JPS589922A - Production of high strength oil well pipe of high stress corrosion cracking resistance - Google Patents

Production of high strength oil well pipe of high stress corrosion cracking resistance

Info

Publication number
JPS589922A
JPS589922A JP10691381A JP10691381A JPS589922A JP S589922 A JPS589922 A JP S589922A JP 10691381 A JP10691381 A JP 10691381A JP 10691381 A JP10691381 A JP 10691381A JP S589922 A JPS589922 A JP S589922A
Authority
JP
Japan
Prior art keywords
less
stress corrosion
corrosion cracking
alloy
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10691381A
Other languages
Japanese (ja)
Other versions
JPS6363606B2 (en
Inventor
Yasutaka Okada
康孝 岡田
Kunihiko Yoshikawa
吉川 州彦
Yasuo Otani
大谷 泰夫
Takeo Kudo
赳夫 工藤
Akio Ikeda
昭夫 池田
Daiji Moroishi
諸石 大司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP10691381A priority Critical patent/JPS589922A/en
Priority to US06/389,568 priority patent/US4421571A/en
Priority to GB08217860A priority patent/GB2104100B/en
Priority to DE3224865A priority patent/DE3224865C2/en
Priority to SE8204121A priority patent/SE461986C/en
Priority to FR8211645A priority patent/FR2508930A1/en
Publication of JPS589922A publication Critical patent/JPS589922A/en
Publication of JPS6363606B2 publication Critical patent/JPS6363606B2/ja
Priority to SE8901647A priority patent/SE502102C2/en
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain a high strength oil well pipe of high stress corrosion cracking resistance by contg. specific ratios of C, Si, Mn, P, etc. and working the steel thermally and mechanically under prescribed conditions. CONSTITUTION:The alloy consisting of <=0.05% C, <=1% Si, <=2% Mn, <=0.03% P, <=0.005% S, <=0.5% sol.Al, 35-60% Ni, 22.5-35% Cr, <4% Mo, and/or <8% W, or further <=2% Cu, and/or <=2% Co, and the balance Fe in addition to these and satisfying Cr(%)+10Mo(%)+5W(%)>=50%, 1.5%<=Mo(%)+1/2W(%)<4% is produced by melting. Such alloy is subjected to a solution heat treatment under the conditions of holding the alloy for <=2hr at temps. between 260logC(%)+1,300 lower limit temp. and 16Mo(%)+10W(%)+10Cr(%)+777 upper limit temp. The alloy is cold worked at 10-60% fractional reduction in area.

Description

【発明の詳細な説明】 この発明は、優れた耐応力腐食割れ性を有する高強度油
井管の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing high-strength oil country tubular goods having excellent stress corrosion cracking resistance.

近年、エネルギー事情の悪化から、油井および天然ガス
井は深井戸化の傾向が著しく、深さ:6000m以上、
なかには深さ:10,000 m以上の深井戸が出現し
ている。
In recent years, due to the deterioration of the energy situation, there has been a marked tendency for oil and natural gas wells to become deeper, with depths of 6000 m or more,
Some deep wells with a depth of 10,000 m or more have appeared.

また、同様な事情から、湿潤な硫化水素をはじめ、炭酸
ガスや塩素イオンなどの腐食性成分を含有する苛酷な腐
食環境下での石油および天然ガスの採掘が予儀なくされ
つつある。
Furthermore, due to similar circumstances, it is becoming increasingly difficult to extract oil and natural gas in a harsh corrosive environment containing humid hydrogen sulfide, as well as corrosive components such as carbon dioxide gas and chloride ions.

このような厳しい環境下での石油および天然ガスの掘削
に伴い、これに使用される油井管にも高強度、並びに優
れた耐食性、特に耐応力腐食割れ性が要求されるように
なってきている。
As oil and natural gas are drilled in such harsh environments, the oil country tubular goods used therein are required to have high strength and excellent corrosion resistance, especially resistance to stress corrosion cracking. .

油井管の一般的腐食対策として、インヒビタと呼ばれる
腐食抑制剤を投入する方法が知られているが、この方法
は、例えば海上油井などには有効に活用できない場合が
多い。
As a general anti-corrosion measure for oil country tubular goods, it is known to introduce a corrosion suppressant called an inhibitor, but this method is often not effective for use in, for example, offshore oil wells.

かかる点から、最近では油井管の製造に、ステアしX鋼
1riU、、メ、インコロイやハステロイ(いずれも商
品名)といった高級な耐食性高合金鋼の採用も検討され
はじめているが、いまのところ、これらの合金に関して
、H,s−co、’ −ct−の油井環境での腐食挙動
についての詳細は十分に解明されるに至っておらず、し
かも深井戸用油井管に要求される高強度をもつものでは
ないのが現状である。
From this point of view, consideration has recently begun to be given to the use of high-grade corrosion-resistant high-alloy steels such as Steer X steel 1riU, Incoloy, and Hastelloy (all trade names) for the production of oil country tubular goods, but so far, Regarding these alloys, the details of the corrosion behavior of H, s-co, and '-ct- in an oil well environment have not yet been fully elucidated, and it is difficult to understand whether they have the high strength required for oil country tubular goods for deep wells. The current situation is that it is not a thing.

そこで、本発明者等は、上述のような観点か°ら、深井
戸や苛酷な腐食環境、特にH2S−Co2− Ct−の
油井環境下での石油掘削に十分耐え得る高強度とすぐれ
た耐応力腐食割れ性とを有する油井管を製造すべく研究
を行なった結果、 (a)  H2S −C02−CL−環境下における腐
食の主たるものは応力腐食割れであるが、この場合の応
力腐食割れ態様は、オーステナイトステンレス鋼におけ
る一般的なそれとは挙動を全く異にするものであること
。すなわち、一般の応力腐食割れがct−の存在と深く
係わるものであるのに対して、上記の油井環境によるも
のではCt−もさることながら、それ以上にH2Sの影
響が大きいこと。
Therefore, from the above-mentioned viewpoint, the present inventors have developed a material with high strength and excellent durability that can withstand oil drilling in deep wells and severe corrosive environments, especially in H2S-Co2-Ct- oil well environments. As a result of research to manufacture oil country tubular goods with stress corrosion cracking resistance, we found that (a) Stress corrosion cracking is the main cause of corrosion in the H2S-C02-CL environment, and the mode of stress corrosion cracking in this case is The behavior is completely different from that of typical austenitic stainless steels. That is, whereas general stress corrosion cracking is deeply related to the presence of ct-, in the oil well environment mentioned above, the influence of H2S is greater than that of Ct-.

(b)  油井管として実用に供される鋼管は一般に、
強度上の必要から冷間加工が施されるが、冷間加工は上
記応力腐食割れに対する抵抗性を著しく減少させること
(b) Steel pipes used for practical use as oil country tubular goods are generally:
Cold working is performed to improve strength, but cold working significantly reduces the resistance to stress corrosion cracking.

(C)  H2S −CO2−C1−環境での鋼の溶出
速度(腐食速度)は、Or 、 Ni、 Mo 、およ
びWの含有量に依存し、これらの成分からなる表面皮膜
によって耐食性が保持され、かつこれらの成分は、応力
腐食割れに対してもその抵抗性を高め、特にMOはcr
に対し10倍の効果を、またMOはWの2倍の効果をも
っておシ、したがって、このMOおよびWが、Cr(吻
+ 10 Mo(@+ 5 w (%)250%。
(C) The elution rate (corrosion rate) of steel in an H2S-CO2-C1- environment depends on the content of Or, Ni, Mo, and W, and corrosion resistance is maintained by the surface film made of these components. In addition, these components also increase the resistance to stress corrosion cracking, and in particular, MO
MO is 10 times more effective than W, and MO is twice as effective as W. Therefore, this MO and W are 10 times more effective than Cr(+10 Mo(@+5 w(%)250%).

