 2.00%,
P: 0.05% or less, S: 0.005% or less, Cr: 1
8.0 to 25.0%, Ni: 2.0 to 8.0%, Mo:
3.0 to 7.0%, Al: 0.001 to 0.04%,
N: 0.10 to 0.40%, V: 0.01 to 0.50
%, Ti: 0.01 to 0.50%, Nb: 0.01 to
One or more of 0.50%, Ca: 0.0
005-0.010%, Mg: 0.0005-0.01
0%, B: 0.0005 to 0.010%, rare earth metal:
One or more of 0.0005 to 0.010% is contained, the balance consists of unavoidable impurities and Fe, and the pitting resistance index (PREW) given by the following formula (1) is 4
3 or more, an index ΔHv (σ) of the difference in Vickers hardness between a water-cooled material and an air-cooled material such that a σ phase or the like intermetallic compound is precipitated, which is given by the following formula (2). ) Is 65 or less and the pitting resistance index (PREW) in ferrite given by the following equation (3) is given.
(Α)) and the difference (ΔPR) between the pitting resistance index (PREW (γ)) in austenite given by the following equation (4):
EW) satisfying the condition of -3.0 or more and 3.0 or less, is a duplex stainless steel excellent in corrosion resistance and phase stability. PREW =% Cr + 3.3 × (% Mo + 0.5 ×% W)
+ 16 ×% N (1) Expression ΔHv (σ) = 4.9 ×% Cr ×% Mo + 4.5 ×% C
r-103.4 ×% Mo + 19.3 ×% Ni-10.7
×% N−3.6 ×% W−228.6 (2) Formula PREW (α) = (3 ×% α−1000) / {0.03
× (% α) 2 -2 ×% α-800} ×% Cr + 3.3 ×
(3 ×% α-1360) / {0.03 × (% α) 2
5.6 ×% α−800 ° ×% Mo + 1.65 × (30
0) / (% α + 200) ×% W (3) Formula PREW (γ) = (− 800) / {0.03 × (% α)
2 -2 ×% α-800} ×% Cr + 3.3 × (-80
0) / {0.03 × (% α) 2 −5.6 ×% α−80
0} ×% Mo + 1.65 × (200) / (% α + 20
0) ×% W + 16 × (100) / (100−% α) ×%
N ... (4) where% α = 5.8 ×% Cr + 4 ×% Mo + 1.2 ×
% W-5.7 ×% Ni-63.8 ×% N-54.4

【0024】また、C:0.03%以下、Si:0.1
0〜2.00%、Mn:0.10〜2.00%、P:
0.05%以下、S:0.005%以下、Cr:18.
0〜25.0%、Ni:2.0〜8.0%、Mo:3.
0〜7.0%、Al:0.001〜0.04%、N:
0.10〜0.40%と、Cu:0.01〜2.00
%、W:0.01〜1.50%のうちの1種または2種
以上、V:0.01〜0.50%、Ti:0.01〜
0.50%、Nb:0.01〜0.50%のうちの1種
または2種以上、Ca:0.0005〜0.010%、
Mg:0.0005〜0.010%、B:0.0005
〜0.010%、希土類金属:0.0005〜0.01
0%の1種または2種以上を含有し、残部が不可避的不
純物とFeからなり、かつ、下記(1)式で与えられる
耐孔食性指数(PREW)が43以上、下記(2)式で
与えられるσ相等の金属間化合物が析出しないように水
冷した材料とσ相等の金属間化合物が析出するように空
冷した材料とのビッカース硬度差の指標ΔHv(σ)が
65以下、下記(3)式で与えられるフェライト中での
耐孔食性指数(PREW(α))と、下記(4)式で与
えられるオーステナイト中での耐孔食性指数(PREW
(γ))との差(ΔPREW)が−3.0以上3.0以
下の条件を満足していることを特徴とする耐食性、相安
定性に優れた二相ステンレス鋼である。 PREW=%Cr+3.3×(%Mo+0.5×%W)
+16×%N…(1)式 ΔHv(σ)=4.9×%Cr×%Mo+4.5×%C
r−103.4×%Mo+19.3×%Ni−10.7
×%N−3.6×%W−228.6…(2)式 PREW(α)=(3×%α−1000)/{0.03
×(%α)2−2×%α−800}×%Cr+3.3×
(3×%α−1360)/{0.03×(%α)2
5.6×%α−800}×%Mo+1.65×(30
0)/(%α+200)×%W…(3)式 PREW(γ)=(−800)/{0.03×(%α)
2−2×%α−800}×%Cr+3.3×(−80
0)/{0.03×(%α)2−5.6×%α−80
0}×%Mo+1.65×(200)/(%α+20
0)×%W+16×(100)/(100−%α)×%
N…(4)式 ただし、%α=5.8×%Cr+4×%Mo+1.2×
%W−5.7×%Ni−63.8×%N−54.4
C: 0.03% or less, Si: 0.1
0 to 2.00%, Mn: 0.10 to 2.00%, P:
0.05% or less, S: 0.005% or less, Cr: 18.
0 to 25.0%, Ni: 2.0 to 8.0%, Mo: 3.
0 to 7.0%, Al: 0.001 to 0.04%, N:
0.10 to 0.40% and Cu: 0.01 to 2.00
%, W: one or more of 0.01 to 1.50%, V: 0.01 to 0.50%, Ti: 0.01 to
0.50%, Nb: one or more of 0.01 to 0.50%, Ca: 0.0005 to 0.010%,
Mg: 0.0005-0.010%, B: 0.0005
0.010%, rare earth metal: 0.0005 to 0.01
0% of one or more kinds, the balance consists of unavoidable impurities and Fe, and the pitting corrosion resistance index (PREW) given by the following equation (1) is 43 or more; The index ΔHv (σ) of the difference in Vickers hardness between a material that is water-cooled so as not to precipitate an intermetallic compound such as a σ phase and a material that is air-cooled so as to precipitate an intermetallic compound such as a σ phase is 65 or less, and the following (3) The pitting corrosion resistance index (PREW (α)) in ferrite given by the equation and the pitting corrosion index (PREW) in austenite given by the following equation (4)
(Γ)) is a duplex stainless steel excellent in corrosion resistance and phase stability, characterized by satisfying the condition of -3.0 or more and 3.0 or less. PREW =% Cr + 3.3 × (% Mo + 0.5 ×% W)
+ 16 ×% N (1) Expression ΔHv (σ) = 4.9 ×% Cr ×% Mo + 4.5 ×% C
r-103.4 ×% Mo + 19.3 ×% Ni-10.7
×% N−3.6 ×% W−228.6 (2) Formula PREW (α) = (3 ×% α−1000) / {0.03
× (% α) 2 -2 ×% α-800} ×% Cr + 3.3 ×
(3 ×% α-1360) / {0.03 × (% α) 2
5.6 ×% α−800 ° ×% Mo + 1.65 × (30
0) / (% α + 200) ×% W (3) Formula PREW (γ) = (− 800) / {0.03 × (% α)
2 -2 ×% α-800} ×% Cr + 3.3 × (-80
0) / {0.03 × (% α) 2 −5.6 ×% α−80
0} ×% Mo + 1.65 × (200) / (% α + 20
0) ×% W + 16 × (100) / (100−% α) ×%
N ... (4) where% α = 5.8 ×% Cr + 4 ×% Mo + 1.2 ×
% W-5.7 ×% Ni-63.8 ×% N-54.4

【0025】[0025]

【作用】この発明の二相ステンレス鋼は、いずれも耐孔
食性指数(PREW)が43以上、ΔHv(σ)が65
以下、ΔPREWが−3.0以上3.0以下の条件を満
足するから、PREW≧43とするこよって継手熱影響
部の耐食性が確保され、また、ΔHv(σ)≦65とす
ることによって、切削性が確保され、−3.0≦ΔPR
EW≦3.0とすることによってフェライト相とオース
テナイト相、各相での耐食性が確保され、耐食性、特に
周溶接部の耐食性に優れ、加工性、相安定性、分塊圧延
性に優れている。
The duplex stainless steel of the present invention has a pitting resistance index (PREW) of 43 or more and a ΔHv (σ) of 65 or more.
Hereinafter, since ΔPREW satisfies the condition of −3.0 or more and 3.0 or less, the corrosion resistance of the joint heat affected zone is ensured by setting PREW ≧ 43, and by setting ΔHv (σ) ≦ 65, Machinability is secured, -3.0 ≦ ΔPR
By setting EW ≦ 3.0, the corrosion resistance of the ferrite phase and the austenitic phase, and each phase, is secured, and the corrosion resistance, particularly the corrosion resistance of the girth weld, is excellent, and the workability, phase stability, and bulk rolling property are excellent. .

