JPS5811735A - Production of high-strength oil well pipe of superior stress corrosion cracking resistance - Google Patents

Production of high-strength oil well pipe of superior stress corrosion cracking resistance

Info

Publication number
JPS5811735A
JPS5811735A JP10898581A JP10898581A JPS5811735A JP S5811735 A JPS5811735 A JP S5811735A JP 10898581 A JP10898581 A JP 10898581A JP 10898581 A JP10898581 A JP 10898581A JP S5811735 A JPS5811735 A JP S5811735A
Authority
JP
Japan
Prior art keywords
less
thickness reduction
stress corrosion
wall thickness
inches
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10898581A
Other languages
Japanese (ja)
Other versions
JPS6363609B2 (en
Inventor
Yasutaka Okada
康孝 岡田
Kunihiko Yoshikawa
吉川 州彦
Yasuo Otani
大谷 泰夫
Takeo Kudo
赳夫 工藤
Akio Ikeda
昭夫 池田
Daiji Moroishi
諸石 大司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP10898581A priority Critical patent/JPS5811735A/en
Priority to US06/389,568 priority patent/US4421571A/en
Priority to GB08217860A priority patent/GB2104100B/en
Priority to SE8204121A priority patent/SE461986C/en
Priority to FR8211645A priority patent/FR2508930A1/en
Priority to DE3224865A priority patent/DE3224865C2/en
Publication of JPS5811735A publication Critical patent/JPS5811735A/en
Publication of JPS6363609B2 publication Critical patent/JPS6363609B2/ja
Priority to SE8901647A priority patent/SE502102C2/en
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten

Abstract

PURPOSE:To improve the strength and stress corrosion cracking resistance of an oil well pipe in the stage of producing the oil well pipe of Ni-Cr stainless steel contg. specific metallic elements by regulating the contents of Cr, Mo, W in a specific range. CONSTITUTION:The Ni-Cr stainless steel of such compsn. that contains <0.05% C, <1.0% Si, <2.0% Mn, <0.030% P, <0.005% S, <0.5% sol.Al, 35-60% Ni, 22.5-35% Cr and 1 or 2 kinds of <4% Mo and <8% W, and satisfies the two equations expressed by the equation[I]between the contents of Cr, Mo, W is hot worked to a pipe material at >=10% thickness reduction ratio at <=1,000 deg.C and at >=800 deg.C finishing temp. Such pipe material is cold-worked at 10-60% thickness reduction ratio and is used in deep wells or heavily corrosive environment, whereby the oil well pipe of superior strength and stress corrosion cracking resistance for oil wells and natural gas wells is produced.

Description

【発明の詳細な説明】 この発明は、優れた耐応力腐食割れ性を有する高強度油
井管の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing high-strength oil country tubular goods having excellent stress corrosion cracking resistance.

近年、エネルギー事情の悪化から、油井および天然ガス
井は深井戸化の傾向が著しく、深さ26000m以上、
なかには深さ:lO,’000m以上の深井戸が出現し
ている。
In recent years, due to the deterioration of the energy situation, there has been a marked tendency for oil and natural gas wells to become deeper;
Some deep wells with a depth of 10,000m or more have appeared.

また、同様な事情から、湿潤な硫化水素をはじめ、炭酸
ガスや塩素イオンなどの腐食性成分を含有する苛酷な腐
食環境下での石油および天然ガスの採掘が予儀なくされ
つつある。
Furthermore, due to similar circumstances, it is becoming increasingly difficult to extract oil and natural gas in a harsh corrosive environment containing humid hydrogen sulfide, as well as corrosive components such as carbon dioxide gas and chloride ions.

このような厳しい環境下での石油および天然ガスの掘削
に伴い、これに使用される油井管にも高強度、並びに優
れた耐食性、特に耐応力腐食割れ性が要求されるように
なってきている。
As oil and natural gas are drilled in such harsh environments, the oil country tubular goods used therein are required to have high strength and excellent corrosion resistance, especially resistance to stress corrosion cracking. .

油井管の一般峰腐食対策として、インヒビタと呼ばれる
腐食抑制剤を投入する方法が知られているが、この方法
は1、例えば海上油井などには有効   司に活用−で
きない場合が多い。
As a general countermeasure against corrosion of oil country tubular goods, it is known to introduce a corrosion inhibitor called an inhibitor, but this method is often not effective in applications such as offshore oil wells.

かかる点から、最近では油井管の製造に、ステンレス鋼
はじめ、インコロイやハステロイ(いずれも商品名)と
いった高級な耐食性高合金鋼の採用も検討されはじめて
いるが、いまのところ、これらの合金に関して、H2S
 −Co、−(、L−の油井環境での腐食挙動について
の詳細は十分に解明されるに至っておらず、しかも深井
戸用油井管に要求される高強度をもつものではないのが
現状である。
From this point of view, consideration has recently begun to be given to the use of high-grade corrosion-resistant high-alloy steels such as stainless steel and Incoloy and Hastelloy (all trade names) for the production of oil country tubular goods. H2S
The details of the corrosion behavior of -Co, -(, L-) in oil well environments have not yet been fully elucidated, and at present they do not have the high strength required for oil country tubular goods for deep wells. be.

そこで、本発明者等は、上述のような観点から、深井戸
や苛酷な腐食環境、特にH,S −Co2− at−の
油井環境下での石油掘削に十分耐え得る高強度とすぐれ
た耐応力腐食割れ性とを有する油井管を製造すべく研究
を行なった結果、 (a)  HzS −C02−C1−1!境下における
腐食の主たるものは応力腐食割れであるが、この場合の
応力腐食割れ態様は、オーステナイトステンレス鋼にお
ける一般的なそれとは挙動を全く異にするものであるこ
と。すなわち、一般の応力腐食割れがat−の存在と深
く係わるものであるのに対して、上記の油井環境による
ものではaZ−もさることながら、それ以上にH,Sの
影響が大きいこと。
Therefore, from the above-mentioned viewpoint, the present inventors have developed a material with high strength and excellent durability that can withstand oil drilling in deep wells and severe corrosive environments, especially in H,S-Co2-at- oil well environments. As a result of research to manufacture oil country tubular goods with stress corrosion cracking resistance, (a) HzS -C02-C1-1! The main type of corrosion in the stainless steel is stress corrosion cracking, but the behavior of stress corrosion cracking in this case is completely different from that of general austenitic stainless steel. That is, while general stress corrosion cracking is deeply related to the presence of at-, in the oil well environment mentioned above, the influence of H and S is greater than that of aZ-.

(b)  油井管として実用に供される鋼管は一般に、
強度上の必要から冷間加工が施されるが、冷間加工は上
記応力腐食割れに対する抵抗性を著しく減少させること
(b) Steel pipes used for practical use as oil country tubular goods are generally:
Cold working is performed to improve strength, but cold working significantly reduces the resistance to stress corrosion cracking.

(c)  H2S −CO2−(31−環境での鋼の溶
出速度(腐食速度)は、Or、Ni5Mo、およびWの
含有量に依存し、これらの成分からなる表面皮膜によっ
て耐食性が保持され、かつこれらの成分は、応力腐食割
れに対してもその抵抗性を高め、特にMOはOrに対し
1−0倍の効果を、またMoはWの2倍の効果をもって
おυ、したがって、このMoおよびWが、Or (%)
 + 10 Mo @+5 W (%)≧50チ。
(c) The elution rate (corrosion rate) of steel in a H2S -CO2- (31- environment depends on the contents of Or, Ni5Mo, and W, and corrosion resistance is maintained by the surface film made of these components, and These components also increase its resistance to stress corrosion cracking, and in particular, MO is 1-0 times more effective than Or, and Mo is twice as effective as W. W is Or (%)
+10 Mo @+5 W (%)≧50chi.

1.5%≦MO(%) +−W(%) < 4 % 。1.5%≦MO(%) +-W(%)<4%.