1.5%≦MO(% 十’r W (@< 4 % 。1.5%≦MO(% 10’r W (@< 4 % .

の条件式を満足すると共に、N1含有量を35〜60チ
、cr含有量を22.5〜35%とすると、冷間加工材
であっても、きわめて腐食性の強いH2S−Co2−c
t−の油井環境下、特に150℃以下の悪環境において
、応力腐食割れに対して優れた抵抗性を示す表面皮膜が
得られること。
If the following conditional expressions are satisfied, and the N1 content is 35 to 60% and the CR content is 22.5 to 35%, H2S-Co2-C, which is extremely corrosive, even if it is a cold-worked material.
It is possible to obtain a surface coating that exhibits excellent resistance to stress corrosion cracking under a t-oil well environment, particularly in a harsh environment of 150° C. or lower.

(d)Nlについては表面皮膜に対する効果だけでなく
、組織的にも応力腐食割れ抵抗性を高める効果があるこ
と。
(d) Nl has the effect of increasing stress corrosion cracking resistance not only on the surface film but also on the structure.

(e)  合金成分としてNを0.05〜0.3%の範
囲で含有させると一段と強度が向上するようになること
(e) When N is included as an alloy component in the range of 0.05 to 0.3%, the strength is further improved.

(f)  不可避不純物としてのS含有量をO,O’O
O7チ以下に低減させると、合金の熱間加工性が著しく
改善されるようになること。
(f) S content as an unavoidable impurity is O, O'O
When O is reduced to 7 or less, the hot workability of the alloy is significantly improved.

(g)  不可避不純物としてのP含1量を0.003
%以下に低減させると、水素割れ感受性が著しく低下す
るようになること。
(g) P content as an unavoidable impurity is 0.003
% or less, hydrogen cracking susceptibility significantly decreases.

(b)  合金成分としてCuを2%以下含有させると
、耐食性がさらに改善されるようになること。
(b) Corrosion resistance is further improved by containing 2% or less of Cu as an alloy component.

(i)  合金成分として、希土類元素: 0.10 
%以下、Y:0゜20チ以下、 Mg: 0.10チ以
下、T1:0.5チ以下、およびCa:0.10%以下
のうちの1種または2種以上を含有させると、臓間加工
性がさらに一段と改善されるようになること。
(i) Rare earth element as an alloy component: 0.10
% or less, Y: 0°20% or less, Mg: 0.10% or less, T1: 0.5% or less, and Ca: 0.10% or less. The machinability will be further improved.

(J)シかし、所望の高強度を確保するためには、上記
組成の合金を、経験式: 26010gC(%)−1−
1300で算出された下限温度℃)と、同じく経験式:
16%式% 限温度恒)の間の温度に2時間以下保持の条件で熱処理
して炭化物を完全に固溶し、かつ固溶化後の合金に10
〜60チの肉厚減少率で冷間加工を施す必要があること
(J) However, in order to ensure the desired high strength, the alloy with the above composition must be prepared using the empirical formula: 26010gC(%)-1-
1300 (lower limit temperature ℃) and the same empirical formula:
The carbide is completely dissolved in the alloy by heat treatment at a temperature of 2 hours or less at a temperature between 16% and 10%.
It is necessary to perform cold working with a wall thickness reduction rate of ~60 inches.

以上(a)〜(j)に示される知見を得たのである。The findings shown in (a) to (j) above were obtained.

したがって、この発明は上記知見にもとづいてなされた
ものであって、C: 0.05%以下、 Si :1.
0%以下、Mn:2.0%以下、  P : 0.03
0 %以下。
Therefore, this invention was made based on the above findings, and includes C: 0.05% or less, Si: 1.
0% or less, Mn: 2.0% or less, P: 0.03
0% or less.

望ましくは耐水素割れ性を一段と改善する目的でP:0
.003%以下、 S :0.005 %以下、望まし
くは熱間加工性を一段と改善する目的でS :O,OO
O’7チ以下、  sot、AA: 0.5%以下、N
i:35〜60%。
Preferably, P:0 for the purpose of further improving hydrogen cracking resistance.
.. S: 0.003% or less, S: 0.005% or less, preferably S: O, OO for the purpose of further improving hot workability.
O'7 or less, sot, AA: 0.5% or less, N
i: 35-60%.

cr: 22.5〜35%を含有し、Mo:4%未満お
よびW:8%未満のうちの1種または2種を含有し、さ
らに必要に応じて、N : 0.05〜0.3 %、 
Cu:2%以下、Co’:2チ以下、希土類元素:O,
lOチ以下、Y:0.20%以下、 Mg: 0.10
%以下、Ti:0.5%以下、およびCa:0.10%
以下のうちの1種または2種以上を含有し、残シがFe
と不可避不純物からなる組成(以上重量り以下チの表示
はすべて重量−を意味する)を有し、がっ、Cr(%)
 −) 10 Mo(%) −4−5W (@≧50%
cr: 22.5 to 35%, contains one or two of Mo: less than 4% and W: less than 8%, and if necessary, N: 0.05 to 0.3. %,
Cu: 2% or less, Co': 2% or less, rare earth element: O,
10% or less, Y: 0.20% or less, Mg: 0.10
% or less, Ti: 0.5% or less, and Ca: 0.10%
Contains one or more of the following, and the remainder is Fe.
It has a composition consisting of and unavoidable impurities (the above weight and the following all mean weight -), Cr (%)
-) 10 Mo (%) -4-5W (@≧50%
.

1.5%≦MO(鉤子+ W (%) < ’%。1.5%≦MO (Hook + W (%) <’%.

の条件を満足する合金を、26010gC(9))+1
300で算出された下限温度(6)と、16Mo1%)
−1−10W帳)+10Cr(イ)+777で算出され
た上限温度(6)の間の温度に、2時間以下保持の条件
で固溶化処理した後、lO〜60チの肉厚減少率で冷間
加工することによって、耐応力腐食割れ性に優れた高強
度油井管を製造する方法に特徴を有するものである。
An alloy that satisfies the conditions of 26010gC(9))+1
Lower limit temperature (6) calculated at 300 and 16Mo1%)
-1-10W book) + 10Cr (A) + 777 After solution treatment under the condition of holding for 2 hours or less at a temperature between the upper limit temperature (6) calculated by This method is characterized by a method for manufacturing high-strength oil country tubular goods with excellent stress corrosion cracking resistance by performing preliminary processing.

つぎに、この発明の油井管の製造法において、成分組成
、溶体化処理条件、および冷間加工における肉厚減少率
を上記の通りに限定した理由を以下に説明する。
Next, in the method for manufacturing oil country tubular goods of the present invention, the reason why the component composition, solution treatment conditions, and wall thickness reduction rate during cold working are limited as described above will be explained.

A、成分組成 (、) 、 (: C含有量を低くすればするほど炭化物の析出が抑制され
るようになるので、固溶化処理をより低い温度で実施で
き、このことは冷間加工後の強度上昇によシ有効に作用
するものである。したがって、C含有量はできるだけ低
い方が望ましいが、C含有量が0.05%を越えると、
粒界応力腐食割れが生じやすくなることから、その上限
値を0.05チと定めた。
A, Component composition (,), (: The lower the C content, the more the precipitation of carbides will be suppressed, so solution treatment can be carried out at a lower temperature, and this means that after cold working, It works effectively to increase strength. Therefore, it is desirable that the C content be as low as possible, but if the C content exceeds 0.05%,
Since intergranular stress corrosion cracking is likely to occur, the upper limit was set at 0.05 inches.

(b)  5i Siは脱酸成分として必要な成分であるが、その含有量
が1.0チを越えると熱間加工性が劣化するようになる
ことから、その上限値を1.0%と定めた。
(b) 5i Si is a necessary component as a deoxidizing component, but if its content exceeds 1.0%, hot workability will deteriorate, so the upper limit is set at 1.0%. Established.