【0026】この発明における二相ステンレス鋼の化学
成分を上記の範囲に限定した理由について説明する。C
は鋼中に含まれる不可避的元素であるが、0.03%を
超えると溶接熱影響部に炭化物が析出し、著しく耐食性
を劣化させるので、0.03%以下とした。Siは脱酸
剤として作用する元素であるが、十分な耐食性を確保す
るためには酸素の低減が不可欠であり、0.10%未満
では脱酸効果が不十分で、2.00%を超えると脆化を
招くため、0.10〜2.00%とした。Mnは脱酸、
脱硫を目的として添加される元素であるが、0.10%
未満では十分な効果が得られず、2.00%を超えると
耐食性に悪影響を与えるため、0.10〜2.00%と
した。Pは鋼中に含まれる不可避的元素であるが、熱間
加工性、耐食性を劣化させるためできるだけ低くする必
要があるが、脱隣コストとの兼ね合いで、0.05%以
下とした。Sも鋼中に含まれる不可避的元素であり、二
相ステンレス鋼の熱間加工性に最も影響する元素である
ため、できるだけ低くする必要があり、0.005%以
下とした。
The reason for limiting the chemical composition of the duplex stainless steel in the present invention to the above range will be described. C
Is an unavoidable element contained in steel. However, if it exceeds 0.03%, carbides precipitate in the heat affected zone of welding and the corrosion resistance is remarkably deteriorated. Si is an element acting as a deoxidizing agent, but in order to ensure sufficient corrosion resistance, reduction of oxygen is indispensable. If it is less than 0.10%, the deoxidizing effect is insufficient, and it exceeds 2.00%. And 0.10 to 2.00% to cause embrittlement. Mn is deoxidized,
Element added for the purpose of desulfurization, but 0.10%
If it is less than 2,000%, a sufficient effect cannot be obtained, and if it exceeds 2.00%, the corrosion resistance is adversely affected. P is an unavoidable element contained in steel, but must be as low as possible in order to degrade hot workability and corrosion resistance. S is also an unavoidable element contained in the steel and is the element that most affects the hot workability of the duplex stainless steel. Therefore, it is necessary to make S as low as possible.

【0027】Crは二相ステンレス鋼の基本成分の一つ
であり、耐食性を支配している重要な元素であるが、フ
ェライトとオーステナイトの二相組織を形成しながら高
耐食性を確保するためには18.0%以上必要である
が、耐孔食性を上昇させるために多量のMoを添加した
場合、25.0%を超えて添加すると著しくσ相等の金
属間化合物の析出を加速するため、18.0〜25.0
%とした。Niは二相組織を得るためにCr含有量、M
o含有量ならびにN含有量との兼ね合いで添加される
が、2.0%未満ではフェライト相主体の二相組織とな
り耐食性が低下し、また、8.0%を超えるとオーステ
ナイト相主体の二相組織となるばかりでなく、著しくσ
相等の金属間化合物の析出を加速するため、2.0〜
8.0%とした。Moは耐孔食性を向上させる元素であ
り、所望の耐孔食性を得るためには3.0%未満では十
分でなく、また、7.0%を超えるとσ相等の金属間化
合物の析出を加速するため、3.0〜7.0%とした。
Cr is one of the basic components of the duplex stainless steel and is an important element that governs the corrosion resistance. To ensure high corrosion resistance while forming a two-phase structure of ferrite and austenite, Although 18.0% or more is necessary, when a large amount of Mo is added to increase pitting resistance, adding more than 25.0% remarkably accelerates precipitation of intermetallic compounds such as σ phase. 0.0 to 25.0
%. Ni has a Cr content, M
When the content is less than 2.0%, a two-phase structure mainly composed of a ferrite phase is formed, and the corrosion resistance is reduced. When the content exceeds 8.0%, a two-phase mainly composed of an austenite phase is added. Not only organization, but also
2.0 to 2.0 to accelerate the precipitation of intermetallic compounds such as
It was set to 8.0%. Mo is an element for improving the pitting corrosion resistance, and if it is less than 3.0%, it is not enough to obtain the desired pitting corrosion resistance, and if it exceeds 7.0%, the precipitation of intermetallic compounds such as the σ phase may be prevented. In order to accelerate, it was set to 3.0 to 7.0%.

【0028】Alは脱酸元素として不可欠であり、十分
な耐食性を確保するためには酸素の低減が不可欠であ
り、0.001%未満では十分な脱酸効果が得られず、
また、0.04%を超えるとAlNが析出し易くなり、
靭性、耐食性を劣化させるため、0.001〜0.04
%とした。Nは二相組織を形成させるために重要な元素
であり、耐孔食性を向上させるために非常に有効な元素
であるが、0.10%未満ではその効果が十分でなく、
また、0.40%を超えると熱間加工性を著しく低下さ
せるため、0.10〜0.40%とした。Cuは鋼の耐
酸性を向上させ耐食性を改善させる作用がある元素であ
り、必要により添加されるが、0.01%未満では所望
の効果が得られず、また、2.00%を超えると熱間加
工性を低下させるため、0.01〜2.00%とした。
Wは耐隙間腐食性を向上させ耐食性を改善させる作用が
ある元素であり、必要により添加されるが、0.01%
未満では所望の効果が得られず、また、1.50%を超
えると熱間加工性を低下させるため、0.01〜1.5
0%とした。
Al is indispensable as a deoxidizing element, and oxygen must be reduced to ensure sufficient corrosion resistance. If the content is less than 0.001%, a sufficient deoxidizing effect cannot be obtained.
On the other hand, when the content exceeds 0.04%, AlN easily precipitates,
0.001 to 0.04 to deteriorate toughness and corrosion resistance
%. N is an important element for forming a two-phase structure and is a very effective element for improving pitting corrosion resistance. However, if it is less than 0.10%, the effect is not sufficient.
On the other hand, if the content exceeds 0.40%, the hot workability is significantly reduced. Cu is an element having an effect of improving the acid resistance and corrosion resistance of steel, and is added as necessary. However, if it is less than 0.01%, the desired effect cannot be obtained, and if it exceeds 2.00%, In order to reduce the hot workability, the content is set to 0.01 to 2.00%.
W is an element having an effect of improving crevice corrosion resistance and improving corrosion resistance, and is added if necessary.
If it is less than 1.5%, the desired effect cannot be obtained, and if it exceeds 1.50%, the hot workability deteriorates.
0%.

【0029】V、Ti、Nbは鋼中で安定な炭化物を形
成し、耐食性を向上させる元素で、必要により1種また
は2種以上添加されるが、0.01%未満では所望の効
果が得られず、また、0.50%を超えて添加しても飽
和状態となるため、0.01〜0.50%とした。C
a、Mgおよび希土類金属(La、Ce等)は鋼中で硫
化物を形成してSを固定させ、熱間加工性を向上させる
元素で、必要により1種または2種以上添加されるが、
0.0005%未満では所望の効果が得られず、また、
0.010%を超えて添加しても飽和状態となるため、
0.0005〜0.010%とした。Bは鋼中の粒界に
偏析することにより熱間加工性を向上させる元素で、必
要により添加されるが、0.0005%未満では所望の
効果が得られず、また、0.010%を超えて添加して
も飽和状態となるため、0.0005〜0.010%と
した。
V, Ti, and Nb are elements that form stable carbides in steel and improve corrosion resistance. One or more of these elements may be added as necessary. If less than 0.01%, desired effects can be obtained. It cannot be obtained, and even if it is added in excess of 0.50%, it will be in a saturated state. C
a, Mg, and rare earth metals (La, Ce, etc.) are elements that form sulfides in steel to fix S and improve hot workability, and one or more elements are added as necessary.
If it is less than 0.0005%, the desired effect cannot be obtained.
Even if it is added in excess of 0.010%, it becomes saturated,
0.0005 to 0.010%. B is an element that improves hot workability by segregating at grain boundaries in steel, and is added as necessary. However, if it is less than 0.0005%, a desired effect cannot be obtained. Even if added in excess, it will be in a saturated state, so it was made 0.0005 to 0.010%.

