JPS589923A - Production of high strength oil well pipe of high stress corrosion cracking resistance - Google Patents

Production of high strength oil well pipe of high stress corrosion cracking resistance

Info

Publication number
JPS589923A
JPS589923A JP10691481A JP10691481A JPS589923A JP S589923 A JPS589923 A JP S589923A JP 10691481 A JP10691481 A JP 10691481A JP 10691481 A JP10691481 A JP 10691481A JP S589923 A JPS589923 A JP S589923A
Authority
JP
Japan
Prior art keywords
less
temperature
calculated
stress corrosion
corrosion cracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10691481A
Other languages
Japanese (ja)
Other versions
JPS6363607B2 (en
Inventor
Yasutaka Okada
康孝 岡田
Kunihiko Yoshikawa
吉川 州彦
Yasuo Otani
大谷 泰夫
Takeo Kudo
赳夫 工藤
Akio Ikeda
昭夫 池田
Daiji Moroishi
諸石 大司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP10691481A priority Critical patent/JPS589923A/en
Priority to US06/389,568 priority patent/US4421571A/en
Priority to GB08217860A priority patent/GB2104100B/en
Priority to SE8204121A priority patent/SE461986C/en
Priority to DE3224865A priority patent/DE3224865C2/en
Priority to FR8211645A priority patent/FR2508930A1/en
Publication of JPS589923A publication Critical patent/JPS589923A/en
Publication of JPS6363607B2 publication Critical patent/JPS6363607B2/ja
Priority to SE8901647A priority patent/SE502102C2/en
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To obtain a high strength oil well pipe of high stress corrosion cracking resistance by contg. specific ratios of C, Si, Mn, P, Ni, Cr, etc. and working the steel thermally and mechanically under prescribed conditions. CONSTITUTION:The alloy consisting of <=0.05% C, <=1% Si, <=2% Mn, <=0.03% P, <=0.005% S, <=0.5% sol.Al, 25-60% Ni, 22.5-30% Cr, <8% Mo, and/or <16% W, or further <=2% Cu, and/or <=2% Co, and the balance Fe in addition to these and satisfying Cr(%)+10Mo(%)+5W(%)>=70%, 4%<=Mo(%)+1/2W(%)< 8% is produced by melting. Such alloy is subjected to a solution heat treatment under the conditions of holding the alloy for <=2hr at temps. between 260logC (%)+1,300 lower limit temp. and 16Mo(%)+10W(%)+10Cr(%)+777 upper limit temp. The alloy is cold worked at 10-60% fractional reduction in area.

Description

【発明の詳細な説明】 この発明は、優れた耐応力腐食割れ性を有する高強度油
井管の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing high-strength oil country tubular goods having excellent stress corrosion cracking resistance.

近年、エネルギー事情の悪化から、油井および天然ガス
井は深井戸化の傾向が著しく、深さ26000m以上、
なかにけ深さ:10,000m以上の深井戸が出現して
いる。
In recent years, due to the deterioration of the energy situation, there has been a marked tendency for oil and natural gas wells to become deeper;
Deep wells with a depth of 10,000 m or more have appeared.

また、同様な事情から、湿潤な硫化水素をはじめ、炭酸
ガスや塩素イオンなどの腐食性成分を含有する苛酷な腐
食環境下での石油および天然ガスの採掘が予儀なくされ
つつある。
Furthermore, due to similar circumstances, it is becoming increasingly difficult to extract oil and natural gas in a harsh corrosive environment containing humid hydrogen sulfide, as well as corrosive components such as carbon dioxide gas and chloride ions.

このような厳しい環境下での石油および天然ガスの掘削
に伴い、これに使用される油井管にも高強度、並びに優
れた耐食性、特に耐応力腐食割れ性が要求されるように
なってきている。
As oil and natural gas are drilled in such harsh environments, the oil country tubular goods used therein are required to have high strength and excellent corrosion resistance, especially resistance to stress corrosion cracking. .

油井管の一般的腐食対策として、インヒビタと呼ばれる
腐食抑制剤を投入する方法が知られているが、この方法
は、例えば海上油井などには有効に活用できない場合が
多い。
As a general anti-corrosion measure for oil country tubular goods, it is known to introduce a corrosion suppressant called an inhibitor, but this method is often not effective for use in, for example, offshore oil wells.

かかる点から、最近では油井管の製造に、ステンレス鋼
はじめ、インコロイやハステロイ(いずれも商品名)と
いった高級な耐食性高合金鋼の採用も検討されはじめて
いるが、いまのところ、これらの合金に関して、H2S
−Co2−CL”の油井環 9− 境での腐食挙動についての詳細は十分に解明されるに至
っておらず、しかも深井戸用油井管に要求される高強度
をもつものではないのが現状である。
From this point of view, consideration has recently begun to be given to the use of high-grade corrosion-resistant high-alloy steels such as stainless steel and Incoloy and Hastelloy (all trade names) for the production of oil country tubular goods. H2S
The details of the corrosion behavior of ``-Co2-CL'' in the oil well environment have not yet been fully elucidated, and the current situation is that it does not have the high strength required for oil country tubular goods for deep wells. be.

そこで、本発明者等は、上述のような観点から、深井戸
や苛酷な腐食環境、特に)(2S−Co2−cfの油井
環境下での石油掘削に十分耐え得る高強度とすぐれた耐
応力腐食割れ性とを有する油井管を製造すべく研究を行
につだ結果、 (a)  H2S −CO2−C1−環境下における腐
食の主たるものは応力腐食割れであるが、この場合の応
力腐食割れ態様は、オーステナイトステンレス鋼におけ
る一般的なそれとは挙動を全く異にするものであること
。すなわち、一般の応力腐食割れがCt−の存在と深く
係わるものであるのに対して、上記の油井環境によるも
のではct’″もさることながら、それ以上にH2Sの
影響が大きいこと。
Therefore, from the above-mentioned viewpoint, the present inventors have developed a material with high strength and excellent stress resistance that can sufficiently withstand oil drilling in deep wells and severe corrosive environments (especially in 2S-Co2-cf oil well environments). As a result of conducting research to manufacture oil country tubular goods with corrosion cracking resistance, we found that (a) Stress corrosion cracking is the main cause of corrosion in the H2S -CO2-C1- environment; The behavior is completely different from that of general austenitic stainless steels. In other words, general stress corrosion cracking is deeply related to the presence of Ct-, whereas the above-mentioned oil well environment In addition to ct''', the influence of H2S is even greater.

(b)  油井管として実用に供される鋼管は一般に、
強度上の必要から冷間加工が施されるが、冷間加工は上
記応力腐食割れに対する抵抗性を著しく減少させること
(b) Steel pipes used for practical use as oil country tubular goods are generally:
Cold working is performed to improve strength, but cold working significantly reduces the resistance to stress corrosion cracking.

10− (C)  H2S−Co2−ct″′環境での鋼の溶出
速度(腐食速度)は、Cr、 Ni 、 Mo 、およ
びWの含有量に依存し、これらの成分からなる表面皮膜
によって耐食性が保持され、かつこれらの成分は、応力
腐食割れに対してもその抵抗性を高め、特にMoはCr
に対し10倍の効果を、またMoはWの2倍の効果をも
っており、したがって、このMoおよびWが、Or (
%) + 10 Mo (@+5 W (%)570%
10- (C) The elution rate (corrosion rate) of steel in a H2S-Co2-ct'' environment depends on the contents of Cr, Ni, Mo, and W, and the corrosion resistance is improved by the surface film made of these components. and these components also increase its resistance to stress corrosion cracking, especially Mo
, and Mo is twice as effective as W. Therefore, Mo and W are 10 times more effective than Or (
%) + 10 Mo (@+5 W (%) 570%
.

4%≦Mo(%) −1−’4 W(イ)〈8チ。4%≦Mo(%) -1-'4 W (a) <8chi.