(c)  Mn Mn成分にはSlと同様に脱酸作用がちシ、しかもこの
成分は応力腐食割れ性にほとんど影響を及ぼさない成分
であることから、その上限値を高めの2.0チと定めた
(c) Mn The Mn component tends to have a deoxidizing effect like Sl, and since this component has little effect on stress corrosion cracking resistance, the upper limit value was set at a relatively high value of 2.0. Ta.

(a)  p 不可避不純物としてのP成分には、その含有量が0.0
30 %を越えると、応力腐食割れ感受性を高める作用
が現われるので、上限値を0.030%と定めて応力腐
食割れ感受性を低位の状態とする必要がある。また、P
含有量を低減してゆくと、0.003チを境にして急激
に耐水素割れ性が改善されるようになることが判明して
おシ、かかる点から1.特にすぐれた耐水素割れ性を必
要とする場合には、P含有量を0.0030%以下とす
るのが望ましい。
(a) p The P component as an unavoidable impurity has a content of 0.0
If it exceeds 30%, the effect of increasing stress corrosion cracking susceptibility appears, so it is necessary to set the upper limit to 0.030% to keep stress corrosion cracking susceptibility to a low level. Also, P
It has been found that as the content is reduced, the hydrogen cracking resistance rapidly improves after reaching 0.003 mm.From this point, 1. In particular, when excellent hydrogen cracking resistance is required, the P content is desirably 0.0030% or less.

(e)  S 不可避不純物としてのS成分には、その含有量が0.0
05%を越えると、熱間加工性を劣化させる作用がある
ので、その上限値をO,OO5%と定めて熱間加工性の
劣化を防止する必要がある。このようにS成分には、含
有量が多くなると熱間加工性を劣化させる作用があるが
、その含有量を低めてゆき、0.000 ’7%まで低
減すると、逆に熱間加工性が一段と改善されるようにな
ることから、厳しい条件での熱間加工を必要とする場合
には、S含有量を0.0007 %以下とするのが望ま
しい。
(e) S The S component as an unavoidable impurity has a content of 0.0
If it exceeds 0.05%, it has the effect of deteriorating hot workability, so it is necessary to set the upper limit as 5% O, OO to prevent deterioration of hot workability. In this way, the S component has the effect of deteriorating hot workability when its content increases, but when its content is lowered to 0.000'7%, the hot workability deteriorates. If hot working under severe conditions is required, it is desirable to set the S content to 0.0007% or less.

(f)  AA A2はSiおよびMnと同様に脱酸成分として有効であ
シ、・sot、AA含有量で0.5%まで含有させても
管材の特性を何らそこなうものではないことから、その
含有量をsot、M含有量で0.5チ以下と定めた。
(f) AA A2 is effective as a deoxidizing component like Si and Mn, and even if it is included up to 0.5% in AA content, it will not impair the characteristics of the pipe material. The content was determined to be sot, and the M content was set to be 0.5 inches or less.

伝)  Ni N1成分には管材の耐応力腐食割れ性を向上させる作用
があるが、その含有量が35%未満では所望のすぐれた
耐応力腐食割れ性を確保することができず、一方60チ
を越えて含有させても耐応力腐食割れ性にさらに一段の
向上効果は現われず、経済性をも考慮して、その含有量
を35〜60チと定めた。
Ni) The N1 component has the effect of improving the stress corrosion cracking resistance of pipe materials, but if its content is less than 35%, the desired excellent stress corrosion cracking resistance cannot be secured; Even if the content exceeds 10%, no further improvement in stress corrosion cracking resistance will be obtained, and the content was determined to be 35 to 60%, taking economic efficiency into account.

(h)  Cr Cr成分は、 Ni 、 Mo l およびW成分との
共存において、耐応力腐食割れ性を著しく改善する成分
であるが、その含有量を22.5 %未満としても熱間
加工性が改善されるようになるものでもなく、逆に所望
の耐応力腐食割れ性を確保するためには、M’oやWの
含有量をそれだけ増加させなければならず、経済的に不
利となることから、その下限値を22.5%と定めた。
(h) Cr The Cr component is a component that significantly improves stress corrosion cracking resistance when coexisting with Ni, Mo 1 and W components, but even if its content is less than 22.5%, hot workability is poor. On the contrary, in order to ensure the desired stress corrosion cracking resistance, the content of M'o and W must be increased accordingly, which is economically disadvantageous. Therefore, the lower limit was set at 22.5%.

一方、その含有量が35チを越えると、いくらS含有量
を低減させても熱間加工性の劣化は避けることができな
いことから、その上限値を35%と定めた。
On the other hand, if the S content exceeds 35%, deterioration in hot workability cannot be avoided no matter how much the S content is reduced, so the upper limit was set at 35%.

(i)、MoおよびW 上記のように、これらの成分には、N1およびCrとの
共存において耐応力腐食割れ性を改善する均等的作用が
あるが、それぞれMO:4%以上、およびW:8%以上
含有させても、環境温度が150℃以下のH2S −C
O2−CL−の腐食環境では、さらに一段の改善効果が
現われず、経済性を考慮して、それぞれの含有量を、M
o:4%未満、W:8%未満と定めた。また、MoとW
の含有量に関して、条件舟:Mo(@++W(%)で規
定するのは、WがMOに対し原子量が約2倍で、効果の
点では約+で均等となることからで、この値が1.5%
未満では特に150℃以下の上記悪環境下で所望の耐応
力腐食割れ性が得られず、一方、この値を4−以上とし
ても、上記の通シ実質的に不必要な量のMOおよびWの
含有となシ、経済的でなく、かかる点から、Mo(Ll
;)+4 W鈍)の値を1.5〜4%未満と定めた。
(i), Mo and W As mentioned above, these components have an equal effect of improving stress corrosion cracking resistance when coexisting with N1 and Cr, but MO: 4% or more and W: H2S-C whose environmental temperature is 150℃ or less even if it contains 8% or more
In the corrosive environment of O2-CL-, no further improvement effect was observed, and in consideration of economic efficiency, the respective contents were changed to
o: less than 4%, W: less than 8%. Also, Mo and W
The reason for specifying the content of Mo(@++W(%)) is because W has an atomic weight of about twice that of MO, and in terms of effects, they are equal at about +, so this value is 1.5%
If the value is less than 150°C, the desired stress corrosion cracking resistance cannot be obtained, especially under the adverse environment mentioned above. It is not economical to include Mo(Ll
;) +4 W blunt) value was determined to be 1.5 to less than 4%.

(j)  N N成分には固溶強化による強度向上作用があるので、特
に高強度が要求される場合に必要に応じて含有されるが
、その含有量が0.05 %未満では所望の強度向上効
果を得ることができず、一方0.3%を越えて含有させ
ると、溶製および造塊が困難となることから、その含有
量を0.05〜0.3チと定めた。
(j) N Since the N component has the effect of improving strength through solid solution strengthening, it is included as necessary when particularly high strength is required, but if the content is less than 0.05%, the desired strength cannot be achieved. No improvement effect can be obtained, and on the other hand, if the content exceeds 0.3%, melting and ingot making become difficult, so the content was set at 0.05 to 0.3%.

(k)  ’CuおよびC。(k) 'Cu and C.

これらの成分には管材の耐食性を向上させる均等的作用
があり、かつCOにはさらに固溶強化作用があるので、
特に一段とすぐれた耐食性が要求される場合に必要に応
じて含有されるが、Cuが2%を越えると、熱間加工性
が劣化するように々シ、一方COは2%を越えて含有さ
せてもより一層の改善効果は現われないことから、その
上限値をそれぞれCu:2チ、Co:2%と定めた。
These components have a uniform effect of improving the corrosion resistance of the pipe material, and CO also has a solid solution strengthening effect.
In particular, it is added as necessary when even better corrosion resistance is required, but if it exceeds 2%, hot workability tends to deteriorate. Since no further improvement effect could be obtained even with the addition of 2% Cu and 2% Co, respectively, the upper limits were set as 2% for Cu and 2% for Co.