【0030】[0030]

【実施例】高周波誘導真空溶解炉を用いて表6、表7に
示す成分組成の各二相ステンレス鋼を溶製し、50kg
の鋼塊に鋳込んだのち、厚さ12mmに熱間圧延を行っ
た。各二相ステンレス鋼は、前記(1)式ないし(4)
式に基いてPREW、ΔPREWおよびΔHv(σ)を
求めた。このようにして得られた各二相ステンレス鋼の
切削性を評価するため、硬度測定を行った。一般にショ
ア硬さにて40未満でないと切削不可能であるため、シ
ョア硬さ40未満を切削性良好(○)、ショア硬さ40
以上を切削性不良(×)として評価した。さらに、各二
相ステンレス鋼は、1070℃に30分間加熱保持した
のち水冷の条件で溶体化処理を施し、フェライト量を調
査すると共に、厚さ3mm、幅50mm、長さ50mm
の母材腐食試験のための試験片を採取した。また、各二
相ステンレス鋼は、溶接部の耐食性を評価するため、開
先加工を行い、全自動TIG溶接を施し、ボンド部、継
手熱影響部から腐食試験片を採取した。腐食試験は、上
記各試験片を各温度の10%FeCl3・6H2O水溶液
に24時間浸漬し、試験片表面にピッティングが生じる
最低の温度(CPT)と腐食減量を測定した。その結
果、良好な耐食性を示したものは(○)、不良なものは
(×)として評価した。その結果をPREW、ΔPRE
WおよびΔHv(σ)と共に表8、表9に示す。
EXAMPLE Using a high-frequency induction vacuum melting furnace, each duplex stainless steel having the composition shown in Tables 6 and 7 was melted, and 50 kg was melted.
, And hot-rolled to a thickness of 12 mm. Each of the duplex stainless steels is obtained by using the above formulas (1) to (4)
PREW, ΔPREW and ΔHv (σ) were determined based on the formula. Hardness was measured in order to evaluate the machinability of each of the thus obtained duplex stainless steels. In general, it is impossible to cut unless the Shore hardness is less than 40.
The above was evaluated as poor machinability (x). Further, each duplex stainless steel was heated and maintained at 1070 ° C. for 30 minutes, then subjected to a solution treatment under water-cooling conditions, the amount of ferrite was investigated, and the thickness was 3 mm, the width was 50 mm, and the length was 50 mm.
Specimens for the base metal corrosion test were collected. In addition, in order to evaluate the corrosion resistance of the welded portion, each duplex stainless steel was grooved, subjected to fully automatic TIG welding, and corrosion test specimens were taken from the bond portion and the joint heat affected zone. In the corrosion test, each of the test pieces was immersed in a 10% aqueous solution of FeCl 3 .6H 2 O at each temperature for 24 hours, and the lowest temperature (CPT) at which pitting occurred on the test piece surface and the corrosion loss were measured. As a result, those showing good corrosion resistance were evaluated as ((), and those showing poor corrosion resistance were evaluated as (x). PREW, ΔPRE
Tables 8 and 9 show the results together with W and ΔHv (σ).

【0031】[0031]

【表6】 [Table 6]

【0032】[0032]

【表7】 [Table 7]

【0033】[0033]

【表8】 [Table 8]

【0034】[0034]

【表9】 [Table 9]

【0035】表8、9に示すとおり、従来鋼および比較
鋼においては、本発明の条件を*印部分が満足させない
ため、切削性および溶接部の耐孔食性において所望の効
果が得られていないが、本発明の条件を満足させる本発
明鋼は、いずれも切削性および溶接部の耐孔食性が良好
である。
As shown in Tables 8 and 9, in the conventional steel and the comparative steel, since the conditions of the present invention were not satisfied by the portions marked with *, the desired effects were not obtained in the machinability and the pitting corrosion resistance of the welded portion. However, all of the steels of the present invention satisfying the conditions of the present invention have good machinability and pitting corrosion resistance of a welded portion.

【0036】[0036]

【発明の効果】以上述べたとおり、この発明の二相ステ
ンレス鋼は、耐食性、特に周溶接部の耐食性に優れ、ま
た、相安定性、分塊圧延性に優れている。このため、油
井用ラインパイプとして高耐食性(耐海水性)を要求さ
れる分野において、従来の問題点であった周溶接時の耐
食性劣化等を解消することができる。
As described above, the duplex stainless steel of the present invention is excellent in corrosion resistance, especially in the girth weld zone, and is excellent in phase stability and bulk rolling property. For this reason, in a field where high corrosion resistance (seawater resistance) is required as a line pipe for oil wells, it is possible to solve the conventional problems such as deterioration of corrosion resistance at the time of girth welding.

【図面の簡単な説明】[Brief description of the drawings]

【図1】二相ステンレス鋼におけるCr、Mo含有量と
σ相析出による硬度上昇の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between Cr and Mo contents in a duplex stainless steel and an increase in hardness due to σ phase precipitation.

【図2】二相ステンレス鋼の継手溶接熱影響部における
耐食性試験結果をPREWと腐食減量との関係で示すグ
ラフである。
FIG. 2 is a graph showing the results of a corrosion resistance test on a heat-affected zone of a duplex stainless steel joint at the weld heat-affected zone in relation to PREW and corrosion weight loss.

【図3】二相ステンレス鋼の耐食性試験結果のΔPRE
Wと腐食減量との関係を示すグラフである。
FIG. 3 .DELTA.PRE of corrosion resistance test result of duplex stainless steel
It is a graph which shows the relationship between W and corrosion weight loss.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小川 和博 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 (56)参考文献 特開 平4−280946(JP,A) 特開 昭62−253755(JP,A) 特開 平4−165019(JP,A) 特開 昭61−19764(JP,A) 特開 平3−82740(JP,A) 特開 昭57−47852(JP,A) 特開 昭61−113749(JP,A) 特開 平2−111845(JP,A) 特開 昭62−56556(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 302 C22C 38/44 C22C 38/58 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Kazuhiro Ogawa 4-33, Kitahama, Chuo-ku, Osaka-shi, Osaka Sumitomo Metal Industries, Ltd. (56) References JP-A-4-280946 (JP, A) JP-A 62-253755 (JP, A) JP-A-4-165019 (JP, A) JP-A 61-19764 (JP, A) JP-A 3-82740 (JP, A) JP-A 57-47852 (JP-A 57-47852) JP, A) JP-A-61-113749 (JP, A) JP-A-2-111845 (JP, A) JP-A-62-156556 (JP, A) (58) Fields investigated (Int. Cl. 7 , (DB name) C22C 38/00 302 C22C 38/44 C22C 38/58