の条件式を満足すると共に、Ni含有量を25〜60チ
、 Cr含有量を22.5〜30チとすると、冷間加工
材でちっても、きわめて腐食性の強いH2S−Co□−
Ct″′の油井環境下、特に200℃以下の悪環境にお
いて、応力腐食割れに対して優れた抵抗性を示す表面皮
膜が得られること。
If the following conditional expressions are satisfied, and the Ni content is 25 to 60 and the Cr content is 22.5 to 30, H2S-Co□- is extremely corrosive even when cold-worked.
It is possible to obtain a surface coating that exhibits excellent resistance to stress corrosion cracking in a Ct'' oil well environment, particularly in a harsh environment of 200° C. or less.

(d)  Niについては表面皮膜に対する効果だけで
なく、組織的にも応力腐食割れ抵抗性を高める効果があ
ること。
(d) Ni has the effect of increasing stress corrosion cracking resistance not only on the surface film but also on the structure.

(e)  合金成分としてNを0.05〜0.3チの′
範囲で含有させると一段と管材強度が向上するようにな
ること。
(e) 0.05 to 0.3 of N as an alloying component
If the content is within this range, the strength of the pipe material will be further improved.

(f)  不可避不純物としてのS含有量をO,OOO
7チ以下に低減させると、管材の熱間加工性が著しく改
善されるようになること。
(f) S content as an unavoidable impurity is O, OOO
When the diameter is reduced to 7 inches or less, the hot workability of the tube material is significantly improved.

(g)  不可避不純物としてのP含有量を0.003
%以下に低減させると、水素割れ感受性が著しく低下す
るようになること。
(g) P content as an unavoidable impurity is 0.003
% or less, hydrogen cracking susceptibility significantly decreases.

(h)  合金成分としてCu:2%以下およびCo 
; 2チ以下のうちの1種または2種を含有させると、
耐食性がさらに改善されるようになること。
(h) Cu: 2% or less and Co as alloy components
; When containing one or two of the following:
Further improvement in corrosion resistance.

(1)合金成分として、希土類元素:0.10%以下、
Y:0.20%以下、 Mg: 0.10 %以下、 
Ti :0.5チ以下、およびCa:0.10%以下の
うちの1種または2種以上を含有させると、熱間加工性
がさらに一段と改善されるようになること。
(1) Rare earth elements: 0.10% or less as alloy components;
Y: 0.20% or less, Mg: 0.10% or less,
When one or more of Ti: 0.5% or less and Ca: 0.10% or less are contained, hot workability is further improved.

(J)シかし、所望の高強度を確保するためには、上記
組成の合金を、経験式:2601C@C(%)4430
0で算出された下限温度(6)と、同じく経験式:16
   Mo(%9−1−10 W (%)+ 10 C
r(’l) +’i’ 77で算出された上限温度(6
)の間の温度に2時間以下保持の条件で熱処理して炭化
物を完全に固溶し、がっ固溶化後の合金に10〜60%
の肉厚減少率で冷間加工を施す必要があること。
(J) However, in order to ensure the desired high strength, an alloy with the above composition must be used with the empirical formula: 2601C@C (%) 4430
The lower limit temperature (6) calculated at 0 and the same empirical formula: 16
Mo(%9-1-10 W (%) + 10 C
r('l) +'i' Upper limit temperature calculated in 77 (6
) The carbide is completely dissolved in the solid solution by heat treatment at a temperature between
It is necessary to perform cold working at a wall thickness reduction rate of .

以上(a)〜(J)に示される知見を得たのである。The findings shown in (a) to (J) above were obtained.

したがって、この発明は上記知見にもとづいてなされた
ものであって、C:0.05%以下、sl:1.0%以
下、Mn:2.0%以下、P :0.030%以下。
Therefore, this invention was made based on the above findings, and includes C: 0.05% or less, sl: 1.0% or less, Mn: 2.0% or less, and P: 0.030% or less.

望ましくは耐水素割れ性を一段と改善する目的でP:0
,003%以下、S :0.005%以下、望ましくは
熱間加工性を一段と改善する目的でs :o、ooo’
pチ以下I  SOl、M: 0.5%以下、 Ni:
 25〜60%。
Preferably, P:0 for the purpose of further improving hydrogen cracking resistance.
, 003% or less, S: 0.005% or less, preferably s: o, ooo' for the purpose of further improving hot workability.
I SOl, M: 0.5% or less, Ni:
25-60%.

Cr: 22.5〜30%を含有し、Mo:8%未満お
よびW:16%未満のうちの1種または2種を含有し、
さらに必要に応じて、N′二〇、05〜0.3%。
Contains 22.5 to 30% of Cr, one or two of Mo: less than 8% and W: less than 16%,
Further, if necessary, N'20.05 to 0.3%.

Co: 2%以下、Co:2%以下、希土類元素:0.
10係以下、Y:0.20%以下、 Mg : 0.1
0 %以下。
Co: 2% or less, Co: 2% or less, rare earth element: 0.
10 or less, Y: 0.20% or less, Mg: 0.1
0% or less.

り・i:o、5%以下、およびCa : 0.ユ0チ以
下のうちの1種または2種以上を含有し、残シがFeと
不可避不純物からなる組成(以上重量%21.以下チの
表示はすべて重量%を意味する)を有し、がっ、13− cr(%) + l OMo (%)+5W(%)≧マ
O%。
Ri・i:o, 5% or less, and Ca: 0. Contains one or more of the following, and has a composition in which the remainder consists of Fe and unavoidable impurities (above 21% by weight. All indications below 21 mean weight%), 13-cr(%)+l OMo(%)+5W(%)≧MaO%.

4チ≦Mo(イ)±+Wし)〈8%。4chi≦Mo(a)±+Wshi)〈8%.

ノ条件を満足する合金を、2601ogC(’%)+1
300 ”’C算出された下限温度(6)と、16Mo
傍)+l OW (1十10Cr(%)+7マツで算出
された上限温度(6)の間の温度に、2時間以下保持の
条件で固溶化処理した後、10〜60チの肉厚減少率で
冷間加工することによって、耐応力腐食割れ性に優れた
高強度油井管を製造する方法に特徴を有するものである
The alloy that satisfies the conditions is 2601ogC ('%) + 1
300"'C calculated lower limit temperature (6) and 16Mo
side) +l OW (After solution treatment at a temperature between the upper limit temperature (6) calculated from 10 to 10 Cr (%) + 7 pine for 2 hours or less, the wall thickness reduction rate of 10 to 60 inches This method is characterized by a method for manufacturing high-strength oil country tubular goods with excellent stress corrosion cracking resistance by cold working.

つぎに、この発明の油井管の製造法において。Next, in the method for manufacturing oil country tubular goods of this invention.

成分組成、溶体化処理条件、および冷間加工における肉
厚減少率を上記の通りに限定した理由を以下に説明する
The reason why the component composition, solution treatment conditions, and wall thickness reduction rate during cold working are limited as described above will be explained below.

A、成分組成 (a)  C C含有量を低くすればするほど炭化物の析出が抑制され
るようになるので、固溶化処理をより低い温度で実施で
き、このことは冷間加工後の強度上昇により有効に作用
するものである。したがって、C含有量はできるだけ低
い方が望ましいが、14− C含有量が0.05%を越えると、粒界応力腐食割れが
生じやすくなることから、その上限値を0.05チと定
めた。
A. Component composition (a) C The lower the C content, the more the precipitation of carbides will be suppressed, so solution treatment can be carried out at a lower temperature, and this will increase the strength after cold working. It works more effectively. Therefore, it is desirable that the C content be as low as possible, but if the 14-C content exceeds 0.05%, intergranular stress corrosion cracking is likely to occur, so the upper limit was set at 0.05%. .