(t)希土類元素、Y、Mg、Ti、およびCaこれら
の成分には、熱間加工性をさへらに改善する均等的作用
があるので、厳しい条件で熱間加工が行なわれる場合に
、必要に応じて含有さ、れるが、それぞれ希土類元素:
 0.10%、Y:0.20%。
(t) Rare earth elements, Y, Mg, Ti, and Ca These components have a uniform effect that further improves hot workability, so they are necessary when hot working is performed under severe conditions. Contained depending on rare earth elements:
0.10%, Y: 0.20%.

Mg: 0.10%、 Tioo、5%、およびCa:
0.10%を越えて含有させても、熱間加工性に改善効
果は見られず、むしろ劣化現象さえ現われるようになる
ことから、それぞれの含有量を、希土類元素:0.10
チ以下、Y:0.20チ以下’+ Mg: 0.10%
以下、 Ti: 0.5%以下、およびCa:0.10
%以下と定めた。
Mg: 0.10%, Tioo, 5%, and Ca:
Even if the content exceeds 0.10%, no improvement effect on hot workability is observed, and even a deterioration phenomenon appears, so the content of each rare earth element: 0.10%
Y: 0.20 or less'+ Mg: 0.10%
Below, Ti: 0.5% or less, and Ca: 0.10
% or less.

(ffl)  Cr(%) +10 Mo (@+5 
W (%;)第1図は厳しい腐食環境下での耐応力腐食
割れ性に関し、Cr(@+ 10Mo (%) + ”
 W(%)とN1(90との関係を示したものである。
(ffl) Cr (%) +10 Mo (@+5
W (%;) Figure 1 shows the stress corrosion cracking resistance under severe corrosive environments.
It shows the relationship between W (%) and N1 (90).

すなわち、Cr、 N1. Mo。That is, Cr, N1. Mo.

およびWの含有量を種々変化させたCr−Ni−Mo系
and Cr-Ni-Mo systems with various W contents.

Cr−Ni−W系、およびCr −Ni −Mo −W
系の鋼を溶製し、鋳造し、鍛伸し、熱間圧延して板厚:
’7mmの板材とし、ついでこの板材に、温度:100
0℃に30分保持後水埼の溶体化処理を施した後、強度
向上の目的で加工率:22%の冷間加工を加え、この結
果得られた鋼板から圧延方向と直角に、厚さ:2mmX
幅:10朋X長さ:15闘の試験片を切り出し、この試
験片について、第2図に示す3点支持ビーム冶具を用い
、前記試験片SK0.2チ耐力に相当する引張応力を付
加した状態で、10気圧のH2Sおよび10気圧のC0
2でH2Sおよびco2を飽和させた2 0 %NaC
4溶液(温度:150℃)中に1000時間浸漬の応力
腐食割れ試験を行ない、試験後、前記試験片における割
れ発生の有無を観察した。これらの結果に基き、発明者
等が独自に設定した条件式: Cr(@ + 10 M
o(%) + 5 W(罰とN1含有量との間には、耐
応力腐食割れ性に関して、第1図に示される関係がある
ことが明確になうだのである。なお、第1図において、
○印は割れ発生なし、X印は割れ発生をそれぞれ示すも
のでちる。第1図に示される結果から、Cr(%)+1
0M0(→′−F5 W (%)の値が50%未満にし
て、Ni含有量が35チ未満では所望のすぐれた耐応力
腐食割れ性は得られ々いことが明らかである。
Cr-Ni-W system, and Cr-Ni-Mo-W
The steel is melted, cast, forged, and hot rolled to produce plate thickness:
'7mm plate material, then this plate material, temperature: 100
After being held at 0°C for 30 minutes and subjected to Mizusaki solution treatment, cold working was applied at a processing rate of 22% for the purpose of improving strength. :2mmX
A test piece of width: 10 mm x length: 15 mm was cut out, and a tensile stress equivalent to the yield strength of the test piece SK0.2 mm was applied to this test piece using a 3-point support beam jig shown in Fig. 2. 10 atm H2S and 10 atm C0
20% NaC saturated with H2S and CO2
4 solution (temperature: 150° C.) for 1000 hours and a stress corrosion cracking test was conducted, and after the test, the presence or absence of cracking in the test piece was observed. Based on these results, the inventors independently set a conditional expression: Cr(@ + 10 M
o(%) + 5 W ,
The ○ mark indicates no cracking, and the X mark indicates cracking. From the results shown in Figure 1, Cr(%)+1
It is clear that when the value of 0M0(→'-F5 W (%)) is less than 50% and the Ni content is less than 35%, the desired excellent stress corrosion cracking resistance cannot be obtained.

なお、°゛この発明の合金において、不可避不純物とし
てB 、 F3n、 pb; およびZnをそれぞれ0
.1−以下の範囲で含有しても、この発明の合金の特性
が何らそこなわれるものではない。
In addition, in the alloy of the present invention, B, F3n, pb; and Zn are each 0 as unavoidable impurities.
.. Even if the content is in the range of 1- or less, the properties of the alloy of the present invention will not be impaired in any way.

B、固溶化処理条件および冷間加工条件この発明の油井
管における高強度は10合金爪分の含゛有のほかに、炭
化物を完全に固溶化した後、で、冷間加工を施すことに
よって確保されるものであ21− る。この場合炭化物の完全固溶化は、2601■C6g
)+1300゛で算出された下限温度(@と、16ix
o(チ)−1−1’OW帳)+10Cr(%9+777
で算出された上限温度11c)表の間の温度に2時間以
下保持することによってはかられるが、上記の下限温度
の算出式:2601■C(%)および上限温度の算出式
: 16Mo(@+10 W(%)+10 Cr(%)
 +777は多数の試験結果にもとづいて経験的に定め
たものであって、上記の下限温度未満では、炭化物を完
全に固溶することができず、未固溶の炭化物が残存する
ようになって応力腐食割れ感受性が高くなり、一方、固
溶化処理温度が上記の上用温度を越えて高くなったシ、
保持時間が2時間を越えて長くなったりすると、結晶粒
が粗大化するようになって、その後の冷間加工で所望の
高強度を得ることはできないことから、固溶化処理温度
および保持時間を上記の通りに定めた。
B. Solution treatment conditions and cold working conditions The high strength of the oil country tubular goods of this invention is achieved not only by the content of 10 alloy claws, but also by cold working after complete solution treatment of carbides. 21- In this case, complete solid solution of carbide is 2601■C6g
)+1300゛ lower limit temperature (@ and 16ix
o(chi)-1-1'OW book)+10Cr(%9+777
The upper limit temperature calculated in 11c) is measured by holding the temperature between the table for 2 hours or less, but the above lower limit temperature calculation formula: 2601■C (%) and upper limit temperature calculation formula: 16Mo (@ +10 W (%) +10 Cr (%)
+777 was determined empirically based on numerous test results, and below the above lower limit temperature, carbide cannot be completely dissolved in solid solution, and undissolved carbide remains. Stress corrosion cracking susceptibility increases, and on the other hand, if the solution treatment temperature exceeds the above-mentioned upper temperature,
If the holding time is longer than 2 hours, the crystal grains will become coarse and the desired high strength cannot be obtained in the subsequent cold working, so the solution treatment temperature and holding time should be adjusted accordingly. Established as above.

また、この発明では、上記のように固溶化処理後に冷間
加工を施して強度向上をはかるが、との冷間加工が肉厚
減少率で10゛チ未満では所望の強度を確保することが
できず、一方同じく肉厚減少−′2z− 率で60チを越えた冷間加工を施すと、延性および靭性
の劣化が著しくなることから、冷間加工を肉厚減少率で
10〜60%と定めたのである。
In addition, in this invention, as described above, cold working is performed after the solution treatment to improve the strength, but if the cold working with the wall thickness reduction rate is less than 10 degrees, the desired strength cannot be secured. On the other hand, if cold working is performed at a wall thickness reduction rate exceeding 60 inches, the deterioration of ductility and toughness will become significant. It was established that

以上の成分組成および製造条件を適用することによって
0.2%耐力が8 o kgf/、4以上の高強度をも
ち、かつ延性および靭性は勿論のこと、耐応力腐食割れ
性に優れた油井管を製造することができるのである。
By applying the above component composition and manufacturing conditions, we can produce oil country tubular goods that have a 0.2% proof stress of 8 o kgf/, a high strength of 4 or more, and have excellent stress corrosion cracking resistance as well as ductility and toughness. can be manufactured.

つぎに、この発明の油井管製造法を実施例にょシ比較例
と対比しながら具体的に説明する。
Next, the method for producing oil country tubular goods according to the present invention will be specifically explained in comparison with Examples and Comparative Examples.

実施例 それぞれ第1表に示される成分組成をもった溶湯を通常
の電気炉、および脱硫とN付加の目的でAr−酸素脱炭
炉(、A OD炉)を併用し、さらに必要に応じて脱燐
の目的でエレクトロスラグ溶解炉(ESR炉)を使用し
て溶製した後、直径二500龍φのインゴットに鋳造し
、ついでこのインゴットに温度:1200℃で熱間鍛造
を施して直径=150龍φのビレットを成形し、この場
合熱間、加工性を評価する目的でビレットに割れの発生
があ間押出加工によシ直径:60朋φ×肉厚:4朋の素
管を成形し、引続いて、同じくそれぞれ第1表に示され
る固溶化条件(処理後の冷却はいずれも水冷)および肉
厚減少率で、固溶化処理と冷間加工を施すことによって
、本発明合金管材1〜29゜比較合金管材1〜8.およ
び従来合金管材1〜4をそれぞれ製造した。
In each of the examples, a molten metal having the composition shown in Table 1 was heated in a conventional electric furnace and an Ar-oxygen decarburization furnace (AOD furnace) for the purpose of desulfurization and N addition, and further as necessary. After melting using an electroslag melting furnace (ESR furnace) for the purpose of dephosphorization, it was cast into an ingot with a diameter of 2,500 yen, and then hot forged at a temperature of 1,200°C to make the diameter = A billet of 150 mm diameter was formed, and in this case, for the purpose of evaluating hot workability, the billet was extruded to prevent cracks from occurring.A raw tube of diameter: 60 mm diameter x wall thickness: 4 mm was formed. Subsequently, the alloy tube material of the present invention was produced by solution treatment and cold working under the solution treatment conditions (cooling after treatment was water cooling in both cases) and wall thickness reduction rate shown in Table 1. 1-29° Comparative alloy tube material 1-8. and conventional alloy tube materials 1 to 4 were manufactured, respectively.

なお、比較合金管材1〜8は、構成成分のうちのいずれ
かの成分の含有量、あるいは製造条件のうちのいずれか
のら一件、(第1表に※印を付して表示)がこの発明の
範囲から外れた条件で製造されたものであシ、また従来
合金管材は、いずれも公知の成分組成をもつものであっ
て、同管材1は、JIS・−8US 316に、同2は
J I S−3US 310Sに、同3はインコロイ8
00に、同4はJIS・SUS 329Jlにそれぞれ
相当する組成をもつものである。
In addition, Comparative Alloy Tube Materials 1 to 8 have one of the content of any of the constituent components or the manufacturing conditions (indicated with an asterisk in Table 1). The pipe material 1 was manufactured under conditions outside the scope of the present invention, and all of the conventional alloy pipe materials have known compositions, and the pipe material 1 is specified in JIS-8 US 316 and JIS-8 US 316. is JIS-3US 310S, and the same 3 is Incoloy 8
00 and 4 have compositions corresponding to JIS and SUS 329Jl, respectively.

ついで、この結果得られた本発明合金管材1〜29、比
較合金管材1〜8.および従来合金管材1〜4より長さ
:20gの試験片をそれぞれ切出し、この試験片よシ長
さ方向にそって60°に相当する部分を切落し、この状
態の試験片に第3図に正面図で示されるようにボルトを
貫通し、ナツトでしめつけて管外表面に0.2チ耐力に
相当する引張応力を付加し、この状態の試験片Sに対し
て、H2S分圧をそれぞれ0.1気圧、1気圧、および
20気圧としたH2S−10気圧Cog −20%Na
C4溶液(液温:150℃)中に1000時間浸漬の応
力腐食割れ試験を行ない、試験後における応力腐食割れ
の有無を調査した。この結果を、上記の熱間鍛造時の割
れ発生の有無、引張試験結果、および衝撃試験結果と共
に、第2表に合せて示した。なお、第2表において、○
印はいずれも割れ発生のないものを示し、一方X印は割
れ発生のあったものを示す。
Next, the resulting alloy tube materials 1 to 29 of the present invention and comparative alloy tube materials 1 to 8. A test piece of length: 20 g was cut out from each of the conventional alloy tubes 1 to 4, and a portion corresponding to 60° was cut off along the length direction of the test piece. As shown in the front view, the bolt is passed through and tightened with a nut to apply a tensile stress equivalent to 0.2 inch proof stress to the outer surface of the tube, and the H2S partial pressure is set to 0 for the test piece S in this state. .H2S at 1 atm, 1 atm, and 20 atm - 10 atm Cog - 20% Na
A stress corrosion cracking test was conducted by immersing the test piece in a C4 solution (liquid temperature: 150°C) for 1000 hours, and the presence or absence of stress corrosion cracking after the test was investigated. The results are shown in Table 2 together with the presence or absence of cracking during hot forging, the tensile test results, and the impact test results. In addition, in Table 2, ○
Each mark indicates that no cracking occurred, while the X mark indicates that cracking occurred.

第2表に示される結果から、比較合金管材1〜8は、熱
間加工性、耐応力腐食割れ性2.および強度のうちの少
なくともいずれかの性質が劣ったものであるのに対して
、本発明合金管材1〜29は、いずれもすぐれた熱間加
工性および耐応力腐食割れ性を有し、さらに高強度を有
し、かつ熱間加工性は良好であるが、相対的に強度が低
く、しかも耐応力腐食割れ性に劣る従来合金管材1〜4
と比較しても一段とすぐれた特性を有することが明らか
である。− 上述のように、この発明の方法によって製造された油井
管は、特に高強度および優れた耐応力腐食割れ性を有す
るので、これらの特性が要求される苛酷な環境下での石
油並びに天然ガス採掘は勿論のこと、地熱井管として用
いた場合にもきわめて優れた性能を発揮するのである。
From the results shown in Table 2, comparative alloy tube materials 1 to 8 have hot workability and stress corrosion cracking resistance of 2. In contrast, the alloy tube materials 1 to 29 of the present invention all have excellent hot workability and stress corrosion cracking resistance, and also have high Conventional alloy tube materials 1 to 4 have strength and good hot workability, but have relatively low strength and poor stress corrosion cracking resistance.
It is clear that it has even better characteristics when compared to - As mentioned above, the oil country tubular goods manufactured by the method of the present invention have particularly high strength and excellent stress corrosion cracking resistance, so that they can be used in oil and natural gas applications in harsh environments where these properties are required. It exhibits extremely excellent performance not only in mining, but also when used as geothermal well pipes.

【図面の簡単な説明】 第1図は合金の耐応力腐食割れ性に関し、N1含有量と
Cr(%) −)−10Mo (@+ 5 W (%)
との関係を示した図、第2図および第3図はそれぞれ板
状および管状試験片に対する応力腐食割れ試験の態様を
示す図である。 Cr(%)+IOMo(%)+5W(%))1 第2図 $3図 第1頁の続き 0発 明 者 工藤赳夫 尼崎市西長洲本通1丁目3番地 尼崎市西長洲本通1丁目3番地 住友金属工業株式会社中央技術 研究所内 0発 明 者 諸石大司 尼崎市西長洲本通1丁目3番地 住友金属工業株式会社中央技術 研究所内
[Brief explanation of the drawings] Figure 1 shows the stress corrosion cracking resistance of the alloy, N1 content and Cr (%) -) -10Mo (@+ 5 W (%)
FIGS. 2 and 3 are diagrams showing the stress corrosion cracking test for plate-shaped and tubular specimens, respectively. Cr (%) + IOMo (%) + 5W (%)) 1 Figure 2 $ 3 Continuation of Figure 1 Page 0 Author: Takeo Kudo 1-3 Nishinagasu Hondori, Amagasaki City 1-3 Nishinagasu Hondori, Amagasaki City Address: Sumitomo Metal Industries, Ltd. Central Technology Research Laboratory 0 Inventor: Daiji Moroishi 1-3 Nishinagasu Hondori, Amagasaki City Sumitomo Metal Industries, Ltd. Central Technology Research Laboratory

Claims (1)