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 C:0.03%以下、Si:0.10〜
2.00%、Mn:0.10〜2.00%、P:0.0
5%以下、S:0.005%以下、Cr:18.0〜2
5.0%、Ni:2.0〜8.0%、Mo:3.0〜
7.0%、Al:0.001〜0.04%、N:0.1
0〜0.40%を含有し、残部が不可避的不純物とFe
からなり、かつ、下記(1)式で与えられる耐孔食性指
数(PREW)が43以上、下記(2)式で与えられる
σ相等の金属間化合物が析出しないように水冷した材料
とσ相等の金属間化合物が析出するように空冷した材料
とのビッカース硬度差の指標ΔHv(σ)が65以下、
下記(3)式で与えられるフェライト中での耐孔食性指
数(PREW(α))と、下記(4)式で与えられるオ
ーステナイト中での耐孔食性指数(PREW(γ))と
の差(ΔPREW)が−3.0以上3.0以下の条件を
満足していることを特徴とする耐食性、相安定性に優れ
た二相ステンレス鋼。 PREW=%Cr+3.3×(%Mo+0.5×%W)
+16×%N…(1)式 ΔHv(σ)=4.9×%Cr×%Mo+4.5×%C
r−103.4×%Mo+19.3×%Ni−10.7
×%N−3.6×%W−228.6…(2)式 PREW(α)=(3×%α−1000)/{0.03
×(%α)2−2×%α−800}×%Cr+3.3×
(3×%α−1360)/{0.03×(%α)2
5.6×%α−800}×%Mo+1.65×(30
0)/(%α+200)×%W…(3)式 PREW(γ)=(−800)/{0.03×(%α)
2−2×%α−800}×%Cr+3.3×(−80
0)/{0.03×(%α)2−5.6×%α−80
0}×%Mo+1.65×(200)/(%α+20
0)×%W+16×(100)/(100−%α)×%
N…(4)式 ただし、%α=5.8×%Cr+4×%Mo+1.2×
%W−5.7×%Ni−63.8×%N−54.4
1. C: 0.03% or less, Si: 0.10 to 0.10
2.00%, Mn: 0.10-2.00%, P: 0.0
5% or less, S: 0.005% or less, Cr: 18.0 to 2
5.0%, Ni: 2.0-8.0%, Mo: 3.0-
7.0%, Al: 0.001 to 0.04%, N: 0.1
0 to 0.40%, the balance being unavoidable impurities and Fe
And a water-cooled material having a pitting corrosion index (PREW) of 43 or more given by the following formula (1) and an intermetallic compound such as a σ phase given by the following formula (2): The index ΔHv (σ) of the difference in Vickers hardness between the air-cooled material and the intermetallic compound precipitated is 65 or less;
The difference between the pitting resistance index (PREW (α)) in ferrite given by the following equation (3) and the pitting corrosion index (PREW (γ)) in austenite given by the following equation (4) ( A duplex stainless steel excellent in corrosion resistance and phase stability, wherein ΔPREW satisfies the condition of -3.0 or more and 3.0 or less. PREW =% Cr + 3.3 × (% Mo + 0.5 ×% W)
+ 16 ×% N (1) Expression ΔHv (σ) = 4.9 ×% Cr ×% Mo + 4.5 ×% C
r-103.4 ×% Mo + 19.3 ×% Ni-10.7
×% N−3.6 ×% W−228.6 (2) Formula PREW (α) = (3 ×% α−1000) / {0.03
× (% α) 2 -2 ×% α-800} ×% Cr + 3.3 ×
(3 ×% α-1360) / {0.03 × (% α) 2
5.6 ×% α−800 ° ×% Mo + 1.65 × (30
0) / (% α + 200) ×% W (3) Formula PREW (γ) = (− 800) / {0.03 × (% α)
2 -2 ×% α-800} ×% Cr + 3.3 × (-80
0) / {0.03 × (% α) 2 −5.6 ×% α−80
0} ×% Mo + 1.65 × (200) / (% α + 20
0) ×% W + 16 × (100) / (100−% α) ×%
N ... (4) where% α = 5.8 ×% Cr + 4 ×% Mo + 1.2 ×
% W-5.7 ×% Ni-63.8 ×% N-54.4
【請求項2】 C:0.03%以下、Si:0.10〜
2.00%、Mn:0.10〜2.00%、P:0.0
5%以下、S:0.005%以下、Cr:18.0〜2
5.0%、Ni:2.0〜8.0%、Mo:3.0〜
7.0%、Al:0.001〜0.04%、N:0.1
0〜0.40%と、Cu:0.01〜2.00%、W:
0.01〜1.50%のうちの1種または2種を含有
し、残部が不可避的不純物とFeからなり、かつ、下記
(1)式で与えられる耐孔食性指数(PREW)が43
以上、下記(2)式で与えられるσ相等の金属間化合物
が析出しないように水冷した材料とσ相等の金属間化合
物が析出するように空冷した材料とのビッカース硬度差
の指標ΔHv(σ)が65以下、下記(3)式で与えら
れるフェライト中での耐孔食性指数(PREW(α))
と、下記(4)式で与えられるオーステナイト中での耐
孔食性指数(PREW(γ))との差(ΔPREW)が
−3.0以上3.0以下の条件を満足していることを特
徴とする耐食性、相安定性に優れた二相ステンレス鋼。 PREW=%Cr+3.3×(%Mo+0.5×%W)
+16×%N…(1)式 ΔHv(σ)=4.9×%Cr×%Mo+4.5×%C
r−103.4×%Mo+19.3×%Ni−10.7
×%N−3.6×%W−228.6…(2)式 PREW(α)=(3×%α−1000)/{0.03
×(%α)2−2×%α−800}×%Cr+3.3×
(3×%α−1360)/{0.03×(%α)2
5.6×%α−800}×%Mo+1.65×(30
0)/(%α+200)×%W…(3)式 PREW(γ)=(−800)/{0.03×(%α)
2−2×%α−800}×%Cr+3.3×(−80
0)/{0.03×(%α)2−5.6×%α−80
0}×%Mo+1.65×(200)/(%α+20
0)×%W+16×(100)/(100−%α)×%
N…(4)式 ただし、%α=5.8×%Cr+4×%Mo+1.2×
%W−5.7×%Ni−63.8×%N−54.4
2. C: 0.03% or less, Si: 0.10 to
2.00%, Mn: 0.10-2.00%, P: 0.0
5% or less, S: 0.005% or less, Cr: 18.0 to 2
5.0%, Ni: 2.0-8.0%, Mo: 3.0-
7.0%, Al: 0.001 to 0.04%, N: 0.1
0 to 0.40%, Cu: 0.01 to 2.00%, W:
One or two of 0.01 to 1.50% are contained, the balance is made of unavoidable impurities and Fe, and the pitting resistance index (PREW) given by the following formula (1) is 43.
As described above, the index ΔHv (σ) of the Vickers hardness difference between a water-cooled material that does not precipitate an intermetallic compound such as a σ phase and an air-cooled material that precipitates an intermetallic compound such as a σ phase is given by the following equation (2). Is 65 or less, the pitting resistance index (PREW (α)) in ferrite given by the following equation (3):
And a difference (ΔPREW) between the pitting resistance index (PREW (γ)) in austenite given by the following equation (4) satisfies the condition of −3.0 or more and 3.0 or less. Duplex stainless steel with excellent corrosion resistance and phase stability. PREW =% Cr + 3.3 × (% Mo + 0.5 ×% W)
+ 16 ×% N (1) Expression ΔHv (σ) = 4.9 ×% Cr ×% Mo + 4.5 ×% C
r-103.4 ×% Mo + 19.3 ×% Ni-10.7
×% N−3.6 ×% W−228.6 (2) Formula PREW (α) = (3 ×% α−1000) / {0.03
× (% α) 2 -2 ×% α-800} ×% Cr + 3.3 ×
(3 ×% α-1360) / {0.03 × (% α) 2
5.6 ×% α−800 ° ×% Mo + 1.65 × (30
0) / (% α + 200) ×% W (3) Formula PREW (γ) = (− 800) / {0.03 × (% α)
2 -2 ×% α-800} ×% Cr + 3.3 × (-80
0) / {0.03 × (% α) 2 −5.6 ×% α−80
0} ×% Mo + 1.65 × (200) / (% α + 20
0) ×% W + 16 × (100) / (100−% α) ×%
N ... (4) where% α = 5.8 ×% Cr + 4 ×% Mo + 1.2 ×
% W-5.7 ×% Ni-63.8 ×% N-54.4
【請求項3】 C:0.03%以下、Si:0.10〜
2.00%、Mn:0.10〜2.00%、P:0.0
5%以下、S:0.005%以下、Cr:18.0〜2
5.0%、Ni:2.0〜8.0%、Mo:3.0〜
7.0%、Al:0.001〜0.04%、N:0.1
0〜0.40%と、V:0.01〜0.50%、Ti:
0.01〜0.50%、Nb:0.01〜0.50%の
うちの1種または2種以上を含有し、残部が不可避的不
純物とFeからなり、かつ、下記(1)式で与えられる
耐孔食性指数(PREW)が43以上、下記(2)式で
与えられるσ相等の金属間化合物が析出しないように水
冷した材料とσ相等の金属間化合物が析出するように空
冷した材料とのビッカース硬度差の指標ΔHv(σ)が
65以下、下記(3)式で与えられるフェライト中での
耐孔食性指数(PREW(α))と、下記(4)式で与
えられるオーステナイト中での耐孔食性指数(PREW
(γ))との差(ΔPREW)が−3.0以上3.0以