の条件式を満足すると共に、Ni含有量を35〜60%
、Or含有量を22.5〜35%とすると、冷間加工材
であっても、きわめて腐食性の強いH2S −ao2−
at−の油井環境下、特に150℃以下の悪環境におい
て、応力腐食割れに対して優れた抵抗性を示す表面皮膜
が得られること。
While satisfying the conditional expression, the Ni content should be 35 to 60%.
, when the Or content is 22.5 to 35%, H2S -ao2- is extremely corrosive even in cold-worked materials.
It is possible to obtain a surface coating that exhibits excellent resistance to stress corrosion cracking under an oil well environment, particularly in a harsh environment of 150° C. or lower.

(→ N1については表面皮膜に対する効果だけでなく
、組織的にも応力腐食割れ抵抗性を高める効果があるこ
と。
(→ Regarding N1, it has the effect of increasing stress corrosion cracking resistance not only on the surface film but also on the structure.

(e)  合金成分としてNを0.05〜0.3%の範
囲で含有させると一段と管材強度が向上するようになる
こと。
(e) When N is contained as an alloy component in the range of 0.05 to 0.3%, the strength of the tube material is further improved.

(f)  不可避不純物としてのS含有量を0.000
7−以下に低減させると、管材の熱間加工性が著しく改
善されるようになること。
(f) S content as an unavoidable impurity is set to 0.000
If the temperature is reduced to 7- or less, the hot workability of the tube material will be significantly improved.

(ω 不可避不純物としてのP含有量を0.003チ以
下に低減させると、水素割れ感受性が著しく低下するよ
うになること。
(ω) When the P content as an unavoidable impurity is reduced to 0.003 or less, the hydrogen cracking susceptibility decreases significantly.

(h)  合金成分としてOu:2%以下含有させると
、耐食性がさらに改善されるようになること。
(h) When O is included as an alloy component at 2% or less, corrosion resistance is further improved.

(1)合金成分として、希土類元素: 0.10%以下
、Y:0.20%以下、 Mg: 0.10%以下、T
1:0.5チ以下、およびOa:0.10%以下のうち
の1種または2種以上を含有させると、熱間加工性がさ
らに一段と改善されるようになること。
(1) As alloy components, rare earth elements: 0.10% or less, Y: 0.20% or less, Mg: 0.10% or less, T
By containing one or more of the following: 1:0.5% or less and Oa: 0.10% or less, hot workability is further improved.

(J)シかし、所望の高強度を確保するためには、上記
組成の合金に、まず、望ましくは105cl〜1250
℃の温度範囲内の温度に加熱して金属間化合物や炭化物
を完全に固溶した状態で、1000℃以下での肉厚減少
率が10%以上、仕上温度800℃以上の条件で熱間加
工を施して、耐食性劣化の原因となる金属間化合物や炭
化物の析出なく、結晶粒の微細化をはかシ、この微細結
晶粒の形成によって管材に高強度と高靭性が付与される
ようになるものであシ、引続いて10〜60チの肉厚減
少率で冷間加工を施して、これを加工強化する必要があ
ること。
(J) However, in order to ensure the desired high strength, first add 105 cl to 1250 cl to the alloy having the above composition.
Hot working at a temperature of 1000°C or less with a wall thickness reduction rate of 10% or more and a finishing temperature of 800°C or more, with intermetallic compounds and carbides completely dissolved in the solid solution by heating to a temperature within the temperature range of 100°C. By applying this process, the crystal grains are made finer without the precipitation of intermetallic compounds and carbides that cause corrosion resistance deterioration, and the formation of these fine grains gives the pipe material high strength and toughness. If it is made of a material, it is necessary to subsequently perform cold working at a wall thickness reduction rate of 10 to 60 inches to strengthen it.

以上(a)〜(j)に示される知見を得たのである。The findings shown in (a) to (j) above were obtained.

したがって、この発明は上記知見にもとづいてなされた
ものであって、O:0.05%以下、Sl:1.0%以
下、Mn:2.0%以下、P:0.030%以下、望ま
しくは耐水素割れ性を一段と改善する目的でP:0.0
03%以下、S:0.005’%以下。
Therefore, this invention was made based on the above findings, and it is preferable that O: 0.05% or less, Sl: 1.0% or less, Mn: 2.0% or less, P: 0.030% or less. is P: 0.0 for the purpose of further improving hydrogen cracking resistance.
0.03% or less, S: 0.005'% or less.

望ましくは熱間加工性を一段と改善する目的でS:o、
ooo7%以下r soL、fiJ!、 : 0.5 
%以下、N1:35〜60%、 Or: 22.5〜3
5%を含有し、MO:4%未満およびW:8%未満のう
ちの1種または2種を含有し、さらに必要に応じて、N
:0.05〜0.3%、cu:2%以下、Co:2%以
下、希土類元素: 0.10チ以下、Y:0.20チ以
下、Mg:0.10%以下、 Ti: 0.5%以下、
およびCa: 0.10−以下のうちの1種または2種
以上を含有し、残りがFeと不可避不純物からなる組成
(以上重量%、以下チの表示はすべて重量%を意味する
)を有し、かつ、 Or (%) + 10 Mo 1%) + 5 W(
%)≧50チ。
Desirably, for the purpose of further improving hot workability, S:o,
ooo 7% or less r soL, fiJ! , : 0.5
% or less, N1: 35-60%, Or: 22.5-3
5%, contains one or two of MO: less than 4% and W: less than 8%, and further contains N as necessary.
: 0.05 to 0.3%, Cu: 2% or less, Co: 2% or less, rare earth elements: 0.10 or less, Y: 0.20 or less, Mg: 0.10% or less, Ti: 0 .5% or less,
and Ca: 0.10 - Contains one or more of the following, with the remainder consisting of Fe and unavoidable impurities (the above weight %, below all expressions in ``chi'' mean weight %) , and Or (%) + 10 Mo 1%) + 5 W(
%) ≧50chi.

1.5 %≦Mo &1)−1−−W(イ)〈4%。1.5%≦Mo &1)-1--W(a)<4%.

の条件を満足する合金を、1000℃以下での肉厚減少
率=10%以上、仕上温度二8oO℃以上の条件で熱間
加工し、引続いて10〜60チの肉厚減少率で冷間加工
することによって、耐応力腐食割れ性に優れた高強度油
井管を製造する方法に特徴を有するものである。
An alloy that satisfies the following conditions is hot worked at a wall thickness reduction rate of 10% or more at 1000°C or less and a finishing temperature of 28oO°C or more, and then cooled at a wall thickness reduction rate of 10 to 60 inches. This method is characterized by a method for manufacturing high-strength oil country tubular goods with excellent stress corrosion cracking resistance by performing preliminary processing.

つぎに、この発明の方法において、成分組成、熱間およ
び冷間加工条件を上記の通シに限定した理由を説明する
Next, the reason why the component composition and hot and cold working conditions are limited to the above-mentioned conditions in the method of the present invention will be explained.

A、成分組成 (a)   O C含有量を低くすればするほど炭化物の析出が抑制され
るようになるので、熱間加工における加熱温度を低くで
き、このことは冷間加工後の強度上昇により有効に作用
するものである。したがって、C含有量はできるだけ低
い方が望ましいが、C含有量が0.05%を越えると、
粒界応力腐食割れが生じやすくなることから、その上限
値を0.05%と定めた。
A. Ingredient composition (a) The lower the O C content, the more suppressed the precipitation of carbides, so the heating temperature during hot working can be lowered, and this increases the strength after cold working. It works effectively. Therefore, it is desirable that the C content be as low as possible, but if the C content exceeds 0.05%,
Since intergranular stress corrosion cracking is likely to occur, the upper limit was set at 0.05%.

(b)  5i Slは脱酸成分として必要な成分であるが、その含有量
が1.0%を越えると熱間加工性が劣化するようになる
ことから、その上限値を1.0%と定めた。
(b) 5i Sl is a necessary component as a deoxidizing component, but if its content exceeds 1.0%, hot workability will deteriorate, so its upper limit is set at 1.0%. Established.