【特許請求の範囲】 (1)  C: 0.05%以下、Si:1.0%以下
、Mn:20%以下、P :0.030%以下、S :
0.005%以下、 sot、AQ: 0.5 %以下
、Ni: 35〜60%、Cr:22.5〜35チを含
有し、Mo:4%未満およびW:8%未満のうちの1種
または2種を含有し、残りがFeと不可避不純物からな
る組成(以上重量%)を有し、かつ、 cr(%9 + l oMo(@+ 5 W (%)≧
50チ。 1.5%≦MO(%) + +W (%) < ’%。 の条件を満足する合金を、2601(HlC(@−1−
1300で算出された下限温度(6)と、16M0(%
)+l OW(%)+10cr((イ)十′777で算
出された上限温度呻)の間の温度に、2時間以下保持の
条件で固溶化処理した後、10〜60qAの肉厚減少率
で冷間加工することを特徴とする耐応力腐食割れ性に優
れた高強度油井管の製造法。 (2)  C: 0.05%以下、Si:1.0%以下
、 klu :2.0%以下、P :0.030%以下
、S :0.005%以下、  SOl、AL: O1
5チ以下、 Ni : 35〜60%、cr: 22.
5〜35%を含有し、Mo:4チ未満およびW:8%未
満のうちの1種または2種を含有し、さらにCu:2%
以下およびCo:2%以下のうちの1種または2種を含
有し、残りがFeと不可避不純物からなる組成(以上重
量%)を有し、かつ、Cr (%) −)−10λ4o
(%) +5 W(%)250%。 1.5%≦Mo(@+ +w (%)〈2%。 の条件を満足する合金を、2601(、gC侠)+13
00で算出された下限温度(ト)と、16Mo(@±I
OW←)+10Cr(%)−1−’i’ 7 ’7で算
出された上限温度呻)の間の温度に、2時間以下保持の
条件で固溶化処理した後、10〜60%の肉厚減少率で
冷間加工することを特徴とする耐応力腐食割れ性に優れ
た高強度油井管の製造法。 (3)  C: 0.05%以下、Si:1.0%以下
、Mn:2.0%以下、P :0.030%以下、S下
+ sot、AQ : 0.5%以下、Ni:35〜6
0%、cr: 22.5〜35チを含有し、M’o:’
4%未満およびW:8%未満のうちのlfi!または2
種を含有し、さらに希土類元素: 0.10%以下、Y
:0.20%以下、 Mg: 0.10%以下、Ti:
0.5%以下、オヨびCa: O,jO%以下のり妹の
1種または2種以上を含有し、残りがFeと不可避不純
物からなる組成(以上重量%)を有し、がっ、 Cr (Q 、+ 10 Mo (%) + 5 W’
 611)250%。 1.5%≦MO(%)+ + W(%)< 4 % 。 の条件を満足する合金を、2604C(5)+1300
で算出された下限温度に)と、1−6M0(%)+10
 W(%)+10Or (%l+7 !7 、’7で算
出された上限温度(6)の間の温度に、2時間以下保持
の条件で固溶化処理した後、10〜60チの肉厚減少率
で端間加工jることを特徴とする耐応力腐食割れ性に優
れた高強度油井管の製造法。 2.0%以下、P :0.030%以下、 S :0.
O05チ以下、 sot、Ai : 0.5 %以下、
Ni:35〜60%、Cr:22.5〜35%を含有し
、Mo : 、4チ未満およびW:8%未満のうちの1
種または2種を含有し、1種または2種と、希土類元素
: 0.10%以下。 Y二0.20−以下、 Mg: 0.10%以下、 ’
I’i: 0.5チ以下、およびCa:0.10%以下
のうちの1種または2種以上とを含有し、残りがFeと
不可避不純物からなる組成(以上重量%)を有し、かつ
、1.5%≦Mo(働十+W(イ)く4%。 の条件を満足する合金を、26014C(%)+130
0で算出された下晰温度叩と、16Mo’(@+ 10
 W鍾)+10、Cr (%) 十’77’Iで算出さ
れた上限温度(6)の間の温度に、2時間以下保持の条
件で固溶化処理した後、。 10〜60チの中厚減少率で冷間加工することを特徴と
する耐応力腐食割れ性に優れた高強度油井管の製造法。 (5)  C: 0.05%以下、 Si: 1.0%
以下、Mn:2.0%以下、P :0.030%以下、
S :0.005%以下、  sol、Al: 0.5
 %以下、 N : 0.05〜0.3%。 Ni: 35〜60 %、 Cr: 22.5〜35%
を含有し、Mo:4%未満およびw:8%未満のうちの
1種または2種を含有し、残りがFeと不可避不純物か
らなる組成(以上重量%)を有し、がっ、cr(%) 
+ 10 Mo(%)+5 W (%)250%。 1.5%≦MO(’IF) + ’z W (%) <
 ’%。 の条件を満足する合金を、26010gC(イ)+13
00で算出された下限温度(6)と、16Mo 鈍) 
+10 W (%)十100r(%)+7’/7で算出
された上限温度(6)の間の温度に、2時間以下保持の
条件で固溶化処理・した後、lO〜60チの肉厚減少率
で冷間加工することを特徴とする耐応力腐食割れ性に優
れた弗強度油井管の製造法。 (6)  C: 0.05%以下、Sに1.0%以下、
Mn:Nl: 35〜60 %、 Cr二22.5〜3
5 %を含有し、MO:4%未満およびW ’: 84
未満のうちの1種または2種を含有し、さらにCu:2
%以下およびC0:2%以下のうちの1mまたは2種を
含有踵残゛シがFeと不可避不純物からなる組成(以上
重量%)を有し、かつ、 Cr(% +10 Mo (%) +5 W (%)2
50%。 1.5%≦MO(%) + + W (%) < ’%
。 の条件を満量する合金を、26010gC(%)+13
00 T算出された下限温度に)と、16Mo(%) 
+10 W (%) 十10Cr(%)十’7’7’/
で算出された上限温度C)の間の温度に2時間以下保持
の条件で固溶化処理した後、10〜60%の肉厚減少率
で冷間加工することを特徴とする耐応力腐食割れ性に優
れた高強度油井管の製造法。 (Mc:o、o51以下、Si : 10%以下、 M
n :2.0チ以下、P :0.0309J以下、S 
:0.005%以下、  sot、Al二〇、5チ以下
、 N : 0.05〜0.3 %。 Nl:35〜60%、 Cr : 22.5〜35%を
含有し、Mo:4%未満およびw:8%未満のうちの1
種または2種を含有し、さらに希土類元素: 0.10
%以下、Y:0.20%以下、 Mg : 0.10%
以下、Ti:0.5%以下、およびCa:0.10%以
下のうちのlf!または2種以上を含有し、残シがR’
eと不可避不純物からなる組成(以上重量%)を有し、
がっ、cr(釣+l oMo(1+ 5 w(1≧50
チ。 1.5%≦MO(%)十−)W(%)<4%。 の条件を満足する合金を、2604C(イ)+1300
T算出された下限温度(6)と、16Mo(5)+l0
W(%)+10Cr(資)+777で算出された上限温
度(ト)の間の温度に、2時間以下保持の条件で固溶化
処理した後、10〜60チの肉厚減少率で冷間加工する
ことを特徴とする耐応力腐食割れ性に優れた高強度油井
管の製造法。 (8)  C: 0.05%以下、 Si: 1.0 
%以下、Mn:2.0%以下、P :0.030%以下
、S 20.005%以下r  sot、M : 0.
5 tl!以下、 N : 0.05〜0.3 %。 Ni: 35〜60 %、 Cr: 22.5〜35%
を含有し、M、o:4チ未満およびw:8チ未満のうち
の1種または2種を含有し、さらにCu:2%以下およ
びC。 :2%以下のうちの1種または2種と、希土類元素:0
.10チ以下;y:o、moチ以下、 Mg :0.1
0チ以下、Ti:0.5%以下、およびCa: 0.1
0 %以下のうちの1種または2種以上とを含有し、残
りがFeと不可避不純物からなる組成(以上重量%)を
有し、かつ、 cr(@+ 10 Mo(@+5 W (%)≧50%
。 1.5%≦Mo(@++W(働<4C の条件を満足する合金を、2601.0(→+1300
で算出された下限温度(C)と、1 sMo(4+ l
 OW(el)+10Cr(qQ+”l’l’lで算出
、された上限温度(6)の間の温度に、2時間以下保持
の条件で固溶化処理した後、10〜60チの肉厚減少率
で冷間加工することを特徴とする耐応力腐食割れ性に優
れた高強度油井管の製造法。
[Claims] (1) C: 0.05% or less, Si: 1.0% or less, Mn: 20% or less, P: 0.030% or less, S:
Contains 0.005% or less, sot, AQ: 0.5% or less, Ni: 35-60%, Cr: 22.5-35%, Mo: less than 4% and W: less than 8%. It has a composition (more than % by weight) containing one or two species and the rest is Fe and unavoidable impurities, and cr(%9 + l oMo(@+5 W (%)≧
50 chi. 1.5%≦MO (%) + +W (%) <'%. An alloy that satisfies the conditions of 2601 (HlC (@-1-
The lower limit temperature (6) calculated at 1300 and 16M0 (%
) + l OW (%) + 10 cr (upper limit temperature calculated in (A) 10'777) after solution treatment under conditions of holding for 2 hours or less, with a wall thickness reduction rate of 10 to 60 qA. A method for manufacturing high-strength oil country tubular goods with excellent stress corrosion cracking resistance, which is characterized by cold working. (2) C: 0.05% or less, Si: 1.0% or less, klu: 2.0% or less, P: 0.030% or less, S: 0.005% or less, SOI, AL: O1
5 inches or less, Ni: 35-60%, cr: 22.
Contains 5 to 35%, contains one or two of Mo: less than 4% and W: less than 8%, further Cu: 2%
Contains one or two of the following and Co: 2% or less, with the remainder consisting of Fe and unavoidable impurities (weight %), and Cr (%) -) -10λ4o
(%) +5 W (%) 250%. An alloy that satisfies the condition of 1.5%≦Mo(@+ +w (%)<2%.
The lower limit temperature (g) calculated in 00 and 16Mo (@±I
OW←)+10Cr(%)-1-'i'7 After solution treatment at a temperature between A method for manufacturing high-strength oil country tubular goods with excellent stress corrosion cracking resistance, which is characterized by cold working at a decreasing rate. (3) C: 0.05% or less, Si: 1.0% or less, Mn: 2.0% or less, P: 0.030% or less, S lower + sot, AQ: 0.5% or less, Ni: 35-6
0%, cr: Contains 22.5 to 35 chi, M'o:'
lfi of less than 4% and W: less than 8%! or 2
Contains seeds and further contains rare earth elements: 0.10% or less, Y
: 0.20% or less, Mg: 0.10% or less, Ti:
Contains one or more of the following: 0.5% or less, Oyobi Ca: O, jO% or less, with the remainder consisting of Fe and unavoidable impurities (in weight percent), Ga, Cr (Q, + 10 Mo (%) + 5 W'
611) 250%. 1.5%≦MO(%)++W(%)<4%. An alloy that satisfies the conditions of 2604C(5)+1300
) and 1-6M0(%)+10
W (%) + 10Or (%l + 7 !7, After solution treatment at a temperature between the upper limit temperature (6) calculated in '7 and held for 2 hours or less, the wall thickness reduction rate of 10 to 60 inches A method for producing high-strength oil country tubular goods with excellent stress corrosion cracking resistance, characterized by end-to-end processing. 2.0% or less, P: 0.030% or less, S: 0.
O05chi or less, sot, Ai: 0.5% or less,
Contains Ni: 35-60%, Cr: 22.5-35%, Mo: less than 4% and W: less than 8%.
Contains one or two species, rare earth element: 0.10% or less. Y2 0.20- or less, Mg: 0.10% or less, '
I'i: 0.5% or less, and Ca: 0.10% or less, and the remainder is Fe and unavoidable impurities (weight %), And, an alloy that satisfies the conditions of 1.5%≦Mo (Working + W (a) + 4%) is 26014C (%) + 130
The lower temperature calculated at 0 and 16Mo'(@+10
After solution treatment under conditions of holding for 2 hours or less at a temperature between the upper limit temperature (6) calculated in 10'77'I. A method for producing high-strength oil country tubular goods having excellent stress corrosion cracking resistance, characterized by cold working at a medium thickness reduction rate of 10 to 60 inches. (5) C: 0.05% or less, Si: 1.0%
Below, Mn: 2.0% or less, P: 0.030% or less,
S: 0.005% or less, sol, Al: 0.5
% or less, N: 0.05-0.3%. Ni: 35-60%, Cr: 22.5-35%
It contains one or two of Mo: less than 4% and W: less than 8%, with the remainder consisting of Fe and unavoidable impurities (wt%), %)
+ 10 Mo (%) + 5 W (%) 250%. 1.5%≦MO('IF)+'z W (%)<
'%. An alloy that satisfies the conditions is 26010gC(a)+13
Lower limit temperature (6) calculated with 00 and 16Mo dull)
After solution treatment at a temperature between the upper limit temperature (6) calculated by +10 W (%) + 100 r (%) + 7'/7 and held for 2 hours or less, the wall thickness of lO ~ 60 cm A method for manufacturing oil country tubular goods with excellent strength and stress corrosion cracking resistance, which is characterized by cold working at a decreasing rate. (6) C: 0.05% or less, S 1.0% or less,
Mn:Nl: 35-60%, Cr222.5-3
5%, MO: less than 4% and W': 84
Cu:2
% or less and C0:2% or less. (%)2
50%. 1.5%≦MO (%) + + W (%) <'%
. The alloy that satisfies the conditions is 26010gC (%) + 13
00 T) and 16Mo (%)
+10 W (%) 10Cr (%) 10'7'7'/
Stress corrosion cracking resistance characterized by solution treatment at a temperature between the upper limit temperature C) calculated by C) for 2 hours or less, and then cold working at a wall thickness reduction rate of 10 to 60%. A manufacturing method for high-strength oil country tubular goods with excellent properties. (Mc: o, o51 or less, Si: 10% or less, M
n: 2.0 cm or less, P: 0.0309 J or less, S
: 0.005% or less, sot, Al 20, 5 or less, N: 0.05 to 0.3%. Contains Nl: 35-60%, Cr: 22.5-35%, Mo: less than 4% and w: less than 8%.
Contains one or more rare earth elements: 0.10
% or less, Y: 0.20% or less, Mg: 0.10%
Below, lf of Ti: 0.5% or less and Ca: 0.10% or less! or contains two or more types, and the remainder is R'
having a composition (more than % by weight) consisting of e and unavoidable impurities,
Gah, cr (fishing + l oMo (1 + 5 w (1≧50
blood. 1.5%≦MO(%)10-)W(%)<4%. An alloy that satisfies the conditions of 2604C (a) + 1300
Tcalculated lower limit temperature (6) and 16Mo(5)+l0
After solution treatment at a temperature between the upper limit temperature (g) calculated by W (%) + 10 Cr (capital) + 777 for 2 hours or less, cold working at a wall thickness reduction rate of 10 to 60 inches. A method for manufacturing high-strength oil country tubular goods with excellent stress corrosion cracking resistance. (8) C: 0.05% or less, Si: 1.0
% or less, Mn: 2.0% or less, P: 0.030% or less, S 20.005% or less r sot, M: 0.
5 tl! Hereinafter, N: 0.05-0.3%. Ni: 35-60%, Cr: 22.5-35%
Contains one or two of M, o: less than 4 and w: less than 8, and further Cu: 2% or less and C. : 2% or less of one or two types and rare earth elements: 0
.. 10 or less; y: o, mo or less, Mg: 0.1
0 Ti or less, Ti: 0.5% or less, and Ca: 0.1
0% or less, and the remainder is Fe and unavoidable impurities (weight%), and cr(@+10 Mo(@+5 W(%)) ≧50%
. An alloy that satisfies the condition of 1.5%≦Mo(@++W(working<4C) is 2601.0(→+1300
The lower limit temperature (C) calculated by 1 sMo(4+l
After solution treatment at a temperature between the upper limit temperature (6) calculated by OW (el) + 10Cr (qQ + "l'l'l") and held for 2 hours or less, the wall thickness decreased by 10 to 60 inches. A method for producing high-strength oil country tubular goods with excellent stress corrosion cracking resistance, which is characterized by cold working at a low temperature.
JP10691381A 1981-07-03 1981-07-10 Production of high strength oil well pipe of high stress corrosion cracking resistance Granted JPS589922A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP10691381A JPS589922A (en) 1981-07-10 1981-07-10 Production of high strength oil well pipe of high stress corrosion cracking resistance
US06/389,568 US4421571A (en) 1981-07-03 1982-06-17 Process for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking
GB08217860A GB2104100B (en) 1981-07-03 1982-06-21 High strength deep well casing and tubing having improved resistance to stress-corrosion cracking
DE3224865A DE3224865C2 (en) 1981-07-03 1982-07-02 Process for the production of heavy-duty casing for deep boreholes or the like
SE8204121A SE461986C (en) 1981-07-03 1982-07-02 PROCEDURES FOR PREPARING HOEGHAALLFASTA DEEP BORROWS WITH RESISTANCE TO TENSION CORROSION
FR8211645A FR2508930A1 (en) 1981-07-03 1982-07-02 PROCESS FOR MANUFACTURING HIGH MECHANICAL RESISTANCE PIPES AND PIPES FOR DEEP WELLS
SE8901647A SE502102C2 (en) 1981-07-03 1989-05-09 Process for the manufacture of high strength deep drill pipes with resistance to stress corrosion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10691381A JPS589922A (en) 1981-07-10 1981-07-10 Production of high strength oil well pipe of high stress corrosion cracking resistance