下の条件を満足していることを特徴とする耐食性、相安
定性に優れた二相ステンレス鋼。 PREW=%Cr+3.3×(%Mo+0.5×%W)
+16×%N…(1)式 ΔHv(σ)=4.9×%Cr×%Mo+4.5×%C
r−103.4×%Mo+19.3×%Ni−10.7
×%N−3.6×%W−228.6…(2)式 PREW(α)=(3×%α−1000)/{0.03
×(%α)2−2×%α−800}×%Cr+3.3×
(3×%α−1360)/{0.03×(%α)2
5.6×%α−800}×%Mo+1.65×(30
0)/(%α+200)×%W…(3)式 PREW(γ)=(−800)/{0.03×(%α)
2−2×%α−800}×%Cr+3.3×(−80
0)/{0.03×(%α)2−5.6×%α−80
0}×%Mo+1.65×(200)/(%α+20
0)×%W+16×(100)/(100−%α)×%
N…(4)式 ただし、%α=5.8×%Cr+4×%Mo+1.2%
W−5.7×%Ni−63.8×%N−54.4
3. C: 0.03% or less, Si: 0.10%
2.00%, Mn: 0.10-2.00%, P: 0.0
5% or less, S: 0.005% or less, Cr: 18.0 to 2
5.0%, Ni: 2.0-8.0%, Mo: 3.0-
7.0%, Al: 0.001 to 0.04%, N: 0.1
0 to 0.40%, V: 0.01 to 0.50%, Ti:
0.01 to 0.50%, Nb: contains one or more of 0.01 to 0.50%, and the balance consists of unavoidable impurities and Fe, and in the following formula (1) A pitting corrosion resistance index (PREW) given is 43 or more, and a water-cooled material and an air-cooled material such that a σ phase or the like intermetallic compound is precipitated by the following formula (2). The index ΔHv (σ) of the difference between Vickers hardness and the pitting corrosion resistance index (PREW (α)) in ferrite given by the following equation (3) and the austenite given in the following equation (4) Pitting resistance index (PREW)
(Γ)), wherein the difference (ΔPREW) satisfies the condition of -3.0 or more and 3.0 or less, a duplex stainless steel excellent in corrosion resistance and phase stability. PREW =% Cr + 3.3 × (% Mo + 0.5 ×% W)
+ 16 ×% N (1) Expression ΔHv (σ) = 4.9 ×% Cr ×% Mo + 4.5 ×% C
r-103.4 ×% Mo + 19.3 ×% Ni-10.7
×% N−3.6 ×% W−228.6 (2) Formula PREW (α) = (3 ×% α−1000) / {0.03
× (% α) 2 -2 ×% α-800} ×% Cr + 3.3 ×
(3 ×% α-1360) / {0.03 × (% α) 2
5.6 ×% α−800 ° ×% Mo + 1.65 × (30
0) / (% α + 200) ×% W (3) Formula PREW (γ) = (− 800) / {0.03 × (% α)
2 -2 ×% α-800} ×% Cr + 3.3 × (-80
0) / {0.03 × (% α) 2 −5.6 ×% α−80
0} ×% Mo + 1.65 × (200) / (% α + 20
0) ×% W + 16 × (100) / (100−% α) ×%
N ... Equation (4) where% α = 5.8 ×% Cr + 4 ×% Mo + 1.2%
W-5.7 ×% Ni-63.8 ×% N-54.4
【請求項4】 C:0.03%以下、Si:0.10〜
2.00%、Mn:0.10〜2.00%、P:0.0
5%以下、S:0.005%以下、Cr:18.0〜2
5.0%、Ni:2.0〜8.0%、Mo:3.0〜
7.0%、Al:0.001〜0.04%、N:0.1
0〜0.40%と、Ca:0.0005〜0.010
%、Mg:0.0005〜0.010%、B:0.00
05〜0.010%、希土類金属:0.0005〜0.
010%のうちの1種または2種以上を含有し、残部が
不可避的不純物とFeからなり、かつ、下記(1)式で
与えられる耐孔食性指数(PREW)が43以上、下記
(2)式で与えられるσ相等の金属間化合物が析出しな
いように水冷した材料とσ相等の金属間化合物が析出す
るように空冷した材料とのビッカース硬度差の指標ΔH
v(σ)が65以下、下記(3)式で与えられるフェラ
イト中での耐孔食性指数(PREW(α))と、下記
(4)式で与えられるオーステナイト中での耐孔食性指
数(PREW(γ))との差(ΔPREW)が−3.0
以上3.0以下の条件を満足していることを特徴とする
耐食性、相安定性に優れた二相ステンレス鋼。 PREW=%Cr+3.3×(%Mo+0.5×%W)
+16×%N…(1)式 ΔHv(σ)=4.9×%Cr×%Mo+4.5×%C
r−103.4×%Mo+19.3×%Ni−10.7
×%N−3.6×%W−228.6…(2)式 PREW(α)=(3×%α−1000)/{0.03
×(%α)2−2×%α−800}×%Cr+3.3×
(3×%α−1360)/{0.03×(%α)2
5.6×%α−800}×%Mo+1.65×(30
0)/(%α+200)×%W…(3)式 PREW(γ)=(−800)/{0.03×(%α)
2−2×%α−800}×%Cr+3.3×(−80
0)/{0.03×(%α)2−5.6×%α−80
0}×%Mo+1.65×(200)/(%α+20
0)×%W+16×(100)/(100−%α)×%
N…(4)式 ただし、%α=5.8×%Cr+4×%Mo+1.2×
%W−5.7×%Ni−63.8×%N−54.4
4. C: 0.03% or less, Si: 0.10 to
2.00%, Mn: 0.10-2.00%, P: 0.0
5% or less, S: 0.005% or less, Cr: 18.0 to 2
5.0%, Ni: 2.0-8.0%, Mo: 3.0-
7.0%, Al: 0.001 to 0.04%, N: 0.1
0 to 0.40% and Ca: 0.0005 to 0.010
%, Mg: 0.0005 to 0.010%, B: 0.00
0.05 to 0.010%, rare earth metal: 0.0005 to 0.5%.
010%, one or more of them, the balance being unavoidable impurities and Fe, and a pitting resistance index (PREW) given by the following formula (1) of 43 or more, and the following (2) The index ΔH of the difference in Vickers hardness between a water-cooled material and an air-cooled material such that the intermetallic compound such as the σ phase is precipitated, which is given by the following formula:
The pitting resistance index (PREW (α)) in ferrite given by the following equation (3) and the pitting corrosion index (PREW) in austenite given by the following equation (4) when v (σ) is 65 or less. (Γ)) is −3.0.
A duplex stainless steel excellent in corrosion resistance and phase stability, satisfying the conditions of not less than 3.0 and not more than 3.0. PREW =% Cr + 3.3 × (% Mo + 0.5 ×% W)
+ 16 ×% N (1) Expression ΔHv (σ) = 4.9 ×% Cr ×% Mo + 4.5 ×% C
r-103.4 ×% Mo + 19.3 ×% Ni-10.7
×% N−3.6 ×% W−228.6 (2) Formula PREW (α) = (3 ×% α−1000) / {0.03
× (% α) 2 -2 ×% α-800} ×% Cr + 3.3 ×
(3 ×% α-1360) / {0.03 × (% α) 2
5.6 ×% α−800 ° ×% Mo + 1.65 × (30
0) / (% α + 200) ×% W (3) Formula PREW (γ) = (− 800) / {0.03 × (% α)
2 -2 ×% α-800} ×% Cr + 3.3 × (-80
0) / {0.03 × (% α) 2 −5.6 ×% α−80
0} ×% Mo + 1.65 × (200) / (% α + 20
0) ×% W + 16 × (100) / (100−% α) ×%
N ... (4) where% α = 5.8 ×% Cr + 4 ×% Mo + 1.2 ×
% W-5.7 ×% Ni-63.8 ×% N-54.4
【請求項5】 C:0.03%以下、Si:0.10〜
2.00%、Mn:0.10〜2.00%、P:0.0
5%以下、S:0.005%以下、Cr:18.0〜2
5.0%、Ni:2.0〜8.0%、Mo:3.0〜
7.0%、Al:0.001〜0.04%、N:0.1
0〜0.40%と、Cu:0.01〜2.00%、W:
0.01〜1.50%のうちの1種または2種、V:
0.01〜0.50%、Ti:0.01〜0.50%、
Nb:0.01〜0.50%のうちの1種または2種以
上を含有し、残部が不可避的不純物とFeからなり、か
つ、下記(1)式で与えられる耐孔食性指数(PRE
W)が43以上、下記(2)式で与えられるσ相等の金
属間化合物が析出しないように水冷した材料とσ相等の
金属間化合物が析出するように空冷した材料とのビッカ
ース硬度差の指標ΔHv(σ)が65以下、下記(3)
式で与えられるフェライト中での耐孔食性指数(PRE
W(α))と、下記(4)式で与えられるオーステナイ
ト中での耐孔食性指数(PREW(γ))との差(ΔP
REW)が−3.0以上3.0以下の条件を満足してい
ることを特徴とする耐食性、相安定性に優れた二相ステ
ンレス鋼。 PREW=%Cr+3.3×(%Mo+0.5×%W)
+16×%N…(1)式 ΔHv(σ)=4.9×%Cr×%Mo+4.5×%C
r−103.4×%Mo+19.3×%Ni−10.7
×%N−3.6×%W−228.6…(2)式 PREW(α)=(3×%α−1000)/{0.03
×(%α)2−2×%α−800}×%Cr+3.3×
(3×%α−1360)/{0.03×(%α)2
5.6×%α−800}×%Mo+1.65×(30