(b)  5i Slは脱酸成分として必要な成分であるが、その含有量
が1.0%を越えると熱間加工性が劣化するようになる
ことから、その上限値を1.0%と定めた。
(b) 5i Sl is a necessary component as a deoxidizing component, but if its content exceeds 1.0%, hot workability will deteriorate, so its upper limit is set at 1.0%. Established.

(c)  Mn Mn成分にはSlと同様に脱酸作用があシ、しかもとの
成分は応力腐食割れ性にほとんど影響を及ぼさない成分
であることがら、その上限値を高めの2.0チと定めた
(c) Mn The Mn component has a deoxidizing effect similar to Sl, and since the original component has little effect on stress corrosion cracking resistance, the upper limit value was set at a higher value of 2.0. It was determined that

(d)P 不可避不純物としてのP成分には、その含有量が0.0
30%を越えると、応力腐食割れ感受性を高める作用が
現われるので、上限値を0.030%と定めて応力腐食
割れ感受性を低位の状態とする必要がある。また、P含
有量を低減してゆくと、 0.00,3チを境にして急
激に耐水素割れ性が改善されるようになることが判明し
ており、かかる点から、・特にすぐれた耐水素割れ性を
必要とする場合には、P含有量を0.0030%以下と
するのが望ましい。
(d) P The P component as an unavoidable impurity has a content of 0.0
If it exceeds 30%, the effect of increasing the stress corrosion cracking susceptibility appears, so it is necessary to set the upper limit to 0.030% to keep the stress corrosion cracking susceptibility in a low state. In addition, it has been found that as the P content is reduced, the hydrogen cracking resistance rapidly improves after reaching 0.00. When hydrogen cracking resistance is required, the P content is preferably 0.0030% or less.

(e)  S 不可避不純物としてのS成分には、その含有量が0.0
05%を越えると、熱間加工性を劣化させる作用がある
ので、その上限値を0.005%と定めて゛ 熱間加工
性の劣化を防止する必要がある。このようにS成分には
、含有量が多くなると熱間加工性を劣化させる作用があ
るが、その含有量を低めてゆき、0.OOO’7%まで
低減すると、逆に熱間加工性が一段と改善されるように
なることから、厳しい条件での熱間加工を必要とする場
合には、S含有量を0.0007 %以下とするのが望
ましい。
(e) S The S component as an unavoidable impurity has a content of 0.0
If it exceeds 0.05%, it has the effect of deteriorating hot workability, so it is necessary to set the upper limit at 0.005% to prevent deterioration of hot workability. In this way, the S component has the effect of deteriorating hot workability when its content increases, but as the content is lowered, 0. On the contrary, reducing the S content to 7% will further improve hot workability, so if hot working under severe conditions is required, the S content should be 0.0007% or less. It is desirable to do so.

(f)  ta AtはSiおよびMnと同様に脱酸成分として有効であ
り 、 sot、 At含有量で0.5%まで含有させ
ても管材の特性を何らそこなうものではないことから、
その含有量をsoL、M含有量で0.5%以下と定めた
(f) At is effective as a deoxidizing component like Si and Mn, and even if it is contained up to 0.5% in sot, At content, it does not impair the characteristics of the pipe material in any way.
Its content was determined to be 0.5% or less in terms of soL and M content.

(ω N1 N1成分には管材の耐応力腐食割れ性を向上させる作用
があるが、その含有量が25%未満では所望のすぐれた
耐応力腐食割れ性を確保することができず、一方60チ
を越えて含有させても耐応力腐食割れ性にさらに一段の
向上効果は現われず、経済性をも考慮して、その含有量
を25〜60チと定めた。
(ω N1 The N1 component has the effect of improving the stress corrosion cracking resistance of the pipe material, but if its content is less than 25%, the desired excellent stress corrosion cracking resistance cannot be secured. Even if the content exceeds 25%, no further improvement in stress corrosion cracking resistance will be obtained, and the content was set at 25 to 60%, taking economic efficiency into consideration.

(h)  Cr Cr成分は、 ’Ni 、 Mo 、およびW成分との
共存において、耐応力腐食割れ性を著しく改善する成分
であるが、その含有量を22.5%未満としても熱間加
工性が改善されるようになるものでもなく、逆に所望の
耐応力腐食割れ性を確保するためには、MoやWの含有
量をそれだけ増加させなければならず、経済的に不利と
なることから、その下限値を22.5%と定めた。−・
方、その含4i’Mが30%を越えると、いくらS含有
量を低減させても熱間加工性の劣化は避けることができ
ないことから、その上限値を30%と定めた。
(h) Cr The Cr component is a component that significantly improves stress corrosion cracking resistance when coexisting with Ni, Mo, and W components, but even if its content is less than 22.5%, hot workability is However, in order to ensure the desired stress corrosion cracking resistance, the content of Mo and W must be increased accordingly, which is economically disadvantageous. , its lower limit was set at 22.5%. −・
On the other hand, if the 4i'M content exceeds 30%, deterioration in hot workability cannot be avoided no matter how much the S content is reduced, so the upper limit was set at 30%.

(i)  MoおよびW 17− 上記のように、これらの成分には、NiおよびCrとの
共存において耐応力腐食割れ性を改善する均等的作用が
あるが、それぞれMo:8%以上、およびW:16%以
上含有させても、環境温度が200℃以下のH2S−C
O27ct−の腐食環境では、さらに一段の改善効果が
現われず、経済性を考慮して、それぞれの含有量を、M
o:E1%未満、W、:16%未満と定めた。また、M
oとWの含有量に関して、条件式:Mo(→++W%)
で規定するのは、WがMOに対し原子量が約2倍で、効
果の点では約十で均等となることからで、この値が4%
未満では特に200℃以下の上記悪環境下で所望の暫応
力腐食割れ性が得られず、一方、この値を8%以上とし
ても、上記の通シ実質的に不必要な量のMOおよびW、
 (7)含有となJl¥fQ的”l’ PI ’、’ 
、 Ill ’、l’l+ 71 、+、’l^・1°
1MLJ(%)+ +Wφ)の値を4〜8%未満と定め
た。
(i) Mo and W 17- As mentioned above, these components have an equal effect of improving stress corrosion cracking resistance when coexisting with Ni and Cr, but Mo: 8% or more and W :H2S-C whose environmental temperature is below 200℃ even if it contains 16% or more
In the corrosive environment of O27ct-, no further improvement effect appeared, and considering economic efficiency, the respective contents were
o: E less than 1%, W: less than 16%. Also, M
Regarding the content of o and W, conditional expression: Mo (→++W%)
The reason why W is specified as 4% is because the atomic weight of W is about twice that of MO, and in terms of effectiveness, they are equal at about 10%.
If the value is less than 8%, the desired temporary stress corrosion cracking resistance cannot be obtained especially under the above-mentioned adverse environment of 200°C or less. ,
(7) Containment and Jl\fQ'l' PI ','
, Ill ', l'l+ 71 , +, 'l^・1°
The value of 1MLJ (%) + +Wφ) was set to be less than 4% to 8%.

(j)  N N成分には固溶強化による強度向上作用があるので、特
に高強度が要求される場合に必要に応じて含有されるが
、その含有量が0,05%未満では18− 所望の強度向上効果を得ることができず、一方0.3%
を越えて含有させると、溶製および造塊が困難となるこ
とから、その含有量を0.05〜0.3チと定めた。
(j) N Since the N component has a strength improving effect through solid solution strengthening, it is included as necessary when particularly high strength is required, but if the content is less than 0.05%, 18- desired It was not possible to obtain the strength improvement effect of 0.3%.
If the content exceeds 0.05%, it becomes difficult to melt and make ingots, so the content was set at 0.05 to 0.3%.