Publications (2)

Publication Number Publication Date
JPS589922A true JPS589922A (en) 1983-01-20
JPS6363606B2 JPS6363606B2 (en) 1988-12-08

Family

ID=14445667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10691381A Granted JPS589922A (en) 1981-07-03 1981-07-10 Production of high strength oil well pipe of high stress corrosion cracking resistance

Country Status (1)

Country Link
JP (1) JPS589922A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61276948A (en) * 1985-05-30 1986-12-06 Nippon Kokan Kk <Nkk> High-chromium alloy steel having superior hot workability
JP2009024231A (en) * 2007-07-20 2009-02-05 Sumitomo Metal Ind Ltd Method of manufacturing high-alloy steel pipe
WO2010070990A1 (en) 2008-12-18 2010-06-24 住友金属工業株式会社 Method for producing high alloy steel pipe
US8701455B2 (en) 2007-07-02 2014-04-22 Nippon Steel & Sumitomo Metal Corporation Method for manufacturing a high alloy pipe
WO2017037851A1 (en) * 2015-08-31 2017-03-09 株式会社日立製作所 Cr-BASED TWO-PHASE ALLOY AND PRODUCT USING SAID TWO-PHASE ALLOY

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2777766A (en) * 1952-06-04 1957-01-15 Union Carbide & Carbon Corp Corrosion resistant alloys

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2777766A (en) * 1952-06-04 1957-01-15 Union Carbide & Carbon Corp Corrosion resistant alloys

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61276948A (en) * 1985-05-30 1986-12-06 Nippon Kokan Kk <Nkk> High-chromium alloy steel having superior hot workability
JPH0470382B2 (en) * 1985-05-30 1992-11-10 Nippon Kokan Kk
US8701455B2 (en) 2007-07-02 2014-04-22 Nippon Steel & Sumitomo Metal Corporation Method for manufacturing a high alloy pipe
JP2009024231A (en) * 2007-07-20 2009-02-05 Sumitomo Metal Ind Ltd Method of manufacturing high-alloy steel pipe
WO2010070990A1 (en) 2008-12-18 2010-06-24 住友金属工業株式会社 Method for producing high alloy steel pipe
US8312751B2 (en) 2008-12-18 2012-11-20 Sumitomo Metal Industries, Ltd. Method for producing high alloy pipe
WO2017037851A1 (en) * 2015-08-31 2017-03-09 株式会社日立製作所 Cr-BASED TWO-PHASE ALLOY AND PRODUCT USING SAID TWO-PHASE ALLOY

Also Published As

Publication number Publication date
JPS6363606B2 (en) 1988-12-08

Similar Documents

Publication Publication Date Title
JPWO2004057050A1 (en) High strength martensitic stainless steel with excellent carbon dioxide corrosion resistance and sulfide stress corrosion cracking resistance
JP2021508785A (en) Corrosion resistant duplex stainless steel
JPS625977B2 (en)
JPS625976B2 (en)
JPS58210158A (en) High-strength alloy for oil well pipe with superior corrosion resistance
JP2007084837A (en) Two-phase stainless steel excellent in hot-workability
JPS6144133B2 (en)
JPS589924A (en) Production of high strength oil well pipe of high stress corrosion cracking resistance
JPS589922A (en) Production of high strength oil well pipe of high stress corrosion cracking resistance
JPS586927A (en) Production of high-strength oil well pipe of high stress corrosion cracking resistance
JPS5811736A (en) Production of high strength oil well pipe of superior stress corrosion cracking resistance
JPS6144135B2 (en)
JPS6199660A (en) High strength welded steel pipe for line pipe
JPS581044A (en) High strength alloy having superior stress corrosion cracking resistance for oil well pipe
JPS6363609B2 (en)
JP3470418B2 (en) High strength austenitic alloy with excellent seawater corrosion resistance and hydrogen sulfide corrosion resistance
JPS6144126B2 (en)
JPS6144128B2 (en)
JPS58210155A (en) High-strength alloy for oil well pipe with superior corrosion resistance
JPS6144125B2 (en)
JPS6144134B2 (en)
JPS581042A (en) High strength alloy having superior stress corrosion cracking resistance for oil well pipe
JPS5811737A (en) Production of high strength oil well pipe of superior stress corrosion cracking resistance
JPS581043A (en) High strength alloy having superior stress corrosion cracking resistance for oil well pipe
JPS6144132B2 (en)