0)/(%α+200)×%W…(3)式 PREW(γ)=(−800)/{0.03×(%α)
2−2×%α−800}×%Cr+3.3×(−80
0)/{0.03×(%α)2−5.6×%α−80
0}×%Mo+1.65×(200)/(%α+20
0)×%W+16×(100)/(100−%α)×%
N…(4)式 ただし、%α=5.8×%Cr+4×%Mo+1.2×
%W−5.7×%Ni−63.8×%N−54.4
5. C: 0.03% or less, Si: 0.10%
2.00%, Mn: 0.10-2.00%, P: 0.0
5% or less, S: 0.005% or less, Cr: 18.0 to 2
5.0%, Ni: 2.0-8.0%, Mo: 3.0-
7.0%, Al: 0.001 to 0.04%, N: 0.1
0 to 0.40%, Cu: 0.01 to 2.00%, W:
One or two of 0.01 to 1.50%, V:
0.01 to 0.50%, Ti: 0.01 to 0.50%,
Nb: One or more of 0.01 to 0.50% is contained, the balance is made of unavoidable impurities and Fe, and a pitting corrosion resistance index (PRE) given by the following formula (1)
W) is 43 or more, and is an index of the Vickers hardness difference between a water-cooled material that does not precipitate an intermetallic compound such as a σ phase and an air-cooled material that precipitates an intermetallic compound such as a σ phase, which is given by the following formula (2). ΔHv (σ) is 65 or less, the following (3)
The pitting resistance index (PRE) in ferrite given by the equation
W (α)) and the pitting resistance index (PREW (γ)) in austenite given by the following equation (4) (ΔP
A duplex stainless steel excellent in corrosion resistance and phase stability, characterized in that REW) satisfies the condition of -3.0 or more and 3.0 or less. PREW =% Cr + 3.3 × (% Mo + 0.5 ×% W)
+ 16 ×% N (1) Expression ΔHv (σ) = 4.9 ×% Cr ×% Mo + 4.5 ×% C
r-103.4 ×% Mo + 19.3 ×% Ni-10.7
×% N−3.6 ×% W−228.6 (2) Formula PREW (α) = (3 ×% α−1000) / {0.03
× (% α) 2 -2 ×% α-800} ×% Cr + 3.3 ×
(3 ×% α-1360) / {0.03 × (% α) 2
5.6 ×% α−800 ° ×% Mo + 1.65 × (30
0) / (% α + 200) ×% W (3) Formula PREW (γ) = (− 800) / {0.03 × (% α)
2 -2 ×% α-800} ×% Cr + 3.3 × (-80
0) / {0.03 × (% α) 2 −5.6 ×% α−80
0} ×% Mo + 1.65 × (200) / (% α + 20
0) ×% W + 16 × (100) / (100−% α) ×%
N ... (4) where% α = 5.8 ×% Cr + 4 ×% Mo + 1.2 ×
% W-5.7 ×% Ni-63.8 ×% N-54.4
【請求項6】 C:0.03%以下、Si:0.10
〜2.00%、Mn:0.10〜2.00%、P:0.
05%以下、S:0.005%以下、Cr:18.0〜
25.0%、Ni:2.0〜8.0%、Mo:3.0〜
7.0%、Al:0.001〜0.04%、N:0.1
0〜0.40%と、Cu:0.01〜2.00%、W:
0.01〜1.50%のうちの1種または2種、Ca:
0.0005〜0.010%、Mg:0.0005〜
0.010%、B:0.0005〜0.010%、希土
類金属:0.0005〜0.010%の1種または2種
以上を含有し、残部が不可避的不純物とFeからなり、
かつ、下記(1)式で与えられる耐孔食性指数(PRE
W)が43以上、下記(2)式で与えられるσ相等の金
属間化合物が析出しないように水冷した材料とσ相等の
金属間化合物が析出するように空冷した材料とのビッカ
ース硬度差の指標ΔHv(σ)が65以下、下記(3)
式で与えられるフェライト中での耐孔食性指数(PRE
W(α))と、下記(4)式で与えられるオーステナイ
ト中での耐孔食性指数(PREW(γ))との差(ΔP
REW)が−3.0以上3.0以下の条件を満足してい
ることを特徴とする耐食性、相安定性に優れた二相ステ
ンレス鋼。 PREW=%Cr+3.3×(%Mo+0.5×%W)
+16×%N…(1)式 ΔHv(σ)=4.9×%Cr×%Mo+4.5×%C
r−103.4×%Mo+19.3×%Ni−10.7
×%N−3.6×%W−228.6…(2)式 PREW(α)=(3×%α−1000)/{0.03
×(%α)2−2×%α−800}×%Cr+3.3×
(3×%α−1360)/{0.03×(%α)2
5.6×%α−800}×%Mo+1.65×(30
0)/(%α+200)×%W…(3)式 PREW(γ)=(−800)/{0.03×(%α)
2−2×%α−800}×%Cr+3.3×(−80
0)/{0.03×(%α)2−5.6×%α−80
0}×%Mo+1.65×(200)/(%α+20
0)×%W+16×(100)/(100−%α)×%
N…(4)式 ただし、%α=5.8×%Cr+4×%Mo+1.2×
%W−5.7×%Ni−63.8×%N−54.4
6. C: 0.03% or less, Si: 0.10
-2.00%, Mn: 0.10-2.00%, P: 0.
05% or less, S: 0.005% or less, Cr: 18.0 to
25.0%, Ni: 2.0-8.0%, Mo: 3.0-
7.0%, Al: 0.001 to 0.04%, N: 0.1
0 to 0.40%, Cu: 0.01 to 2.00%, W:
One or two of 0.01 to 1.50%, Ca:
0.0005-0.010%, Mg: 0.0005-
0.010%, B: 0.0005 to 0.010%, Rare earth metal: 0.0005 to 0.010%, containing one or more kinds, and the balance consisting of unavoidable impurities and Fe,
And a pitting resistance index (PRE) given by the following equation (1):
W) is 43 or more, and is an index of the difference in Vickers hardness between a water-cooled material that does not precipitate an intermetallic compound such as a σ phase and an air-cooled material that precipitates an intermetallic compound such as a σ phase, which is given by the following formula (2). ΔHv (σ) is 65 or less, the following (3)
The pitting resistance index (PRE) in ferrite given by the equation
W (α)) and the pitting resistance index (PREW (γ)) in austenite given by the following equation (4) (ΔP
A duplex stainless steel excellent in corrosion resistance and phase stability, characterized in that REW) satisfies the condition of -3.0 or more and 3.0 or less. PREW =% Cr + 3.3 × (% Mo + 0.5 ×% W)
+ 16 ×% N (1) Expression ΔHv (σ) = 4.9 ×% Cr ×% Mo + 4.5 ×% C
r-103.4 ×% Mo + 19.3 ×% Ni-10.7
×% N−3.6 ×% W−228.6 (2) Formula PREW (α) = (3 ×% α−1000) / {0.03
× (% α) 2 -2 ×% α-800} ×% Cr + 3.3 ×
(3 ×% α-1360) / {0.03 × (% α) 2
5.6 ×% α−800 ° ×% Mo + 1.65 × (30
0) / (% α + 200) ×% W (3) Formula PREW (γ) = (− 800) / {0.03 × (% α)
2 -2 ×% α-800} ×% Cr + 3.3 × (-80
0) / {0.03 × (% α) 2 −5.6 ×% α−80
0} ×% Mo + 1.65 × (200) / (% α + 20
0) ×% W + 16 × (100) / (100−% α) ×%
N ... (4) where% α = 5.8 ×% Cr + 4 ×% Mo + 1.2 ×
% W-5.7 ×% Ni-63.8 ×% N-54.4
【請求項7】 C:0.03%以下、Si:0.10〜
2.00%、Mn:0.10〜2.00%、P:0.0
5%以下、S:0.005%以下、Cr:18.0〜2
5.0%、Ni:2.0〜8.0%、Mo:3.0〜
7.0%、Al:0.001〜0.04%、N:0.1
0〜0.40%と、V:0.01〜0.50%、Ti:
0.01〜0.50%、Nb:0.01〜0.50%の
うちの1種または2種以上、Ca:0.0005〜0.
010%、Mg:0.0005〜0.010%、B:
0.0005〜0.010%、希土類金属:0.000
5〜0.010%の1種または2種以上を含有し、残部
が不可避的不純物とFeからなり、かつ、下記(1)式
で与えられる耐孔食性指数(PREW)が43以上、下
記(2)式で与えられるσ相等の金属間化合物が析出し
ないように水冷した材料とσ相等の金属間化合物が析出
するように空冷した材料とのビッカース硬度差の指標Δ
Hv(σ)が65以下、下記(3)式で与えられるフェ
ライト中での耐孔食性指数(PREW(α))と、下記
(4)式で与えられるオーステナイト中での耐孔食性指
数(PREW(γ))との差(ΔPREW)が−3.0
以上3.0以下の条件を満足していることを特徴とする
耐食性、相安定性に優れた二相ステンレス鋼。 PREW=%Cr+3.3×(%Mo+0.5×%W)
+16×%N…(1)式 ΔHv(σ)=4.9×%Cr×%Mo+4.5×%C
r−103.4×%Mo+19.3×%Ni−10.7
×%N−3.6×%W−228.6…(2)式 PREW(α)=(3×%α−1000)/{0.03
×(%α)2−2×%α−800}×%Cr+3.3×