(k)  CuおよびCO これらの成分には管材の耐食性を向上させる均等的作用
があシ、かつCOにはさらに固溶強化作用があるので、
特に一段とすぐれた耐食性が要求される場合に必要に応
じて含有されるが、CUが2チを越えると、熱間加工性
が劣化するようになシ、一方COは2%を越えて含有さ
せてもより一層の改善効果は現われないことから、その
、上限値をそれぞれCu:2%、Co:2%と定めた。
(k) Cu and CO These components have a uniform effect of improving the corrosion resistance of the pipe material, and CO also has a solid solution strengthening effect.
It is included as necessary, especially when even better corrosion resistance is required, but if CU exceeds 2 inches, hot workability will deteriorate.On the other hand, CO should not be included in excess of 2%. Since no further improvement effect could be seen even with the addition of 2% Cu and 2% Co, respectively.

(t)希土類元素、 Y、 Mg、 Ti、およびCa
これらの成分には、熱間加工性をさらに改善する均等的
作用があるので、厳しい条件で熱間加工が行なわれる場
合に、必要に応じて含有されるが、それぞれ希土類元素
: 0.10 %、 Y :、0.20%。
(t) Rare earth elements, Y, Mg, Ti, and Ca
These components have a uniform effect of further improving hot workability, so they are included as necessary when hot working is carried out under severe conditions.Rare earth elements: 0.10% , Y:, 0.20%.

Mg: 0110%+ Tl : 0.5% +および
Ca:0.10%を越えて含有させても、熱間加工性に
改善効果は見られず、むしろ劣化現象さえ現われるよ−
うになることから、それぞれの含有量を、希土類元素:
0.10%以下、y:0,20%以下、トAg : 0
.10%以下、Ti:0,5%以下、およびCa:0.
10%以下と定めた。
Even if the content exceeds Mg: 0110% + Tl: 0.5% + and Ca: 0.10%, no improvement effect on hot workability will be seen, and in fact, a deterioration phenomenon will appear.
From this, the content of each rare earth element:
0.10% or less, y: 0.20% or less, Ag: 0
.. 10% or less, Ti: 0.5% or less, and Ca: 0.
It was set at 10% or less.

(m)  Cr(%) +10Mo (%) + 5 
w (%)第1図は厳しい腐食環境下での耐応力腐食割
れ性に関し、cr(%9 +10 Mo(%i) + 
5 W (%)とNi含有量の関係を示したものである
。すなわち、 Cr、 Ni、 Mo 。
(m) Cr (%) +10Mo (%) + 5
w (%) Figure 1 shows stress corrosion cracking resistance under severe corrosive environments.
5 shows the relationship between W (%) and Ni content. That is, Cr, Ni, Mo.

およびWの含有量を種々変化させたCr−N1−)、i
o系。
and Cr-N1-) with various W contents, i
o series.

Cr−Ni −W系、およびCr−Ni −h4o −
’ W系の鋼を溶製し、鋳造し、鍛伸し、熱間圧延して
板厚:’I*yxの板材とし、ついでこの板材に、温度
:1000℃に30分保持後水冷の溶体化処理を施した
後、強度向上の目的で加工率:22%の冷間加工を加え
、この結果得られた鋼板から圧延方向と直角に、厚さ:
2朋×幅:10朋×長さニア5朋の試験片を切シ出し、
この試験片について、第2図に示す3点支持ビーム冶具
を用い、前記試験片Sに0.2チ耐力に相当する引張応
力を付加した状態で、10気圧のT−] 2 Sおよび
lO気圧のCO2でH2SおよびCO2を飽和させた2
0%NaCt溶液(温度:200℃)中に1000時間
浸漬の応力腐食割れ試験を行ない、試験後、前記試験片
における割れ発生の有無を観察した。これらの結果に基
き、発明者等が独自に設定した条件式: Cr(吻+1
0Mo(吻+5W℃)とN1含有量との間には、耐応力
腐食割れ性に関して、第1図に示される関係があること
が明確になったのである。なお、第1図において、○印
は鯖れ発生なし、X印は割れ発生をそれぞれ示すもので
ある。第1図に示される結果から、Cr(%)−1−1
0MO(釣+5W(4)の値が70%未満にして、N1
含有量が25%未満では所望のすぐれた耐応力腐食割れ
性は得られないことが明らかである。
Cr-Ni-W system, and Cr-Ni-h4o-
' W-based steel is melted, cast, forged, and hot-rolled to form a plate with a thickness of I*yx. This plate is then heated with a water-cooled solution after being held at a temperature of 1000°C for 30 minutes. After the oxidation treatment, cold working with a processing rate of 22% is applied for the purpose of improving strength, and the resulting steel plate is rolled perpendicularly to the rolling direction to a thickness of:
Cut out a test piece of 2 mm x width: 10 mm x length near 5 mm,
Regarding this test piece, using the three-point support beam jig shown in FIG. H2S and CO2 saturated with CO2 of 2
A stress corrosion cracking test was conducted by immersing the test piece in a 0% NaCt solution (temperature: 200°C) for 1000 hours, and after the test, the presence or absence of cracking in the test piece was observed. Based on these results, the inventors independently set a conditional expression: Cr(rostrum+1
It has become clear that there is a relationship shown in FIG. 1 between 0Mo (rostral +5W°C) and N1 content with respect to stress corrosion cracking resistance. In FIG. 1, ○ marks indicate no occurrence of mackerel, and X marks indicate occurrence of cracks. From the results shown in Figure 1, Cr(%)-1-1
0MO (fishing +5W (4) value is less than 70%, N1
It is clear that if the content is less than 25%, the desired excellent stress corrosion cracking resistance cannot be obtained.

なお、この発明の合金において、不可避不純物としてB
、Sn、Pb、およびZnをそれぞれ0.1チ以下の範
囲で含有しても、この発明の合金の特性が何らそこなわ
れるものではない。 ゛ B、固溶化処理条件おiび冷間加工条件この発明の油井
管における高強度は、合金成分21− の含有のほかに、炭化物を完全に固溶化した後で、冷間
加工を施すことによって確保されるものである。この場
合炭化物の完全固溶化は、260■■C(9))±13
00で算出された下限温度(’C)と、16Mo(チ)
十10 w (%)+ 10 Cr(%) +’i”M
で算出された上限温度(′Qとの間の温度に2時間以下
保持することによってはかられるが、上記の下限温度の
算出式:2601og Cし)および上限温度の算出式
: 16Mo(に)+10W((6)+10 Cr(%
9 +77 ’i’は多数の試験結果にもとづいて経験
的に定めたものであって、上記の下限温度未満では、炭
化物を完全に固溶することができず、未固溶の炭化物が
残存するようになって応力腐食割れ感受性が高くなり、
一方、固溶化処理温度が上記の上限温度を越えて高くな
ったり、保持時間が2時間を越えて長くなったシすると
、結晶粒が粗大化するようになって、その後の冷間加工
で所望の高強度を得ることはできないことから、固溶化
処理温度および保持時間を上記の通シに定めた。
In addition, in the alloy of this invention, B is included as an unavoidable impurity.
, Sn, Pb, and Zn each in an amount of 0.1 or less does not impair the properties of the alloy of the present invention. B. Solution treatment conditions and cold working conditions The high strength of the oil country tubular goods of this invention is achieved not only by the inclusion of alloying component 21-, but also by performing cold working after completely solid solutionizing the carbides. This is ensured by In this case, complete solid solution of carbide is 260■■C(9))±13
The lower limit temperature ('C) calculated in 00 and 16Mo (chi)
10 w (%) + 10 Cr (%) +'i”M
The upper limit temperature calculated in (It is measured by holding the temperature between 'Q for 2 hours or less, the formula for calculating the lower limit temperature above: 2601og C) and the formula for calculating the upper limit temperature: 16Mo (to) +10W((6)+10Cr(%
9 +77 'i' is determined empirically based on the results of numerous tests, and below the above lower limit temperature, carbide cannot be completely dissolved in solid solution, and undissolved carbide remains. As a result, susceptibility to stress corrosion cracking increases.
On the other hand, if the solution treatment temperature exceeds the above upper limit temperature or the holding time exceeds 2 hours, the crystal grains will become coarser and will not be as desired in subsequent cold working. Since it is not possible to obtain high strength, the solution treatment temperature and holding time were determined as described above.

また、この発明では、上記のように固溶化処理後に冷間
加工を施して強度向上をはかるが、この22− 冷間加工が肉厚減少率で10%未満では所望の強度を確
保することができず、一方同じく肉厚減少率で60チを
越えた冷間加工を施すと、延性および靭性の劣化が著し
くなるととから、冷間加工を肉厚減少率で10〜60%
と定めたのである。
In addition, in this invention, as described above, cold working is performed after the solution treatment to improve the strength, but if the cold working is less than 10% in wall thickness reduction rate, the desired strength cannot be secured. On the other hand, if cold working is performed at a wall thickness reduction rate exceeding 60 inches, the deterioration of ductility and toughness will be significant.
It was established that

以上の成分組成および製造条件を適用することによって
0.2%耐力が80 kgf/m−以上の高強度をもち
、かつ延性および靭性は勿論のこと、耐応力腐食割れ性
に優れた油井管を製造することができるのである。
By applying the above component composition and manufacturing conditions, we can produce oil country tubular goods that have high strength with a 0.2% proof stress of 80 kgf/m- or more, and have excellent stress corrosion cracking resistance as well as ductility and toughness. It can be manufactured.

つぎに、この発明の油井管製造法を実施例によシ比較例
と対比しながら具体的に説明する。
Next, the method for producing oil country tubular goods according to the present invention will be specifically explained using examples and comparing with comparative examples.

実施例 それぞれ第1表に示される成分組成をもった溶湯を通常
の電気炉、および脱硫とN付加の目的でAr−酸素脱炭
炉(AOD炉)を併用し、さらに必要に応じて脱燐の目
的でエレクトロスラグ溶解炉(ESR炉)を使用して溶
製した後、直径:500朋φのインゴットに鋳造し、つ
いでこのインゴットに温度:1200℃で熱間鍛造を施
して直径:150朋φのビレットを成形し、この場合熱
間加工性を評価する目的でビレットに割れの発生がある
か否かを観察し、引続いて前記ビレットより熱間押出加
工によシ直径:60I++l+Iφ×肉厚:4JIIの
素管を成形し、引続いて、同じくそれぞれ第1表に示さ
れる固溶化条件(処理後の冷却はいずれも水冷)および
肉厚減少率で、固溶化処理と冷間加工を施すことによっ
て、本発明合金管材1〜29゜比較合金管材1〜8.お
よび従来合金管材1−4をそれぞれ製造した。
In each of the examples, a molten metal having the composition shown in Table 1 was heated in a conventional electric furnace, an Ar-oxygen decarburization furnace (AOD furnace) for the purpose of desulfurization and N addition, and further dephosphorization as necessary. After melting using an electroslag melting furnace (ESR furnace) for the purpose of smelting, it was cast into an ingot with a diameter of 500 mm, and then hot forged at a temperature of 1200 ° C to this ingot to a diameter of 150 mm. A billet of φ is formed, and in this case, for the purpose of evaluating hot workability, it is observed whether or not cracks occur in the billet, and then the billet is subjected to hot extrusion processing. A raw pipe with a thickness of 4JII was formed, and then subjected to solution treatment and cold working under the same solution treatment conditions (cooling after treatment was water cooling in both cases) and wall thickness reduction rate as shown in Table 1. By subjecting the alloy tube materials 1 to 29 degrees of the present invention and the comparison alloy tube materials 1 to 8. and conventional alloy tube materials 1-4 were manufactured, respectively.

なお、比較合金管材1〜8は、構成成分のうちのいずれ
かの成分の含有量、あるいは製造条件のうちのいずれか
の条件(第1表に※印を付して表示)がこの発明の範囲
から外れた条件で製造されたものであり、また従来合金
管材は、いずれも公知の成分組成をもつものであって、
同管材1は、J I S−8US316に、同2はJI
S−8US310Sに、同3I/iインコロイSOOに
、同4はJIS・SUS 329Jlにそれぞれ相当す
る組成をもつものである。
Comparative alloy tube materials 1 to 8 have a content of any one of the constituent components or one of the manufacturing conditions (indicated with an asterisk in Table 1) of the present invention. It was manufactured under conditions outside the range, and all conventional alloy tube materials had known compositions.
The same pipe material 1 is JI S-8US316, and the same pipe material 2 is JI S-8US316.
S-8US310S, 3I/i Incoloy SOO, and 4 have compositions corresponding to JIS/SUS 329Jl.

ついで、この結果得られた本発明合金管材1〜29.比
較合金管材1〜8.および従来合金管材ト4よシ長さ:
20mmの試験片をそれぞれ切出し、この試験片より長
さ方向にそって60°に相当する部分を切落し、この状
態の試験片に第3図に正面図で示されるようにボルトを
貫通し、ナツトでしめつけて管外表面に0.2%耐力に
相当する引張応力を付加し、この状態の試験片Sに対し
て、H2S分圧をそれぞれ0.1気圧、1気圧、および
20気圧としたH2S−10気圧CO2’ −20%N
aCt溶液(液温:200℃)中に1000時間浸漬の
応力腐食割れ試験を行ない、試験後における応力腐食割
れの有無を調査した。この結果を、上記の熱間鍛造時の
割れ発生の有無、引張試験結果、および衝撃試験結果と
共に、第2表に合せて示した。
Next, the resulting alloy tube materials 1 to 29 of the present invention were prepared. Comparative alloy tube materials 1 to 8. And length of conventional alloy pipe material:
A 20 mm test piece was cut out, a portion corresponding to 60° was cut off along the length direction of the test piece, and a bolt was passed through the test piece in this state as shown in the front view in Fig. 3. A tensile stress equivalent to 0.2% proof stress was applied to the outer surface of the tube by tightening it with a nut, and the H2S partial pressure was set to 0.1 atm, 1 atm, and 20 atm, respectively, for the test piece S in this state. H2S - 10 atm CO2' - 20%N
A stress corrosion cracking test was conducted by immersing the sample in an aCt solution (liquid temperature: 200°C) for 1000 hours, and the presence or absence of stress corrosion cracking after the test was investigated. The results are shown in Table 2 together with the presence or absence of cracking during hot forging, the tensile test results, and the impact test results.

なお、第2表において、○印はいずれも割れ発生のない
ものを示し、一方X印は割れ発生のあったものを示す。
In Table 2, all marks ○ indicate those with no cracks, while marks X indicate those with cracks.

第2表に示される結果から、比較合金管材1〜8は、熱
間加工性、耐応力腐食割れ性、および強29一 度のうちの少なくともいずれかの性質が劣ったものであ
るのに対して、本発明合金管材1〜29は、いずれもす
ぐれた熱間加工性および耐応力腐食割れ性を有し、さら
に高強度を有し、かつ熱間加工性は良好であるが、相対
的に強度が低く、しかも耐応力腐食割れ性に劣る従来合
金管材1〜4と比較しても一段とすぐれた特性を有する
ことが明らかである。
From the results shown in Table 2, comparative alloy tube materials 1 to 8 were inferior in at least one of the following properties: hot workability, stress corrosion cracking resistance, and strength. All of the alloy tube materials 1 to 29 of the present invention have excellent hot workability and stress corrosion cracking resistance, and also have high strength and good hot workability, but have relatively low strength. It is clear that the pipe materials have even better characteristics than the conventional alloy tube materials 1 to 4, which have a low stress corrosion cracking resistance and are inferior in stress corrosion cracking resistance.

上述のように、この発明の方法によって製造された油井
管は、特に高強度および優れた耐応力腐食割れ性を有す
るので、これらの特性が要求される苛酷な環境下での石
油並びに天然ガス採掘は勿論のこと、地熱井管として用
いた場合にもきわめて優れた性能を発揮するのである。
As mentioned above, oil country tubular goods manufactured by the method of the present invention have particularly high strength and excellent stress corrosion cracking resistance, and are therefore suitable for oil and natural gas extraction in harsh environments where these properties are required. Of course, it also exhibits extremely excellent performance when used as geothermal well pipes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は合金の耐応力腐食割れ性に関し、Ni含有量と
Cr(@+ 10 Mo (%)+5W(9))との関
係を示した図、第2図および第3図はそれぞれ板状およ
び管状試験片に対する応力腐食割れ試験の態様を示す3
0− 図であるっ 出願人  住友金属工業株式会社 代理人  富  1) 和  夫 第1図 Cr(%ン+IOMo(%)+5W(%)31− 寮2図 第3図 第1頁の続き 0発 明 者 工藤赳夫 尼崎市西長洲本通1丁目3番地 住友金属工業株式会社中央技術 研究所内 0発 明 者 池田昭夫 尼崎市西長洲本通1丁目3番地 住友金属工業株式会社中央技術 研究所内 0発 明 者 諸石大司 尼崎市西長洲本通1丁目3番地 住友金属工業株式会社中央技術 研究所内
Figure 1 is a diagram showing the relationship between Ni content and Cr (@+10 Mo (%) + 5W (9)) regarding stress corrosion cracking resistance of alloys, and Figures 2 and 3 are for plate-like alloys. and 3 showing aspects of stress corrosion cracking tests on tubular specimens.
0- Diagram Applicant Sumitomo Metal Industries Co., Ltd. Agent Tomi 1) Kazuo Figure 1 Cr (% + IOMo (%) + 5W (%)) 31- Dormitory 2 Figure 3 Continuation of page 1 0 shots Akio Ikeda, Sumitomo Metal Industries, Ltd., Central Technical Research Laboratory, 1-3 Nishinagasu Hondori, Amagasaki City, Akio Ikeda, 1-3 Nishinagasu Hondori, Amagasaki City, 0 Name: Daiji Moroishi, Sumitomo Metal Industries, Ltd., Central Technology Research Laboratory, 1-3 Nishinagasu Hondori, Amagasaki City

Claims (1)

【特許請求の範囲】 (1)  C: 0.05%以下、Si:1.0%以下
、Mn:2.0%以下、 P :0.030 %以下、
S :0.005%以下、 sol、AQ : 0.5
 %以下、 Ni: 25〜60%、cr:22.5〜
30%を含有し、Mo:8係未満およびW:16%未満
のうちの1種または2種を含有し、残りがFeと不可避
不純物からなる組成(以上重量%)を有し、かつ、 Cr(@ + 10Mo (@ + 5 W (Si)
≧’i’o%。 4チ≦Mo (@ +4 W(4)〈8%、  ゛の条
件を満足する合金を、2601(IgC(イ)+130
0で算出された下限温度C)と、16Mo(%) +1
0 W (%)+10Cr(@+グフ7で算出された上
限温度(6)の間の温 1一 度に、2時間以下保持の条件で固溶化処理した後、10
〜60%の肉厚減少率で冷間加工することを特徴とする
耐応力腐食割れ性に優れた高強度油井管の製造法。 (2)  C: 0.05%以下、 Si: 1.0%
以下、Mn:2.0チ以下、P :0.030%以下、
S :0.005%以下、 sot、Ai : 0.5
%以下、Ni:25〜60%、Cr:22.5〜30チ
を含有し、Mo:8係未満およびW:16%未満のうち
の1種または2種を含有し、さらにCu:2%以下およ
びCO:2%以下のうちの1種または2種を含有し、残
りがFeと不可避不純物からなる組成(以上重量%)を
有し、かつ、Cr(@ + 10 Mo(@+ 5 W
 (%)≧70チ。 4%≦M○(%)++W部)〈8係。 の条件を満足する合金を、2601ogC(効+130
0で算出された下限温度(りと、16M0(@−1−1
0W←)+10 Cr(@ +77 ’Iで算出された
上限温度に)の間の温度に、2時間以下保持の条件で固
溶化処理した後、10〜60チの肉厚減少率で冷間加工
することを特徴とする耐応力腐食割れ性に優れた高強度
油井管の製造法っ (3)  c : 0.05%JJ、下、 Si : 
10 %以下、 Mn:2.0チ以下、P :0.03
Q%以下、 S :0.005 %以下、  sol、
AQ: 0.5 %以下、 Ni: 25〜60%、 
Cr:22,5〜3oチを含有し、Mo:8チ未満およ
びW : 16%未満のうちの1種または2種を含有し
、さらに希土類元素:0.10−以下、Y:0.20チ
以下、量、fg:0.10%以下、 Ti : 0.5
 %以下、 オ!びCa:0.10%以下のうちの1種
または2種以上を含有し、残シがFeと不可避不純物か
らなる組成(以上重量%)を有し、がっ、 Cr(%) + l OMo(f;) + 5 W S
)≧ス○チ。 4%≦Mo(%i)++W(%)<8%。 の条件を満足する合金を、2601■C(4)+130
0で算出された下限温度C)と、ユ6Mo(イ)+1o
w(イ)+10Cr(%)+777で算出された上限温
度伸)の間の温度に、2時間以下保持の条件で固溶化処
理した後、10〜60%の肉厚減少率で冷間加工するこ
とを特徴とする耐応力腐食割れ性に優れた高強度油井管
の製造法。 (4) C: 0.05%以下、 3i: 1.0 %
以下、Mn:2.0%以下、p Ho、030%以下、
S :0.005%以下%以下ot、 AQ : 0.
5%以下、Ni:25〜60%、cr: 22.5〜3
0%を含有し、Mo:8チ未満およびW:16%未満の
うちの1種または2種を含有し、さらにCu:2%以下
およびCO:2%以下のうちの1種または2種と、希土
類元素:0.10%以下。 Y:0.20%以下、 Mg: 0.10チ以下、 ’
l’i: 0.5−以下、およびCa: 0.10 %
以下のうちの1種または2種以上とを含有°し、残りが
Feと不可避不純物からなる組成(以上重量%ンを有し
、かつ、Cr(@+ 10 MO(%) + 5 W 
(@≧70%。 4%≦MO(%) + + W (%) < 8 % 
。 の条件を満足する合金を、260臆C(%) +130
0で算出された下限温度C)と、16Mo(弼+1ow
(@+10Cr(@+’i”i”で算出された上限温度
的)の間の温度に、2時間以下保持の条件で固溶化処理
した後、10〜60%の肉厚減少率で冷間加工すること
を特徴とする耐応力腐食割れ性に優れた高強度油井管の
製造法。 (5)  c : 0.05%以下、 Si: 1.0
 %以下、Mn:2.0%以下、 p :0.030%
以下、 S :0.005%以下、  soL、AQ:
 0.5 %以下、 N : 0.05〜0.3 %。 )Jl:25〜60%、Cr: 22.5〜30%を含
有し、Mo:8%未満およびW:16%未満のうちの1
種または2種を含有し、残りがFeと不可避不純物から
なる組成(以上重量%)を有し、がっ、Cr(%9+ 
10M0(n+5 W (%)270%。 4チ≦Mo鈍)十+W(チ)〈8%。 の条件を満足する合金を、26010gC(至)+13
00で算出された下限温度呻)と、16Mo(銹+10
.Wし)+100r(@+77’7で算出された上限温
度呻)の間の温度に、2時間以下保持の条件で固溶化処
理した後、10〜60チの肉厚減少率で冷間加工するこ
とを特徴とする耐応力腐食割れ性に優れた高強度油井管
の製造法。 (6)  c : o、o s4以下、 Si : l
、04以下、Mn:下、  sot、AM: 0.5 
%以下、 N : 0.05〜0.3%、。 Nl:25〜60%、 Cr: 22.5〜3oチを含
有し、 5− Mo:8%未満およびW:16%未満のうちの1種また
は2種を含有し、さらにc、、、:2%以下およびCo
:2チ以下のうちの1種または2種を含有し、残シがF
eと不可避不純物から々る組成(以上重量%)を有し、
かつ、 Cr(伺+ 10Mo (@+ 5 W (@≧70チ
。 4%≦Mo(%il+ + W (%)< 8%。 の条件を満足する合金を、2601ogC(tlA+1
300で算出された下限温度(C)と、16Mo(伺+
l0W(9))+10Cr(5)十υqで算出された上
限温度に)の間の温度に、2時間以下保持の条件で固溶
化処理した後、10〜60チの肉厚減少率で冷間加工す
ることを特徴とする耐応力腐食割れ性に優れた高強度油
井管の製造法。 (’i’)  C: 0.05%以下、Si:1.0%
以下、Mn:2.0%以下、P :0.030%以下、
S :0.005%以下、 sol、AQ: 0.5チ
以下、 N : 0.05〜0.3 %。 Ni: 25〜60 %、 Cr: 22.5〜30%
を含有し、Mo:8%未満およびW:16%未満のうち
の1種または2種を含有し、さらに希土類元素:0.1
06− −以下、Y:0.20−以下、 Mg: 0.10%以
下。 Ti:0.5%以下、およびCa:0.10%以下のう
ちの1種または2種以上を含有し、残シがFeと不可避
不純物からなる組成(以上重量%)を有し、がっ、 Cr(@ + 10Mo (@ + 5 W (@≧7
o%。 4%≦Mo(鋤++W(4)〈8%。 の条件を満足する合金を、2604C(%)+1300
で算出された下限温度(ト)と、16Mo(銹+ 1o
W(4)+10 Cr(@−)−77’7で算出された
上限温度(ト)の間の温度に、2時間以下保持の条件で
固溶化処理した後、10〜60%の肉厚減少率で冷間加
工することを特徴とする耐応力腐食割れ性に優れた高強
度油井管の製造法。 (8)  C:O,015%以下、 Si : 1.0
96 以下、 Mn :2゜0チ以下、P :0.03
0%以下、S :0.005%以下、 sot、 AI
: 0.5チ以下、N:0.05〜0.3%。 Ni: 25〜60 %、 Cr: 22.5〜30%
を含有し、Mo: 84未満およびW:16%未満のう
ちの1種または2種を含有し、さらにCu:’2’%以
下およびCo:2%以下のうちの1檜または2種と、希
土類元素:0,10%以下、Y:0.20%以下、ム包
:0.10%以下、Ti:0.5%以下、およびCa 
: C1,10チ以下のうちの1種または2種以上とを
含有し、残りがFeと不可避不純物からなる組成(以上
重量%)を有し、かつ、 cr(@+ 10M0(@+ 5 W (@≧70チ。 4チ≦Mo(@++W(%)〈8チ。 の条件を満足する合金を、2601ogCC%)−1−
1300で算出された下限温度(c)と、16Mo(%
)+10 W (%)+10cr(@十″/77で算出
された上限温度(ト)の間の温度に、2時間以下保持の
条件で固溶化処理した後1.10〜60%の肉厚減少率
で冷間加工することを特徴とする耐応力腐食割れ性に優
れた高強度油井管の製造法。
[Claims] (1) C: 0.05% or less, Si: 1.0% or less, Mn: 2.0% or less, P: 0.030% or less,
S: 0.005% or less, sol, AQ: 0.5
% or less, Ni: 25-60%, cr: 22.5-
30%, contains one or two of Mo: less than 8% and W: less than 16%, with the remainder consisting of Fe and unavoidable impurities (more than % by weight), and Cr (@ + 10Mo (@ + 5 W (Si)
≧'i'o%. 4chi≦Mo(@+4W(4)〈8%,
The lower limit temperature C) calculated at 0 and 16Mo (%) +1
0 W (%) + 10 Cr (at a temperature between the upper limit temperature (6) calculated by @ + Guf 7) 1 After solution treatment under the condition of holding for 2 hours or less at a time, 10
A method for producing high-strength oil country tubular goods having excellent stress corrosion cracking resistance, characterized by cold working at a wall thickness reduction rate of ~60%. (2) C: 0.05% or less, Si: 1.0%
Hereinafter, Mn: 2.0 or less, P: 0.030% or less,
S: 0.005% or less, sot, Ai: 0.5
% or less, Ni: 25 to 60%, Cr: 22.5 to 30%, Mo: less than 8% and W: less than 16%, and further contains Cu: 2%. Contains one or two of the following and CO: 2% or less, with the remainder consisting of Fe and unavoidable impurities (wt%), and Cr (@ + 10 Mo (@ + 5 W)
(%)≧70chi. 4%≦M○(%)++W part)〈8th section. An alloy that satisfies the conditions of 2601ogC (effectiveness +130
Lower limit temperature calculated at 0 (Rito, 16M0 (@-1-1
After solution treatment at a temperature between 0W←)+10Cr (at the upper limit temperature calculated by @+77'I) and holding for 2 hours or less, cold working at a wall thickness reduction rate of 10 to 60 inches. A method for producing high-strength oil country tubular goods with excellent stress corrosion cracking resistance (3) c: 0.05% JJ, lower, Si:
10% or less, Mn: 2.0 or less, P: 0.03
Q% or less, S: 0.005% or less, sol,
AQ: 0.5% or less, Ni: 25-60%,
Contains Cr: 22.5 to 30%, Mo: less than 8% and W: less than 16%, and further contains rare earth elements: 0.10% or less, Y: 0.20%. Ti or less, amount, fg: 0.10% or less, Ti: 0.5
% or less, Oh! Cr (%) + l OMo (f;) + 5 W S
)≧S○chi. 4%≦Mo(%i)++W(%)<8%. An alloy that satisfies the conditions of 2601■C(4)+130
The lower limit temperature C) calculated at 0 and U6Mo(A)+1o
After solid solution treatment at a temperature of 2 hours or less at a temperature between w (a) + 10 Cr (%) + upper limit temperature elongation calculated by 777), cold working is performed at a wall thickness reduction rate of 10 to 60%. A method for manufacturing high-strength oil country tubular goods with excellent stress corrosion cracking resistance. (4) C: 0.05% or less, 3i: 1.0%
Below, Mn: 2.0% or less, p Ho, 030% or less,
S: 0.005% or less %ot, AQ: 0.
5% or less, Ni: 25-60%, cr: 22.5-3
0%, contains one or two of Mo: less than 8% and W: less than 16%, and further contains one or two of Cu: 2% or less and CO: 2% or less. , rare earth elements: 0.10% or less. Y: 0.20% or less, Mg: 0.10% or less, '
l'i: 0.5- or less, and Ca: 0.10%
Contains one or more of the following, with the remainder consisting of Fe and unavoidable impurities (with a weight percent of Cr(@+10 MO(%)+5 W
(@≧70%. 4%≦MO (%) + + W (%) < 8%
. An alloy that satisfies the conditions of 260°C (%) +130
The lower limit temperature C) calculated at 0 and 16Mo(\+1ow
After solution treatment at a temperature of 2 hours or less at a temperature between (@+10Cr (upper limit temperature calculated by @+'i"i") A method for producing high-strength oil country tubular goods with excellent stress corrosion cracking resistance, characterized by processing. (5) c: 0.05% or less, Si: 1.0
% or less, Mn: 2.0% or less, p: 0.030%
Below, S: 0.005% or less, soL, AQ:
0.5% or less, N: 0.05-0.3%. ) Contains Jl: 25-60%, Cr: 22.5-30%, Mo: less than 8% and W: less than 16%.
It has a composition (weight %) containing one or two species, and the rest consisting of Fe and unavoidable impurities, and Cr (%9+).
10M0 (n+5 W (%) 270%. 4chi≦Mo dull) 10+W (chi) <8%. An alloy that satisfies the conditions of 26010gC (to) + 13
00) and 16Mo (rigidity +10
.. After solution treatment at a temperature of 2 hours or less at a temperature between +100r (upper limit temperature calculated by @+77'7), cold working at a wall thickness reduction rate of 10 to 60 inches. A method for manufacturing high-strength oil country tubular goods with excellent stress corrosion cracking resistance. (6) c: o, o s4 or less, Si: l
, 04 or less, Mn: lower, sot, AM: 0.5
% or less, N: 0.05-0.3%. Contains Nl: 25-60%, Cr: 22.5-30%, 5-Mo: less than 8% and W: less than 16%, and further contains c... 2% or less and Co
:Contains one or two of the following: 2 or less, and the remainder is F.
having a composition (more than % by weight) consisting of e and unavoidable impurities,
And, 2601ogC (tlA+1
The lower limit temperature (C) calculated by 300 and 16Mo (Ki+
10W (9)) + 10Cr (5) to the upper limit temperature calculated by A method for manufacturing high-strength oil country tubular goods with excellent stress corrosion cracking resistance. ('i') C: 0.05% or less, Si: 1.0%
Below, Mn: 2.0% or less, P: 0.030% or less,
S: 0.005% or less, sol, AQ: 0.5% or less, N: 0.05-0.3%. Ni: 25-60%, Cr: 22.5-30%
Contains one or two of Mo: less than 8% and W: less than 16%, and rare earth element: 0.1
06- or less, Y: 0.20- or less, Mg: 0.10% or less. Contains one or more of Ti: 0.5% or less and Ca: 0.10% or less, and has a composition (weight % above) with the remainder consisting of Fe and unavoidable impurities. , Cr(@ + 10Mo (@ + 5 W (@≧7
o%. An alloy that satisfies the condition of 4%≦Mo(plow++W(4)<8%.2604C(%)+1300
The lower limit temperature (g) calculated by 16Mo (rust + 1o
After solution treatment at a temperature between the upper limit temperature (g) calculated by W(4)+10 Cr(@-)-77'7 and held for 2 hours or less, the wall thickness decreases by 10-60%. A method for producing high-strength oil country tubular goods with excellent stress corrosion cracking resistance, which is characterized by cold working at a low temperature. (8) C: O, 015% or less, Si: 1.0
96 or less, Mn: 2°0 or less, P: 0.03
0% or less, S: 0.005% or less, sot, AI
: 0.5 inch or less, N: 0.05 to 0.3%. Ni: 25-60%, Cr: 22.5-30%
, contains one or two of Mo: less than 84 and W: less than 16%, and further contains one or two of Cu: ``2''% or less and Co: 2% or less, Rare earth elements: 0.10% or less, Y: 0.20% or less, Muba: 0.10% or less, Ti: 0.5% or less, and Ca
: Contains one or more of C1. (@≧70chi.4chi≦Mo(@++W(%)〈8chi.2601ogCC%)-1-
The lower limit temperature (c) calculated at 1300 and 16Mo (%
)+10 W (%)+10cr (@10″/77) After solution treatment at a temperature between the upper limit temperature (g) calculated by 77 for 2 hours or less, the wall thickness decreases by 1.10 to 60%. A method for producing high-strength oil country tubular goods with excellent stress corrosion cracking resistance, which is characterized by cold working at a low temperature.
JP10691481A 1981-07-03 1981-07-10 Production of high strength oil well pipe of high stress corrosion cracking resistance Granted JPS589923A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP10691481A JPS589923A (en) 1981-07-10 1981-07-10 Production of high strength oil well pipe of high stress corrosion cracking resistance
US06/389,568 US4421571A (en) 1981-07-03 1982-06-17 Process for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking
GB08217860A GB2104100B (en) 1981-07-03 1982-06-21 High strength deep well casing and tubing having improved resistance to stress-corrosion cracking
SE8204121A SE461986C (en) 1981-07-03 1982-07-02 PROCEDURES FOR PREPARING HOEGHAALLFASTA DEEP BORROWS WITH RESISTANCE TO TENSION CORROSION
DE3224865A DE3224865C2 (en) 1981-07-03 1982-07-02 Process for the production of heavy-duty casing for deep boreholes or the like
FR8211645A FR2508930A1 (en) 1981-07-03 1982-07-02 PROCESS FOR MANUFACTURING HIGH MECHANICAL RESISTANCE PIPES AND PIPES FOR DEEP WELLS
SE8901647A SE502102C2 (en) 1981-07-03 1989-05-09 Process for the manufacture of high strength deep drill pipes with resistance to stress corrosion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10691481A JPS589923A (en) 1981-07-10 1981-07-10 Production of high strength oil well pipe of high stress corrosion cracking resistance

Publications (2)

Publication Number Publication Date
JPS589923A true JPS589923A (en) 1983-01-20
JPS6363607B2 JPS6363607B2 (en) 1988-12-08

Family

ID=14445690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10691481A Granted JPS589923A (en) 1981-07-03 1981-07-10 Production of high strength oil well pipe of high stress corrosion cracking resistance

Country Status (1)

Country Link
JP (1) JPS589923A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6187855A (en) * 1984-10-05 1986-05-06 Sumitomo Metal Ind Ltd Stainless steel having superior corrosion resistance and hot workability
JPS61276948A (en) * 1985-05-30 1986-12-06 Nippon Kokan Kk <Nkk> High-chromium alloy steel having superior hot workability

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANNUAL BOOK OF ASTM STANDARDS=1980 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6187855A (en) * 1984-10-05 1986-05-06 Sumitomo Metal Ind Ltd Stainless steel having superior corrosion resistance and hot workability
JPH0357181B2 (en) * 1984-10-05 1991-08-30
JPS61276948A (en) * 1985-05-30 1986-12-06 Nippon Kokan Kk <Nkk> High-chromium alloy steel having superior hot workability
JPH0470382B2 (en) * 1985-05-30 1992-11-10 Nippon Kokan Kk

Also Published As

Publication number Publication date
JPS6363607B2 (en) 1988-12-08

Similar Documents

Publication Publication Date Title
JP2500162B2 (en) High strength duplex stainless steel with excellent corrosion resistance
US4788036A (en) Corrosion resistant high-strength nickel-base alloy
JPS625977B2 (en)
JP2008274361A (en) Ferritic free-cutting stainless steel
JPS625976B2 (en)
JP4502131B2 (en) Duplex stainless steel with excellent hot workability
JPS6144133B2 (en)
JPS586927A (en) Production of high-strength oil well pipe of high stress corrosion cracking resistance
JPS6363608B2 (en)
JPS6144135B2 (en)
JPS6363610B2 (en)
JP3470418B2 (en) High strength austenitic alloy with excellent seawater corrosion resistance and hydrogen sulfide corrosion resistance
JPS581044A (en) High strength alloy having superior stress corrosion cracking resistance for oil well pipe
JPS6363609B2 (en)
JPS6363606B2 (en)
JPS589923A (en) Production of high strength oil well pipe of high stress corrosion cracking resistance
JPS58210155A (en) High-strength alloy for oil well pipe with superior corrosion resistance
JPS6144128B2 (en)
JPS6144126B2 (en)
JPS6144134B2 (en)
JPS6199661A (en) High strength and high toughness welded clad steel pipe for line pipe
JPS6144125B2 (en)
JPS6363611B2 (en)
JPS6362570B2 (en)
JPS581043A (en) High strength alloy having superior stress corrosion cracking resistance for oil well pipe