(c)  Mn Mn成分にはSlと同様に脱酸作用がちシ、しかもこの
成分は応力腐食割れ性にほとんど影響を及ぼさない成分
であることから、その上限値を高めの2.0%と定めた
(c) Mn The Mn component tends to have a deoxidizing effect like Sl, and since this component has little effect on stress corrosion cracking resistance, the upper limit value was set at a relatively high 2.0%. Ta.

(d)  P 不可避不純物としてのP成分には、その含有量が0.0
30%を越えると、応力腐食割れ感受性を高める作用が
現われるので、上限値を0.030 %と定めて応力腐
食割れ感受性を低位の状態とする必要がある。また、P
含有量を低減してゆくと、0.003%を境にして急激
に耐水素割れ性が改善されるようになることが判明して
おり、かかる点から特にすぐれた耐水素割れ性を必要と
する場合には、P含有量を0.0030%以下とするの
が望ましい。
(d) P The P component as an unavoidable impurity has a content of 0.0
If it exceeds 30%, the effect of increasing stress corrosion cracking susceptibility appears, so it is necessary to set the upper limit at 0.030% to keep stress corrosion cracking susceptibility to a low state. Also, P
It has been found that as the content is reduced, hydrogen cracking resistance rapidly improves after reaching 0.003%, and from this point of view, particularly excellent hydrogen cracking resistance is required. In this case, it is desirable that the P content be 0.0030% or less.

(e)  S 不可避不純物としてのS成分には、その含有量が0.0
05%を越えると、熱間加工性を劣化させる作用がある
ので、その上限値を0.005%と定めて熱間加工性の
劣化を防止する必要がある。このようにS成分には、含
有量が多くなると熱間加工性を劣化させる作用があるが
、その含有量を低めてゆき、O,0O07%まで低減す
ると、逆に熱間加工性が一段と改、!されるようになる
こと示ら、厳しい条件での熱間加工を必要とする場合に
は、S含有量を0.0007%以下とするのが望ましい
(e) S The S component as an unavoidable impurity has a content of 0.0
If it exceeds 0.05%, it has the effect of deteriorating hot workability, so it is necessary to set the upper limit at 0.005% to prevent deterioration of hot workability. In this way, the S component has the effect of deteriorating hot workability when its content increases, but when its content is lowered to 7% O,0O0, hot workability is further improved. ,! Therefore, if hot working under severe conditions is required, it is desirable to set the S content to 0.0007% or less.

(f)yb MはSlおよび血と同様に脱酸成分として有効であり、
5oLAfi7含有量で0.5チまで含有させても管材
の特性を何らそこなうものではないことから、その含有
量をsoL、AI含有量で0.5%以下と定めた。
(f) ybM is effective as a deoxidizing component like Sl and blood,
Since it does not impair the characteristics of the pipe material even if the content is up to 0.5% in terms of 5oLAfi7 content, the content was determined to be 0.5% or less in terms of soL and AI content.

←)  Ni N1成分には管材の耐応力腐食割れ性を向上させる作用
があるが、その含有量が35%未満では所望のすぐれた
耐応力腐食割れ性を確保することができず、一方60%
を越えて含有させても耐応力腐食割れ性にさらに一段の
向上効果は現われず、経済性をも考慮して、その含有量
を35〜60チと寞めた。
←) Ni The N1 component has the effect of improving the stress corrosion cracking resistance of pipe materials, but if its content is less than 35%, the desired excellent stress corrosion cracking resistance cannot be secured;
Even if the content exceeds 100%, no further improvement effect on stress corrosion cracking resistance appears, so the content was increased to 35 to 60%, taking economic efficiency into consideration.

(b)  0r Or酸成分、Ni’、Mo、およびW成分との共存にお
いて、耐応力腐食割れ性を著しく改善する成分でおるが
、その含有量を22.54未満としても熱   1間加
工性が改善されるようになるものでもなく、逆に所望の
耐応力腐食割れ性を確保+るためには、MoやWの含有
量をそれだけ増加させなければならず、経済的に不利と
なることから、その下限値を22.5%と定めた。一方
、その含有量が35%を越えると、いくらS含有量を低
減させても熱間加工性の劣化は避けることができ°ない
ことから、その上限値を3511bと定めた。
(b) It is a component that significantly improves stress corrosion cracking resistance when coexisting with the 0r Or acid component, Ni', Mo, and W components, but even if its content is less than 22.54, hot workability is improved. However, in order to secure the desired stress corrosion cracking resistance, the content of Mo and W must be increased accordingly, which is economically disadvantageous. Therefore, the lower limit was set at 22.5%. On the other hand, if the S content exceeds 35%, deterioration in hot workability cannot be avoided no matter how much the S content is reduced, so the upper limit was set at 3511b.

(i)  MoおよびW 上記のように、これらの成分には、NiおよびOrとの
共存において耐応力腐食割れ性を改善する均等的作用が
あるが、それぞれMo:49%以上、およびW:8%以
上含有させても、環境温度が150℃以下のH2S −
Co、 −OL−の腐食環境では、さらに一段の改善効
果が現われず、経済性を考慮して、それぞれの含有量を
、Mo:4%未満、W:8%未満と定めた。また、MO
とWの含有量に関して、条件式: Mo(91il+ 
 W@で規定するのは、WがMOに対し原子量が約2倍
で、効果の点では約−で均等となることからで、この値
が1.5%未満では特に150℃以下の上記悪環境下で
所望の耐応力腐食割れ性が得られず、一方、この値を4
チ以上としても、上記の過少実質的に不必要な量のMo
およびWの含有となり、経済的でなく、かかる点から、
Mo(イ)+−W S)の値を1.5〜4チ未満と定め
た。
(i) Mo and W As mentioned above, these components have an equal effect of improving stress corrosion cracking resistance when coexisting with Ni and Or, but Mo: 49% or more and W: 8% or more, respectively. % or more, if the environmental temperature is below 150℃
In a corrosive environment of Co and -OL-, no further improvement effect was observed, and in consideration of economic efficiency, the respective contents were determined to be less than 4% for Mo and less than 8% for W. Also, M.O.
Regarding the content of and W, the conditional expression: Mo(91il+
The reason for specifying W@ is that the atomic weight of W is approximately twice that of MO, and the effects are approximately equal at -.If this value is less than 1.5%, the above-mentioned adverse effects will occur, especially at temperatures below 150°C. The desired stress corrosion cracking resistance could not be obtained under the environmental conditions, and on the other hand, this value was
Even if the above-mentioned insufficient and substantially unnecessary amount of Mo
and W, which is not economical, and from this point of view,
The value of Mo(a)+−WS) was set at 1.5 to less than 4 h.

(j)   N N成分には固溶強化による強度向上作用があるので、特
に高強度が要求される場合に必要に応じて含有されるが
、その含有量が0.05%未満では所望の強度向上効果
を得ることができず、一方0.3%を越えて含有させる
と、溶製および造塊が困難となることから、その含有量
を0.05〜0.3チと定めた。
(j) N Since the N component has the effect of improving strength through solid solution strengthening, it is included as necessary when particularly high strength is required, but if the content is less than 0.05%, the desired strength cannot be achieved. No improvement effect can be obtained, and on the other hand, if the content exceeds 0.3%, melting and ingot making become difficult, so the content was set at 0.05 to 0.3%.

(k)  OuおよびCO これらの成分には管材の耐食性を向上させる均等的作用
があシ、かつCOにはさらに固溶強化作用がおるので、
特に一段とすぐれた耐食性が要求される場合に必要に応
じて含有されるが、Cuが2qbを越えると、熱間加工
性が劣化するようになり、一方COは2チを越えて含有
させてもよシ一層の改善効果は現われないことから、そ
の上限値をそれぞれCu: 2%、 Co二2チと定め
た。
(k) Ou and CO These components have a uniform effect of improving the corrosion resistance of the pipe material, and CO also has a solid solution strengthening effect.
It is included as necessary, especially when even better corrosion resistance is required, but if Cu exceeds 2 qb, hot workability will deteriorate, while CO can be contained even if it exceeds 2 qb. Since no further improvement effect was observed, the upper limits were set at 2% for Cu and 2% for Co, respectively.

(t)  希土類元素、 Y 、Mg、 TLおよびC
aこれらの成分には、熱間加工性をさらに改善する均等
的作用があるので、厳しい条件で熱間加工が行なわれる
場合に、必要に応じて含有されるが、それぞれ希土類元
素: 0.10%、 Y : 0.20%。
(t) Rare earth elements, Y, Mg, TL and C
a These components have a uniform effect of further improving hot workability, so they are included as necessary when hot working is performed under severe conditions. Rare earth elements: 0.10 %, Y: 0.20%.

Mg:0.10%、 Ti: 0.5%、およびCa:
0.10%を越えて含有させても、熱間加工性に改善効
果は見られず、むしろ劣化現象さえ現われるようになる
ことから、それぞれの含有量を、希土類元素二〇、10
%以下、Y:0.20%以下、 Mg : 0.10%
以下、 Ti: 0.5 %以下、およびCa: 0.
10%以下と定めた。
Mg: 0.10%, Ti: 0.5%, and Ca:
Even if the rare earth element content exceeds 0.10%, no improvement effect on hot workability is observed, and even deterioration phenomenon appears.
% or less, Y: 0.20% or less, Mg: 0.10%
Below, Ti: 0.5% or less, and Ca: 0.
It was set at 10% or less.

(m)  Or(%) +1 oMo(%)+5W(9
6D第1図は厳しい腐食環境下での耐応力腐食割れ性に
関し、cr@−1−1oMo@)+5W(#とN1含有
量の関係を示したものである。すなわち、Or、Ni。
(m) Or(%) +1 oMo(%)+5W(9
6D Fig. 1 shows the relationship between cr@-1-1oMo@)+5W(# and N1 content, with regard to stress corrosion cracking resistance under severe corrosive environments. That is, Or, Ni.

Mo 、およびWの含有量を種々変化させたOr −N
i−Mo系、0r−Ni−W系、およびOr−Ni −
M。
Or-N with various Mo and W contents
i-Mo system, Or-Ni-W system, and Or-Ni −
M.

−W系の鋼を溶製し、鋳造し、鍛伸して板厚二19− 50、、のスラブとした後、これを1200℃に加熱し
て熱間圧延を開始し、この熱間圧延において、板厚が1
0IIIとなった時点で、1000℃となり、これから
仕上温度である900℃までの加工率を30%として板
厚ニア關まで熱延し、引続いて強度向上の目的で加工率
:22%の冷間加工を加え、この結果得られた鋼板から
圧延方向と直角に、厚さ:2..X幅=lOn×長さ=
75朋の試験片を切シ出し、この試験片について、第2
図に示す3点支持ビーム冶具を用い、前記試験片に0.
2%耐力に相当する引張応力を付加した状態で、10気
圧のH2Sおよび10気圧のCO,でH2SおよびCO
2を飽和させた20チNaO2溶液(温度:150℃)
中に1000時間浸漬の応力腐食割れ試験を行ない、試
験後、前記試験片における割れ発生の有無を観察した。
- W series steel is melted, cast, and forged to form a slab with a thickness of 219-50 mm, then heated to 1200°C to start hot rolling. , the plate thickness is 1
When the temperature reached 0III, the temperature reached 1000°C, and hot rolling was carried out to the near thickness with a processing rate of 30% up to the finishing temperature of 900°C, followed by cooling at a processing rate of 22% for the purpose of improving strength. After additional processing, the resulting steel plate is rolled at right angles to the rolling direction to a thickness of 2. .. X width = lOn x length =
A 75 mm test piece was cut out, and the second
Using the three-point support beam jig shown in the figure, the test piece was 0.
H2S and CO at 10 atm H2S and 10 atm CO under a tensile stress equivalent to 2% yield strength.
20 t NaO2 solution saturated with 2 (temperature: 150°C)
A stress corrosion cracking test was conducted by immersing the test piece in water for 1000 hours, and after the test, the presence or absence of cracking in the test piece was observed.

これらの結果に基き、発明者等が独自に設、定した条件
式: Or%) +l OMo@+5W(%i)と隅台
有量との間には、耐応力腐食割れ性に関して、第1図に
示される関係があることが明確になったのである。なお
、第1図において、O印は割れ発生なし、X印は割れ発
生をそれぞれ示すものである。
Based on these results, the inventors independently established the following conditional expression: Or%) +l OMo@+5W (%i) The relationship shown in the figure became clear. In FIG. 1, the O mark indicates no cracking, and the X mark indicates cracking.

第1図に示される結果から、Or(イ)+10M0(4
)+5W(4)の値が50%未満にして、N1含有量が
35チ未満では所望のすぐれた耐応力腐食割れ性は得ら
れないことが明らかである。
From the results shown in Figure 1, Or(a)+10M0(4
)+5W(4) is less than 50% and the N1 content is less than 35 inches, it is clear that the desired excellent stress corrosion cracking resistance cannot be obtained.

なお、この発明の管材において、不可避不純物としてB
、Sn、Pb、およびZnをそれぞれ0.1%以下の範
囲で含有しても、この発明の管材の特性が何らそこなわ
れるものではない。
In addition, in the pipe material of this invention, B is an unavoidable impurity.
, Sn, Pb, and Zn each in a range of 0.1% or less does not impair the characteristics of the pipe material of the present invention.

B、熱間加工条件 熱間加工に゛おける1000℃以下での肉厚減少率を1
0%以上としたのは、この肉厚減少率が10チ未満では
加工度が少なすぎて、管材に所望の高強度とすぐれた延
性を付与するのに不可欠な微細な結晶粒を十分に形成す
ることができないからである。また、仕上温度を800
℃以上としたのは、800℃未満の仕上温度では、耐食
性劣化の原因とな′る炭化物が析出するようになるから
である。
B. Hot working conditions The wall thickness reduction rate at 1000℃ or less during hot working is 1
The reason why it is set to 0% or more is because if the wall thickness reduction rate is less than 10 inches, the degree of processing is too low, and the fine crystal grains that are essential for imparting the desired high strength and excellent ductility to the pipe material are sufficiently formed. This is because it cannot be done. Also, the finishing temperature was set to 800.
The reason why the temperature is set to be higher than 800°C is that carbides that cause deterioration of corrosion resistance will precipitate if the finishing temperature is lower than 800°C.

なお熱間加工に際しては、その加熱温度を1050〜1
250℃とするのが望ましく、これは、加熱温度が10
50℃未満では熱間加工時の変形抵抗が高くなシすぎて
加工自体が困難になるばかシでなく、未固溶の金属間化
合物や炭化物が残留して靭性や耐食性を劣化させる原因
となシ、一方1250℃を越えた加熱温度になると、熱
間における変形能の著しい低下をもたらし、熱間加工が
難しくないという理由によるものである。
In addition, during hot processing, the heating temperature should be set to 1050 to 1
It is desirable to set the temperature to 250°C, which means that the heating temperature is 10°C.
If it is below 50°C, the deformation resistance during hot working will not be too high and the working itself will be difficult, but undissolved intermetallic compounds and carbides will remain and cause deterioration of toughness and corrosion resistance. On the other hand, if the heating temperature exceeds 1250° C., the hot deformability will be significantly reduced, and hot working is not difficult.

C0冷間加工条件 上記のように、この発明の方法では、熱間加工により結
晶粒を微細化した状態で冷間加工を施して強度向上をは
かるが、この冷間加工が肉厚減少率で10チ未満では所
望の高強度を確保することができず、一方同じく肉厚減
少率で60%を越えた冷間加工を施すと、延性および靭
性の劣化が著しく々ることがら、冷間加工における肉厚
減少率を10〜60%と定めた。
C0 cold working conditions As mentioned above, in the method of the present invention, cold working is performed in a state where the crystal grains have been refined by hot working to improve strength. If the thickness is less than 10 mm, the desired high strength cannot be achieved, while if the wall thickness reduction rate exceeds 60%, the deterioration of ductility and toughness will be significant. The wall thickness reduction rate was set at 10 to 60%.

以上の成分組成および加工条件を適用することによって
0.2%耐力が85kgf/−以上の高強度をもち、か
つ延性および靭性は勿論のこと、耐応力腐食割れ性に優
れた油井管が製造できるのである。
By applying the above component composition and processing conditions, it is possible to manufacture oil country tubular goods that have high strength with a 0.2% proof stress of 85 kgf/- or more, and have excellent stress corrosion cracking resistance as well as ductility and toughness. It is.

つぎに、この発明の油井管製造法を実施例により比較例
と対比しながら具体的に説明する。
Next, the method for manufacturing oil country tubular goods of the present invention will be specifically explained using examples and comparing with comparative examples.

実施例 それぞれ第1表に示される成分組成をもった溶湯を通常
の電気炉、および脱硫とN付加の目的でAr−酸素脱炭
炉(AOD炉)を併用し、さらに必要に応じて脱燐の目
的でエレクトロスラグ溶解炉(ESR炉)を使用して溶
製した後、直径=500朋φのインゴットに鋳造し、つ
いでこのインゴットに温度:1200℃で熱間鍛造を施
して直径:150tlllφのビレットを成形し、この
場合熱間加工性を評価する目的でビレットに割れの発生
があるか否かを観察し、引続いて前記ビレットにそれぞ
れ第1表に示される熱間加工条件にて熱間押出加工を施
して外径:6011φ×肉厚:4朋の素管を成形し、引
続いて、同じくそれぞれ第1表に示される肉厚減少率で
冷間加工を施すことによって、本発明合金管材1〜27
、比較合金管材1〜9、および従来合金管材1〜4をそ
れぞれ製造した。
In each of the examples, a molten metal having the composition shown in Table 1 was heated in a conventional electric furnace, an Ar-oxygen decarburization furnace (AOD furnace) for the purpose of desulfurization and N addition, and further dephosphorization as necessary. After melting using an electroslag melting furnace (ESR furnace) for the purpose of melting, it was cast into an ingot with a diameter of 500 mm, and then hot forged at a temperature of 1200°C to form an ingot with a diameter of 150 mm. A billet is formed, and in this case, for the purpose of evaluating hot workability, it is observed whether or not cracks occur in the billet, and then the billet is heated under the hot working conditions shown in Table 1. The present invention was produced by forming a blank tube with an outer diameter of 6011φ x wall thickness of 4mm by extrusion processing, and then cold working at the wall thickness reduction rate shown in Table 1. Alloy tube material 1-27
, Comparative Alloy Tube Materials 1 to 9, and Conventional Alloy Tube Materials 1 to 4 were manufactured, respectively.

なお、比較合金管材1〜9は、構成成分のうちのいずれ
かの成分の含有量、あるいは製造条件のうちのいずれか
の条件(第1表に製団を付して表示)がこの発明の範囲
から外れた条件で製造されたものであり、また従来合金
管材は、いずれも公知の成分組成をもつものであって、
同管材1は、JIS−8US 316に、同2はJIS
IISUS3108に、同3はインコロイ800に、同
4は、rIslIsus 329Jlにそれぞれ相当す
る組成をもつものである。
Comparative alloy tube materials 1 to 9 have a content of any one of the constituent components or one of the manufacturing conditions (shown with the manufacturing formula in Table 1) of the present invention. It was manufactured under conditions outside the range, and all conventional alloy tube materials had known compositions.
The pipe material 1 conforms to JIS-8US 316, and the same pipe material 2 conforms to JIS-8US 316.
IISUS3108, IISUS3 has a composition corresponding to Incoloy 800, and IISUS4 has a composition corresponding to rIslIsus 329Jl.

ついで、この結果得られた本発明合金管材1〜27、比
較合金管材1〜9.および従来合金管材1〜4よシ長さ
:20頷の試験片をそれぞれ切出し、この試験片よシ長
さ方向にそって60°に相当する部分を切落し、この状
態の試験片に第3図に正面図で示されるようにボルトを
貫通し、ナツトでしめつけて管外表面に0.2%耐力に
相当する引張応力を付加し、この状態の試験片Sに対し
て、H2S分圧をそれぞれ0.1気圧、1気圧、および
20気圧としたH2S −10気圧Co2−20 % 
NaC4溶液(液温:150℃)中に1000時間浸漬
の応力腐食割れ試験を行ない、試験後における応力腐食
割れの有無を調査した。この結果を、上記の熱間鍛造時
の割れ発生の有無、引張試験結果、および衝撃試験結果
と共に、第2表に合せて示した。
Next, the resulting alloy tube materials 1 to 27 of the present invention and comparative alloy tube materials 1 to 9. Then, a test piece with a length of 20 degrees was cut out from each of the conventional alloy tube materials 1 to 4, and a portion corresponding to 60° was cut off along the length direction of this test piece. As shown in the front view in the figure, a bolt is passed through and tightened with a nut to apply a tensile stress equivalent to 0.2% yield strength to the outer surface of the tube, and the H2S partial pressure is applied to the test piece S in this state. H2S - 10 atm Co2 - 20% at 0.1 atm, 1 atm, and 20 atm, respectively
A stress corrosion cracking test was conducted by immersing the sample in a NaC4 solution (liquid temperature: 150°C) for 1000 hours, and the presence or absence of stress corrosion cracking after the test was investigated. The results are shown in Table 2 together with the presence or absence of cracking during hot forging, the tensile test results, and the impact test results.

なお、第2表において、○印はいずれも割れ発生のない
ものを示し、一方X印は割れ発生のあったものを示す。
In Table 2, all marks ○ indicate those with no cracks, while marks X indicate those with cracks.

第2表に示される結果から、比較合金管材1〜9は、熱
間加工性、耐応力腐食割れ性、および強度のうちの少な
くともいずれかの性質が劣ったものでおるのに対して、
本発明合金管材1〜27は、いずれもすぐれた熱間加工
性および耐応力腐食割れ性を有し、さらに高強度を有し
、かつ熱間加工性は良好であるが、相対的に強度が低く
、しかも耐応力腐食割れ性に劣る従来合金管材1〜4と
比較しても一段とすぐれた特性を有することが明らかで
ある。
From the results shown in Table 2, comparative alloy tube materials 1 to 9 were inferior in at least one of the following properties: hot workability, stress corrosion cracking resistance, and strength.
All of the alloy tube materials 1 to 27 of the present invention have excellent hot workability and stress corrosion cracking resistance, and also have high strength and good hot workability, but have relatively low strength. It is clear that this material has even better properties than conventional alloy tube materials 1 to 4, which have low stress corrosion cracking resistance and are inferior in stress corrosion cracking resistance.

上述のように、この発明の方法によって製造された油井
管は、特に高強度および優れた耐応力腐食割れ性を有す
るので、これらの特性が要求される苛酷な環境下での石
油並びに天然ガス採掘は勿論のこと、地熱井管として用
いた場合にもきわめて優れた性能を発揮するのである。
As mentioned above, oil country tubular goods manufactured by the method of the present invention have particularly high strength and excellent stress corrosion cracking resistance, and are therefore suitable for oil and natural gas extraction in harsh environments where these properties are required. Of course, it also exhibits extremely excellent performance when used as geothermal well pipes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は合金の耐応力腐食割れ性に関し、N1含有量と
Or(%)−)10MO@−4−5W@との関係を示し
た図、第2図および第3図はそれぞれ板状および管状試
験片に対する応力腐食割れ試験の態様を示す図でおる。 出願人  住友金属工業株式会社 代理人  富  1) 和  夫 第1頁の続き 0発 明 者 工藤赳夫 尼崎市西長洲本通1丁目3番地 住友金属工業株式会社中央技術 研究所内 0発 明 者 池田昭夫 尼崎市西長洲本通1丁目3番地 住友金属工業株式会社中央技術 研究所内 0発 明 者 諸石大司 尼崎市西長洲本通1丁目3番地 住友金属工業株式会社中央技術 研究所内
Figure 1 is a diagram showing the relationship between N1 content and Or(%)-)10MO@-4-5W@ regarding the stress corrosion cracking resistance of alloys, and Figures 2 and 3 are for plate-like and It is a figure which shows the aspect of the stress corrosion cracking test on a tubular test piece. Applicant Sumitomo Metal Industries Co., Ltd. Agent Tomi 1) Kazuo Continued from page 1 0 Author Takeo Kudo Inside Sumitomo Metal Industries Central Technology Research Laboratory, 1-3 Nishinagasu Hondori, Amagasaki City 0 Author Akio Ikeda Inside the Sumitomo Metal Industries, Ltd. Central Technology Research Laboratory, 1-3 Nishinagasu Hondori, Amagasaki City.0 Inventor: Daiji Moroishi Inside the Sumitomo Metal Industries, Ltd. Central Technology Research Laboratory, 1-3 Nishinagasu Hondori, Amagasaki City.

Claims (1)

【特許請求の範囲】 (1)  C: 0.05%以下、 Si: 1.0%
以下、Mn:2.0 %以下、P:0.030%以下、
S:0.005チ以下、 sol、AQ : 0.5 
%以下、Ni:35〜60%。 Cr: 22.5〜35%を含有し、Mo : 4 t
16未満およびW:8%未満のうちの1種または2種を
含有し、残シがFeと不可避不純物からなる組成(以上
重量%)を有し、かつ、 Or (%) + 10 Mo (〜9 + 5 W 
(t4≧50%。 1.5チ≦Mo(%9+−wm<4%。 の条件を満足する合金を、1ooo℃以下での肉厚減少
率:10チ以上、仕上温度:soo℃以上の条件で熱間
加工し、引続いて10〜60%の肉厚減少率で冷間加工
することを特徴とする耐応力腐食割れ性に優れた高強度
油井管の製造法。 (2)  O: 0.05%以下、 Si: 1.0%
以下、Mn:2.0%以下、P:0.030%以下、S
 : 0.005%以下+ 5ob−All : 0.
5%以下、  Ni: 35〜60%。 Or: 22.5〜35 %を含有し、Mo:4%未満
およびW:8%未満のうちの1種または2種を含有し、
さらにOu: 2 %以下およびCo:2%以下のうち
のの1種または2種を含有し、残シがFeと不可避不純
物からなる組成(以上重量%)を有し、かつ、Or (
%) + 1 o Mo (Si) + 5 W(91
)≧50チ。 1.5%≦MO(〜9 +−W @< 4%。 の条件を満足する合金を、1000℃以下での肉厚減少
率:10%以上、仕上温度=800℃以上の条件で熱間
加工し、引続いて10〜60%の肉厚減少率で冷間加工
することを特徴とする耐応力腐食割れ性に優れた高強度
油井管の製造法。 (3)  O: 0.05%以下、 Si: 1.0%
以下、Mn:2.0%以下、P:0.030%以下、S
:0.O05チ以下I EJOl、A1 : 0.5チ
以下、Ni:35〜60チ。 (:r: 22.5〜35 %を含有し、Mo:4%未
満およびW:8%未満のうちの1種または2種を含有し
、さらに希土類元素二o、1o%以下、Y二0.20%
以下、 Mg: 0.10%以下、Ti:O−5%以下
、およびCa:O,1096以下のうちの1種または2
種以上を含有し、残りがFeと不可避不純物からなる組
成(以上重量%)を有し、かつ、 Cr(51;) + l OMo(%) +5W%≧5
0%。 1.5q6≦MO(イ)+−w (働く4チ。 の条件を満足する合金を、1000℃以下での肉厚減少
率:10チ以上、仕上温度:800℃以上の条件で熱間
加工し、引続いて10〜60チの肉厚減少率で冷間加工
することを特徴とする耐応力腐食割れ性に優れた高強度
油井管の製造法。 (4) C: 0.05%以下、Sl:1.0%以下、
Mn:2.0チ以下、P:0.030チ以下、S:0.
005チ以下、  sot、fiJ!、 : 0.5%
以下、Ni:35〜60%。 Or: 22.5〜35%を含有し、Mo:4%未満お
よびW:8%未満のうちの1種または2種を含有し、さ
らにCu:2%以下およびCo: 2%以下のうちの1
種または2種と、希土類元素: 0.10 %以下。 Y : 0.20%以下、 Mg: 0.10チ以下、
 Ti: 0.5係以下、およびCa: 0.10%以
下のうちの1種または2種以上とを含有し、残υがFe
と不可避不純物からなる組成(以上重量%)を有し、か
つ、Or (!A+ 10 Mo (%) + 5 W
(%9≧50%。 1.5%≦MO(イ)十−W(4)〈4チ。 の条件を満足する合金を、1000℃以下での肉厚減少
率:10%以上、仕上温度:800℃以上の条件で熱間
加工し、引続いて10〜60チの肉厚減少率で冷間加工
することを特徴とする耐応力腐食割れ性に優れた高強度
油井管の製造法。 (5)  C: 0.05%以下、 Si二1.0%以
下、Mn:2.0%以下、P:0.030%以下、S:
0.O05チ以下r 5oAAQ : 0.5チ以下、
N:0.05〜063チ、Ni: 35〜60 %、 
Or: 22.5〜35%を含有し、Mo:4%未満お
よびW:8%未満のうちの1種または2種を含有し、残
りがFeと不可避不純物からなる組成(以上重量%)を
有し、かつ、C!r (%il + 10 Mo (%
9 + 5 W%)≧50チ。 1.5%≦Mo(鉤+−w(%)<4%。 の条件を満足する合金を、1000℃以下での肉厚減少
率:10チ以上、仕上温度:SOO℃以上の条件で熱間
加工し、引続いて10〜60チの肉厚減少率で冷間加工
することを特徴とする耐応力腐食割れ性に優れた高強度
油井管の製造法。 (6)  O: 0.05%以下、 Si: 1−04
以下、Mn−2,0%以下、P:0.030%以下、S
:0.O05チ以下、 soL、A1: 0.5チ以下
、N:0.05〜0,3%、N1:35〜60%、Or
: 22.5〜35%を含有し、Mo:4%未満および
W:8%未満のうちの1種または2種を含有し、さらに
Ou:2%以下およびCo:2%以下のうちの1種また
は2種を含有し、残りがFeと不可避不純物からなる組
成(以上重量%)を有し、かつ、 cr(鉤+1 oMo(4+5w(9!il≧50%。 1.5チ≦MO(4)十−W(イ)〈4チ。 の条件を満足する合金を、1000℃以下での肉厚減少
率:10%以上、仕上温度=800℃以上の条件で熱間
加工し、引続いて10〜60%の肉厚減少率で冷間加工
することを特徴とする耐応力腐食割れ性に優れた高強度
油井管の製造法。 (7)  0:0.05%以下、Si:1.0%以下、
Mn:2.0%以下、P:0.030%以下、S:0.
O05チ以下、 sot、AA : 0.5チ以下、N
:0.05〜0.3%、Ni: 35〜60%、 Or
: 22.5〜35%を含有し、Mo : 44未満お
よびw:s%未満のうちの1種または2種を含有し、さ
らに希土類元素=0.10%以下、 Y : 0.20
%以下、 Mg : 0.10%以下、 Ti: 0.
5 %以下、およびOa:0.10 %以下のうちの1
種または2種以上を含有し、残り力EFeと不可避不純
物からなる組成(以上重量%)を有し、かつ、 cr(%9 + l OMo(!@+ 5w(%f)≧
50チ。 1.5チ≦Mo(4)+、w(4)〈4チ。 の条件を満足する合金を、1000′c以下での肉厚減
少率:10%以上、仕上温度−800℃以上の条件で熱
間加工し、引続いて10〜60%の肉厚減少率で冷間加
工することを特徴とする耐応力腐食割れ性に優れた高強
度油井管の製造法。 (8)  C: 0.05%以下、  Si: 1.O
%以下+ Mn :2.0%以下、P:0.030%以
下、S:0.O05チ以下r sot、M : 0.5
%以下、 N : 0.05〜0.3%、 Ni: 3
5〜60%、 Or二22.5〜35%を含有し、Mo
:4%未満およびw: 64未満のうちの1種または2
種を含有し、さらにcu:2%以下およびCio: 2
%以下のうちの1種または2種と、希土類元素:0.1
0%以下、 Y 二O,,20%以下、 Mg:O,1
0%以下、T1: 0.5 %以下、およびca:0.
10%以下のうちの1種または2種以上とを含有し、残
シがFeと不可避不純物からなる組成(以上重量%)を
有し、かつ、 Or@+lOMo(19+5W@≧50%。 1.5%≦Mo@)+−wn<4% 。 の条件を満足する合金を、1000tl:以下での肉厚
減少率:10チ以上、仕上温度二8oo℃以上の条件で
熱間加工し、引続いて10〜60%の肉厚減少率で冷間
加工することを特徴とする耐応力腐食割れ性に優れた高
強度油井管の製造法。
[Claims] (1) C: 0.05% or less, Si: 1.0%
Below, Mn: 2.0% or less, P: 0.030% or less,
S: 0.005 chi or less, sol, AQ: 0.5
% or less, Ni: 35-60%. Contains Cr: 22.5-35%, Mo: 4t
16% and W: less than 8%, has a composition (or more weight %) with the remainder consisting of Fe and unavoidable impurities, and Or (%) + 10 Mo (~ 9 + 5 W
(t4≧50%. 1.5chi≦Mo(%9+-wm<4%. A method for producing high-strength oil country tubular goods with excellent stress corrosion cracking resistance, characterized by hot working under conditions and then cold working at a wall thickness reduction rate of 10 to 60%. (2) O: 0.05% or less, Si: 1.0%
Below, Mn: 2.0% or less, P: 0.030% or less, S
: 0.005% or less + 5ob-All : 0.
5% or less, Ni: 35-60%. Or: 22.5 to 35%, Mo: less than 4% and W: less than 8%,
Furthermore, it contains one or two of Ou: 2% or less and Co: 2% or less, and has a composition (the above weight %) in which the remainder is Fe and unavoidable impurities, and Or (
%) + 1 o Mo (Si) + 5 W (91
)≧50chi. An alloy that satisfies the conditions of 1.5%≦MO (~9 +-W @ < 4%) is hot-processed under the conditions of a wall thickness reduction rate of 10% or more at 1000°C or less and a finishing temperature of 800°C or more. A method for producing high-strength oil country tubular goods with excellent stress corrosion cracking resistance, characterized by processing and subsequently cold working at a wall thickness reduction rate of 10 to 60%. (3) O: 0.05% Below, Si: 1.0%
Below, Mn: 2.0% or less, P: 0.030% or less, S
:0. O05 inches or less I EJOl, A1: 0.5 inches or less, Ni: 35 to 60 inches. (:r: Contains 22.5 to 35%, contains one or two of Mo: less than 4% and W: less than 8%, and further contains rare earth elements 20, 10% or less, Y20 .20%
One or two of the following: Mg: 0.10% or less, Ti: O-5% or less, and Ca: O, 1096 or less
Cr(51;)+l OMo(%)+5W%≧5
0%. 1.5q6≦MO(a)+-w (working 4chi) An alloy that satisfies the conditions is hot worked at a wall thickness reduction rate of 10chi or more at 1000°C or less and a finishing temperature of 800°C or more. A method for producing high-strength oil country tubular goods with excellent stress corrosion cracking resistance, which is characterized by performing cold working at a wall thickness reduction rate of 10 to 60 inches. (4) C: 0.05% or less , Sl: 1.0% or less,
Mn: 2.0 inches or less, P: 0.030 inches or less, S: 0.
Below 005chi, sot, fiJ! , : 0.5%
Hereinafter, Ni: 35 to 60%. Contains Or: 22.5 to 35%, contains one or two of Mo: less than 4% and W: less than 8%, and further contains Cu: 2% or less and Co: 2% or less. 1
One or two species and rare earth elements: 0.10% or less. Y: 0.20% or less, Mg: 0.10% or less,
Contains one or more of Ti: 0.5% or less and Ca: 0.10% or less, and the remainder is Fe.
and unavoidable impurities (weight%), and Or (!A+ 10 Mo (%) + 5 W
(%9≧50%. 1.5%≦MO(a) 10-W(4) 〈4h. : A method for manufacturing high-strength oil country tubular goods having excellent stress corrosion cracking resistance, which is characterized by hot working at a temperature of 800° C. or higher, and then cold working at a wall thickness reduction rate of 10 to 60 inches. (5) C: 0.05% or less, Si2 1.0% or less, Mn: 2.0% or less, P: 0.030% or less, S:
0. 005 inches or lessr 5oAAQ: 0.5 inches or less,
N: 0.05~063chi, Ni: 35~60%,
Or: Contains 22.5 to 35%, contains one or two of Mo: less than 4% and W: less than 8%, and the remainder is Fe and unavoidable impurities (wt%). Has and C! r (%il + 10 Mo (%
9 + 5 W%)≧50chi. 1.5%≦Mo(hook+-w(%)<4%) An alloy that satisfies the conditions of 1.5%≦Mo(hook+-w(%)<4%. A method for producing high-strength oil country tubular goods with excellent stress corrosion cracking resistance, characterized by cold working at a wall thickness reduction rate of 10 to 60 inches. (6) O: 0.05 % or less, Si: 1-04
Below, Mn-2.0% or less, P: 0.030% or less, S
:0. O05 or less, soL, A1: 0.5 or less, N: 0.05-0.3%, N1: 35-60%, Or
: Contains 22.5 to 35%, contains one or two of Mo: less than 4% and W: less than 8%, and further contains one of O: 2% or less and Co: 2% or less. It has a composition (by weight %) containing one or two species and the remainder is Fe and unavoidable impurities, and cr(hook+1 oMo(4+5w(9!il≧50%.1.5chi≦MO() 4) An alloy that satisfies the conditions of 10-W (a) <4 h. is hot-worked under the conditions of a wall thickness reduction rate of 10% or more at 1000°C or less and a finishing temperature of 800°C or more, and then A method for producing high-strength oil country tubular goods with excellent stress corrosion cracking resistance, characterized by cold working with a wall thickness reduction rate of 10 to 60%. (7) 0: 0.05% or less, Si: 1 .0% or less,
Mn: 2.0% or less, P: 0.030% or less, S: 0.
005 inches or less, sot, AA: 0.5 inches or less, N
:0.05~0.3%, Ni: 35~60%, Or
: 22.5 to 35%, Mo: less than 44 and w: less than s%, one or two of them, rare earth element = 0.10% or less, Y: 0.20
% or less, Mg: 0.10% or less, Ti: 0.
5% or less, and Oa: 1 of 0.10% or less
contains one or more species, has a composition (or more by weight) consisting of residual force EFe and unavoidable impurities, and cr(%9+l OMo(!@+5w(%f)≧
50 chi. 1.5chi≦Mo(4)+, w(4)<4chi. An alloy that satisfies the following conditions is hot worked at a wall thickness reduction rate of 10% or more at 1000'c or less and a finishing temperature of -800°C or more, and then subsequently processed at a wall thickness reduction rate of 10 to 60%. A method for manufacturing high-strength oil country tubular goods with excellent stress corrosion cracking resistance, which is characterized by cold working. (8) C: 0.05% or less, Si: 1. O
% or less + Mn: 2.0% or less, P: 0.030% or less, S: 0. O05chi or less r sot, M: 0.5
% or less, N: 0.05-0.3%, Ni: 3
Contains 5-60%, Or222.5-35%, Mo
: Less than 4% and w: One or two of less than 64
Contains seeds, further Cu: 2% or less and Cio: 2
% or less and rare earth element: 0.1
0% or less, Y2O,, 20% or less, Mg:O,1
0% or less, T1: 0.5% or less, and ca: 0.
10% or less of one or more of the following, and has a composition (weight %) in which the remainder is Fe and unavoidable impurities, and Or@+lOMo(19+5W@≧50%). 1. 5%≦Mo@)+-wn<4%. An alloy that satisfies the following conditions is hot-worked at a wall thickness reduction rate of 10 inches or more at 1000 tl or less and a finishing temperature of 280°C or more, and then cooled at a wall thickness reduction rate of 10 to 60%. A method for producing high-strength oil country tubular goods with excellent stress corrosion cracking resistance, which involves special processing.
JP10898581A 1981-07-03 1981-07-13 Production of high-strength oil well pipe of superior stress corrosion cracking resistance Granted JPS5811735A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP10898581A JPS5811735A (en) 1981-07-13 1981-07-13 Production of high-strength oil well pipe of superior stress corrosion cracking resistance
US06/389,568 US4421571A (en) 1981-07-03 1982-06-17 Process for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking
GB08217860A GB2104100B (en) 1981-07-03 1982-06-21 High strength deep well casing and tubing having improved resistance to stress-corrosion cracking
SE8204121A SE461986C (en) 1981-07-03 1982-07-02 PROCEDURES FOR PREPARING HOEGHAALLFASTA DEEP BORROWS WITH RESISTANCE TO TENSION CORROSION
FR8211645A FR2508930A1 (en) 1981-07-03 1982-07-02 PROCESS FOR MANUFACTURING HIGH MECHANICAL RESISTANCE PIPES AND PIPES FOR DEEP WELLS
DE3224865A DE3224865C2 (en) 1981-07-03 1982-07-02 Process for the production of heavy-duty casing for deep boreholes or the like
SE8901647A SE502102C2 (en) 1981-07-03 1989-05-09 Process for the manufacture of high strength deep drill pipes with resistance to stress corrosion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10898581A JPS5811735A (en) 1981-07-13 1981-07-13 Production of high-strength oil well pipe of superior stress corrosion cracking resistance

Publications (2)

Publication Number Publication Date
JPS5811735A true JPS5811735A (en) 1983-01-22
JPS6363609B2 JPS6363609B2 (en) 1988-12-08

Family

ID=14498656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10898581A Granted JPS5811735A (en) 1981-07-03 1981-07-13 Production of high-strength oil well pipe of superior stress corrosion cracking resistance

Country Status (1)

Country Link
JP (1) JPS5811735A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59229457A (en) * 1983-06-13 1984-12-22 Sumitomo Metal Ind Ltd Ni-base high-cr alloy having excellent resistance to stress corrosion cracking
WO2010070990A1 (en) 2008-12-18 2010-06-24 住友金属工業株式会社 Method for producing high alloy steel pipe
US8701455B2 (en) 2007-07-02 2014-04-22 Nippon Steel & Sumitomo Metal Corporation Method for manufacturing a high alloy pipe
CN104388825A (en) * 2014-11-25 2015-03-04 江苏常宝钢管股份有限公司 Preparation process of anti-CO2-corrosion oil well pipe with steel grade of less than 150ksi produced by CPE unit
WO2017169056A1 (en) * 2016-03-30 2017-10-05 株式会社日立製作所 Cr-BASED TWO-PHASE ALLOY AND PRODUCT THEREOF
JPWO2017168972A1 (en) * 2016-03-30 2018-10-18 株式会社日立製作所 Chromium-based two-phase alloy and product using the two-phase alloy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2777766A (en) * 1952-06-04 1957-01-15 Union Carbide & Carbon Corp Corrosion resistant alloys

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2777766A (en) * 1952-06-04 1957-01-15 Union Carbide & Carbon Corp Corrosion resistant alloys

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59229457A (en) * 1983-06-13 1984-12-22 Sumitomo Metal Ind Ltd Ni-base high-cr alloy having excellent resistance to stress corrosion cracking
JPH0153340B2 (en) * 1983-06-13 1989-11-14 Sumitomo Kinzoku Kogyo Kk
US8701455B2 (en) 2007-07-02 2014-04-22 Nippon Steel & Sumitomo Metal Corporation Method for manufacturing a high alloy pipe
WO2010070990A1 (en) 2008-12-18 2010-06-24 住友金属工業株式会社 Method for producing high alloy steel pipe
US8312751B2 (en) 2008-12-18 2012-11-20 Sumitomo Metal Industries, Ltd. Method for producing high alloy pipe
CN104388825A (en) * 2014-11-25 2015-03-04 江苏常宝钢管股份有限公司 Preparation process of anti-CO2-corrosion oil well pipe with steel grade of less than 150ksi produced by CPE unit
CN104388825B (en) * 2014-11-25 2016-08-17 江苏常宝钢管股份有限公司 The anti-CO of below 150ksi grade of steel that CPE unit produces2the preparation technology of corrosion oil well pipe
WO2017169056A1 (en) * 2016-03-30 2017-10-05 株式会社日立製作所 Cr-BASED TWO-PHASE ALLOY AND PRODUCT THEREOF
JPWO2017169056A1 (en) * 2016-03-30 2018-09-27 株式会社日立製作所 Cr-based two-phase alloy and product thereof
JPWO2017168972A1 (en) * 2016-03-30 2018-10-18 株式会社日立製作所 Chromium-based two-phase alloy and product using the two-phase alloy

Also Published As

Publication number Publication date
JPS6363609B2 (en) 1988-12-08

Similar Documents

Publication Publication Date Title
EP2682494B1 (en) Method for manufacturing an Fe-Ni alloy pipe stock
JP2005290554A (en) Steel plate excellent in machinability, toughness and weldability, and method for production thereof
JPS625977B2 (en)
JPS625976B2 (en)
JPS58210158A (en) High-strength alloy for oil well pipe with superior corrosion resistance
JPS5811735A (en) Production of high-strength oil well pipe of superior stress corrosion cracking resistance
JPS6144133B2 (en)
JPS586927A (en) Production of high-strength oil well pipe of high stress corrosion cracking resistance
JPS5811736A (en) Production of high strength oil well pipe of superior stress corrosion cracking resistance
JPS589924A (en) Production of high strength oil well pipe of high stress corrosion cracking resistance
JPS6144135B2 (en)
JPS581044A (en) High strength alloy having superior stress corrosion cracking resistance for oil well pipe
JP2639798B2 (en) Manufacturing method of austenitic stainless steel
JPS589922A (en) Production of high strength oil well pipe of high stress corrosion cracking resistance
JP4207447B2 (en) Stainless steel rebar and manufacturing method thereof
JPS6144128B2 (en)
JPS6144126B2 (en)
JPS6144134B2 (en)
JPS5811737A (en) Production of high strength oil well pipe of superior stress corrosion cracking resistance
JPH0372698B2 (en)
JPS581043A (en) High strength alloy having superior stress corrosion cracking resistance for oil well pipe
JPH0450366B2 (en)
JPS586928A (en) Production of high strength oil well pipe of high stress corrosion cracking resistance
JPS581042A (en) High strength alloy having superior stress corrosion cracking resistance for oil well pipe
JPS6144125B2 (en)