(3×%α−1360)/{0.03×(%α)2
5.6×%α−800}×%Mo+1.65×(30
0)/(%α+200)×%W…(3)式 PREW(γ)=(−800)/{0.03×(%α)
2−2×%α−800}×%Cr+3.3×(−80
0)/{0.03×(%α)2−5.6×%α−80
0}×%Mo+1.65×(200)/(%α+20
0)×%W+16×(100)/(100−%α)×%
N…(4)式 ただし、%α=5.8×%Cr+4×%Mo+1.2×
%W−5.7×%Ni−63.8×%N−54.4
7. C: 0.03% or less, Si: 0.10 to
2.00%, Mn: 0.10-2.00%, P: 0.0
5% or less, S: 0.005% or less, Cr: 18.0 to 2
5.0%, Ni: 2.0-8.0%, Mo: 3.0-
7.0%, Al: 0.001 to 0.04%, N: 0.1
0 to 0.40%, V: 0.01 to 0.50%, Ti:
0.01 to 0.50%, Nb: one or more of 0.01 to 0.50%, Ca: 0.0005 to 0.5%.
010%, Mg: 0.0005 to 0.010%, B:
0.0005 to 0.010%, rare earth metal: 0.000
5 to 0.010% of one or more kinds, the balance being unavoidable impurities and Fe, and having a pitting resistance index (PREW) given by the following formula (1) of 43 or more and the following ( 2) An index Δ of the Vickers hardness difference between a water-cooled material given by the formula and a water-cooled material such that a σ phase or the like intermetallic compound is precipitated and a material cooled by air so as to deposit a σ phase or other intermetallic compound.
Hv (σ) is 65 or less, a pitting corrosion resistance index (PREW (α)) in ferrite given by the following equation (3) and a pitting corrosion index (PREW) in austenite given by the following equation (4) (Γ)) is −3.0.
A duplex stainless steel excellent in corrosion resistance and phase stability, satisfying the conditions of not less than 3.0 and not more than 3.0. PREW =% Cr + 3.3 × (% Mo + 0.5 ×% W)
+ 16 ×% N (1) Expression ΔHv (σ) = 4.9 ×% Cr ×% Mo + 4.5 ×% C
r-103.4 ×% Mo + 19.3 ×% Ni-10.7
×% N−3.6 ×% W−228.6 (2) Formula PREW (α) = (3 ×% α−1000) / {0.03
× (% α) 2 -2 ×% α-800} ×% Cr + 3.3 ×
(3 ×% α-1360) / {0.03 × (% α) 2
5.6 ×% α−800 ° ×% Mo + 1.65 × (30
0) / (% α + 200) ×% W (3) Formula PREW (γ) = (− 800) / {0.03 × (% α)
2 -2 ×% α-800} ×% Cr + 3.3 × (-80
0) / {0.03 × (% α) 2 −5.6 ×% α−80
0} ×% Mo + 1.65 × (200) / (% α + 20
0) ×% W + 16 × (100) / (100−% α) ×%
N ... (4) where% α = 5.8 ×% Cr + 4 ×% Mo + 1.2 ×
% W-5.7 ×% Ni-63.8 ×% N-54.4
【請求項8】 C:0.03%以下、Si:0.10〜
2.00%、Mn:0.10〜2.00%、P:0.0
5%以下、S:0.005%以下、Cr:18.0〜2
5.0%、Ni:2.0〜8.0%、Mo:3.0〜
7.0%、Al:0.001〜0.04%、N:0.1
0〜0.40%と、Cu:0.01〜2.00%、W:
0.01〜1.50%のうちの1種または2種、V:
0.01〜0.50%、Ti:0.01〜0.50%、
Nb:0.01〜0.50%のうちの1種または2種以
上、Ca:0.0005〜0.010%、Mg:0.0
005〜0.010%、B:0.0005〜0.010
%、希土類金属:0.0005〜0.010%の1種ま
たは2種以上を含有し、残部が不可避的不純物とFeか
らなり、かつ、下記(1)式で与えられる耐孔食性指数
(PREW)が43以上、下記(2)式で与えられるσ
相等の金属間化合物が析出しないように水冷した材料と
σ相等の金属間化合物が析出するように空冷した材料と
のビッカース硬度差の指標ΔHv(σ)が65以下、下
記(3)式で与えられるフェライト中での耐孔食性指数
(PREW(α))と、下記(4)式で与えられるオー
ステナイト中での耐孔食性指数(PREW(γ))との
差(ΔPREW)が−3.0以上3.0以下の条件を満
足していることを特徴とする耐食性、相安定性に優れた
二相ステンレス鋼。 PREW=%Cr+3.3×(%Mo+0.5×%W)
+16×%N…(1)式 ΔHv(σ)=4.9×%Cr×%Mo+4.5×%C
r−103.4×%Mo+19.3×%Ni−10.7
×%N−3.6×%W−228.6…(2)式 PREW(α)=(3×%α−1000)/{0.03
×(%α)2−2×%α−800}×%Cr+3.3×
(3×%α−1360)/{0.03×(%α)2
5.6×%α−800}×%Mo+1.65×(30
0)/(%α+200)×%W…(3)式 PREW(γ)=(−800)/{0.03×(%α)
2−2×%α−800}×%Cr+3.3×(−80
0)/{0.03×(%α)2−5.6×%α−80
0}×%Mo+1.65×(200)/(%α+20
0)×%W+16×(100)/(100−%α)×%
N…(4)式 ただし、%α=5.8×%Cr+4×%Mo+1.2×
%W−5.7×%Ni−63.8×%N−54.4
8. C: 0.03% or less, Si: 0.10%
2.00%, Mn: 0.10-2.00%, P: 0.0
5% or less, S: 0.005% or less, Cr: 18.0 to 2
5.0%, Ni: 2.0-8.0%, Mo: 3.0-
7.0%, Al: 0.001 to 0.04%, N: 0.1
0 to 0.40%, Cu: 0.01 to 2.00%, W:
One or two of 0.01 to 1.50%, V:
0.01 to 0.50%, Ti: 0.01 to 0.50%,
Nb: one or more of 0.01 to 0.50%, Ca: 0.0005 to 0.010%, Mg: 0.0
005 to 0.010%, B: 0.0005 to 0.010
%, Rare earth metal: 0.0005 to 0.010%, one or more kinds, the balance being unavoidable impurities and Fe, and a pitting corrosion resistance index (PREW) given by the following formula (1). ) Is 43 or more and σ given by the following equation (2).
The index ΔHv (σ) of the Vickers hardness difference between a water-cooled material such that no intermetallic compound such as a phase precipitates and an air-cooled material such that a σ phase or other intermetallic compound precipitates is given by the following formula (3). The difference (ΔPREW) between the pitting resistance index (PREW (α)) in ferrite and the pitting corrosion index (PREW (γ)) in austenite given by the following equation (4) is −3.0. A duplex stainless steel excellent in corrosion resistance and phase stability, satisfying the conditions of not less than 3.0 and not more than 3.0. PREW =% Cr + 3.3 × (% Mo + 0.5 ×% W)
+ 16 ×% N (1) Expression ΔHv (σ) = 4.9 ×% Cr ×% Mo + 4.5 ×% C
r-103.4 ×% Mo + 19.3 ×% Ni-10.7
×% N−3.6 ×% W−228.6 (2) Formula PREW (α) = (3 ×% α−1000) / {0.03
× (% α) 2 -2 ×% α-800} ×% Cr + 3.3 ×
(3 ×% α-1360) / {0.03 × (% α) 2
5.6 ×% α−800 ° ×% Mo + 1.65 × (30
0) / (% α + 200) ×% W (3) Formula PREW (γ) = (− 800) / {0.03 × (% α)
2 -2 ×% α-800} ×% Cr + 3.3 × (-80
0) / {0.03 × (% α) 2 −5.6 ×% α−80
0} ×% Mo + 1.65 × (200) / (% α + 20
0) ×% W + 16 × (100) / (100−% α) ×%
N ... (4) where% α = 5.8 ×% Cr + 4 ×% Mo + 1.2 ×
% W-5.7 ×% Ni-63.8 ×% N-54.4
JP29384492A 1992-10-06 1992-10-06 Duplex stainless steel with excellent corrosion resistance and phase stability Expired - Fee Related JP3166798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29384492A JP3166798B2 (en) 1992-10-06 1992-10-06 Duplex stainless steel with excellent corrosion resistance and phase stability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29384492A JP3166798B2 (en) 1992-10-06 1992-10-06 Duplex stainless steel with excellent corrosion resistance and phase stability

Publications (2)

Publication Number Publication Date
JPH06116684A JPH06116684A (en) 1994-04-26
JP3166798B2 true JP3166798B2 (en) 2001-05-14

Family

ID=17799891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29384492A Expired - Fee Related JP3166798B2 (en) 1992-10-06 1992-10-06 Duplex stainless steel with excellent corrosion resistance and phase stability

Country Status (1)

Country Link
JP (1) JP3166798B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200496065Y1 (en) * 2020-08-26 2022-10-26 주식회사 한국가스기술공사 Flexible angle type shackle structure

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3161417B2 (en) * 1986-04-28 2001-04-25 日本鋼管株式会社 Duplex stainless steel with excellent pitting resistance
JP3446294B2 (en) * 1994-04-05 2003-09-16 住友金属工業株式会社 Duplex stainless steel
SE519589C2 (en) * 1998-02-18 2003-03-18 Sandvik Ab Use of high-strength stainless steel in equipment for making caustic soda
SE524952C2 (en) * 2001-09-02 2004-10-26 Sandvik Ab Duplex stainless steel alloy
KR100460346B1 (en) * 2002-03-25 2004-12-08 이인성 Super duplex stainless steel with a suppressed formation of intermetallic phases and having an excellent corrosion resistance, embrittlement resistance, castability and hot workability
SE527175C2 (en) 2003-03-02 2006-01-17 Sandvik Intellectual Property Duplex stainless steel alloy and its use
SE530847C2 (en) * 2006-12-14 2008-09-30 Sandvik Intellectual Property Plate for plate heat exchangers, plate heat exchangers made up of such plates and use of this plate heat exchanger
JP5337473B2 (en) * 2008-02-05 2013-11-06 新日鐵住金ステンレス株式会社 Ferritic / austenitic stainless steel sheet with excellent ridging resistance and workability and method for producing the same
CN103741070B (en) * 2014-01-23 2015-11-18 江苏银环精密钢管有限公司 A kind of ethylene oxide reactor two-phase stainless steel seamless steel tube
EA034923B1 (en) * 2014-06-27 2020-04-07 ЭйТиАй ПРОПЕРТИЗ ЭлЭлСи Flowforming corrosion resistant alloy tubes and tubes manufactured thereby
CN109532144B (en) * 2018-11-29 2021-01-12 宝山钢铁股份有限公司 Super duplex stainless steel composite steel plate and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200496065Y1 (en) * 2020-08-26 2022-10-26 주식회사 한국가스기술공사 Flexible angle type shackle structure

Also Published As

Publication number Publication date
JPH06116684A (en) 1994-04-26

Similar Documents

Publication Publication Date Title
EP0545753B1 (en) Duplex stainless steel having improved strength and corrosion resistance
KR100422409B1 (en) Heat Resistant Steel
EP1259656B1 (en) Duplex stainless steel
EP1141432A1 (en) Corrosion resistant austenitic stainless steel
KR20090078813A (en) Duplex stainless steel alloy and use of this alloy
JP3166798B2 (en) Duplex stainless steel with excellent corrosion resistance and phase stability
JPWO2019189871A1 (en) Duplex stainless clad steel sheet and its manufacturing method
EP3575427A1 (en) Two-phase stainless-clad steel and method for producing same
CN111041358A (en) Duplex ferritic austenitic stainless steel
JP3022746B2 (en) Welding material for high corrosion resistance and high toughness duplex stainless steel welding
EP1446509A1 (en) Duplex stainless steels
AU2002242314A1 (en) Duplex stainless steels
JP2003003243A (en) High-strength martensitic stainless steel with excellent resistance to carbon dioxide gas corrosion and sulfide stress corrosion cracking
JPH09316611A (en) Martensitic steel for line pipe excellent in corrosion resistance and weldability
JP2001300730A (en) Method for connecting high-strength martensitic stainless steel pipe for oil well
JPS5896853A (en) High mn steel for extra-low temperature use with superior corrosion resistance and machinability
JPS6199660A (en) High strength welded steel pipe for line pipe
JPS61113749A (en) High corrosion resistance alloy for oil well
JP3470418B2 (en) High strength austenitic alloy with excellent seawater corrosion resistance and hydrogen sulfide corrosion resistance
JP3598364B2 (en) Stainless steel
EP0835946B1 (en) Use of a weldable low-chromium ferritic cast steel, having excellent high-temperature strength
JPH1161347A (en) Martensitic steel for line pipes excellent in corrosion resistance and weldability
JPH0770697A (en) High strength hot rolled steel strip excellent in hic resistance and its production
US6036917A (en) Corrosion resistant austenitic stainless steel
JPH05255784A (en) Ni-base alloy for oil well excellent in corrosion resistance

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080309

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090309

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees