JPH0153340B2 - - Google Patents

Info

Publication number
JPH0153340B2
JPH0153340B2 JP58104094A JP10409483A JPH0153340B2 JP H0153340 B2 JPH0153340 B2 JP H0153340B2 JP 58104094 A JP58104094 A JP 58104094A JP 10409483 A JP10409483 A JP 10409483A JP H0153340 B2 JPH0153340 B2 JP H0153340B2
Authority
JP
Japan
Prior art keywords
alloy
present
resistance
less
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58104094A
Other languages
Japanese (ja)
Other versions
JPS59229457A (en
Inventor
Takao Minami
Hiroo Nagano
Kazuo Yamanaka
Yasutaka Okada
Hiroshi Usuda
Yoshiro Onimura
Toshio Yonezawa
Shinya Sasakuri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Nippon Steel Corp
Original Assignee
Mitsubishi Heavy Industries Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Sumitomo Metal Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10409483A priority Critical patent/JPS59229457A/en
Priority to EP83730106A priority patent/EP0109350B1/en
Priority to DE8383730106T priority patent/DE3382433D1/en
Priority to EP19890103551 priority patent/EP0329192B1/en
Priority to DE19833382737 priority patent/DE3382737T2/en
Publication of JPS59229457A publication Critical patent/JPS59229457A/en
Priority to US06/878,398 priority patent/US4715909A/en
Publication of JPH0153340B2 publication Critical patent/JPH0153340B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、耐応力腐食割れ性(以下、耐SCC性
とも称する)に優れたNi基高Cr合金、特に粒内
に未固溶炭化物を析出させるとともに表面皮膜の
強化を図つて耐応力腐食割れ性を著しく改善した
Ni基高Cr合金に関する。 従来、Cl-イオンを含む応力腐食割れ環境下で
使用される、例えば原子力あるいは化学プラント
等のチユーブ、容器さらにはそれらの付属部品に
は、耐応力腐食割れ性にすぐれているといわれて
いるニツケル基合金が多く使用されている。しか
しながら、これまで一般に使用されている30%
Cr−60%Ni系合金にあつても使用環境によつて
は応力腐食割れの発生はさけられないことが報告
されている。 ここに、本発明の目的とするところは、上述の
ような30%Cr−60%Ni系合金にみられる欠点を
解消した、原子力あるいは化学プラント等のチユ
ーブ、容器および付属部品に厚板、丸棒あるいは
パイプの形態で使用される、耐食性、特に耐応力
腐食割れ性にすぐれた合金を提供することであ
る。 そこで、本発明者らは上述のような30%Cr−
60%Ni基合金がC含有量に応じて980〜1150℃と
いう比較的高温度で最終焼鈍され、未固溶炭化物
の存在しない状態で使用されていることに着目
し、合金組織中の炭化物の形態と耐食性との関連
を追求したところ、むしろ粒内であれば炭化物は
積極的に析出させたほうが耐応力腐食割れ性の向
上に有効であるとの知見を得た。また、Cl-イオ
ンを含む高温水環境下では孔食を起点として応力
腐食割れが生じる報告されているため、耐孔食性
の改善に有効な元素として知られているMo、W
およびVを添加して皮膜の強化を図つたところ、
前述の炭化物の析出効果と相俟つて、得られた合
金の耐食性、つまり耐応力腐食割れ性が著しく改
善されることを見い出して、ここに本発明を完成
したものである。 ここに、本発明の要旨とするところは、重量%
で、 C:0.04%以下、Si:1.0%以下、 Mn:1.0%以下、P:0.030%以下、 S:0.02%以下、Ni:40〜70%、 Cr:25〜35%、Al:0.1〜0.5%、 Ti:0.05〜1.0%、 Mo、WおよびVの1種または2種以上を合計
0.5〜5.0%、 残部、実質的にFe よりなり、少なくとも大部分の未固溶のCr炭化
物が粒内に析出した再結晶粒組織を有する、Cl-
イオンを含む高温水環境下における耐応力腐食割
れ性に優れたNi基高Cr合金である。 かくして、本発明によれば、従来問題とされて
いたNi基高Cr合金の耐応力腐食割れ性が著しく
改善されるのであり、そのような予想外の結果
は、C含有量を0.04%以下に制限するとともに、
そのC含有量に応じて比較的低温度で最終焼鈍を
行い、同時にMo、WおよびVの少なくとも1種
を皮膜強化元素として添加することによる相乗的
効果の結果と考えられる。 本発明において合金組成を前述のように限定し
た理由は次の通りである。 C: Cは耐SCC性に有害な元素であるので、その含
有量は0.04%以下に制限する。 Si、Mn、Al: これらの元素はいずれも脱酸元素であり、それ
ぞれ溶製条件に応じて適宜量だけ添加されるが、
Si、Mn、Alがそれぞれ1.0%、1.0%および0.5%
の上限を越えると、合金の清浄度を劣化させる。
なお、Alは0.1%未満では効果がない。 Ni: Niは耐食性向上に有効な元素であつて、特に
耐酸性およびCl-イオン含有高温水中における耐
SCC性を向上させる。このためにはNiは40%以
上必要であり、また、上限はCr、Mo、W、V等
の合金元素の添加割合を考慮して、70%以下とす
る。 Cr: Crは耐食性向上に必須の元素であるが、25%
未満では耐SCC性の向上の効果が少ない。一方、
35%を越えると、熱間加工性が著しく劣化する。
したがつて、本発明ではCrは25〜35%に制限す
る。 P: Pは合金中に不純物として存在するものであつ
て、0.030%を越えると耐酸性および熱間加工性
に有害である。 S: Sも同様に不純物の1種であつて、0.02%を越
えて存在すると、Pと同様に耐酸性および熱間加
工性に有害である。 Ti: Tiは安定化元素として添加するものである。
すなわち、P、Sを上記の値以下に制御しても顕
著な効果が得られないため、本発明においては
Tiを0.05%以上添加することによつて、所定の熱
間加工性を確保させる。一方、1.0%以上を越え
ると、その効果が飽和するため、その上限を1.0
%とする。 Mo、W、V: これらの元素は、耐孔食性向上に有効な元素で
あり、特に、Cl-イオンを含む高温水中における
耐孔食性を向上させる。これらの元素の少なくと
も1種の合計含有量が0.5%未満では、表面の不
働態皮膜が強化されないため、孔食を発生し、こ
れにより耐応力腐食割れ性が劣化する。一方、こ
れらの元素の少なくとも1種を合計で5.0%を越
えて含有するとその耐孔食性の向上という効果が
飽和するうえ、熱間加工性を著しく劣化させる。
したがつて、本発明にあつては、Mo、Wおよび
Vの1種または2種以上の添加量を合計で0.5〜
5.0%に制限する。 次に、本発明にあつては少なくとも大部分の未
固溶のCr炭化物が粒内に析出した再結晶粒組織
を特徴とするが、かかる組織は具体的には、C含
有量に応じて第1図の点A,B,C,DおよびE
によつて囲まれた領域内の焼鈍条件で焼鈍を行う
ことにより得られるのであり、換言すればそのよ
うな処理によつて得た組織ということができる。
まず、BC線およびCD線は、本発明に係る合金の
再結晶曲線を示し、BC線およびCD線で示される
それぞれの温度未満では再結晶しないため、焼鈍
合金の強度が高く、また耐食性も悪い。従つて、
合金のC含有量にしたがつて、BC線およびCD線
で示される以上の温度での焼鈍処理が必要であ
る。一方、AE線は完全には合金中の炭素を固溶
させない温度の上限である。よつて、この温度以
下で焼鈍処理をする限り炭化物は粒内に存在す
る。しかし、AE線で示される温度を越えた温度
で焼鈍を行うと、600℃×3時間の鋭敏化処理を
施す場合、粒界に炭化物がすべて析出するため
に、耐粒界腐食性を劣化させる。従つて、粒界に
炭化物がすべて析出してしまうのを防止すべく、
すなわち、少なくとも大部分の未固溶のCr炭化
物が粒内に析出するように、最終焼鈍はAE線で
示される温度以下で行う必要がある。 なお、A(0%、910℃)、B(0%、850℃)、C
(0.02%、850℃)、D(0.04%、900℃)、およびE
(0.04%、1000℃)である。 次に、実施例によつて本発明をさらに具体的に
説明する。 実施例 第1表に示す化学成分から成る組成の合金を17
Kg真空炉で溶製し、通常の条件下での鍛造、熱間
圧延および熱処理を加えた後、30%冷間加工し、
引き続いて、各種温度での焼鈍を施した。さら
に、実際の使用下での寿命を予想した条件にもと
ずいて設定された600℃×3時間の熱処理、つま
り鋭敏化処理を行つた後、厚さ3mm×幅10mm×長
さ40mmの粒界腐食試験片および厚さ2mm×幅10mm
×長さ75mmの応力腐食割れ試験片を採取した。こ
れらの粒界腐食試験片および応力腐食割れ試験片
はエメリー紙320番で研磨後、以下に述べる実験
に使用した。 まず、応力腐食割れ試験片は研磨後2枚重ね合
わせて、U型に曲げたダブルU−ベンド試験片と
してこれをオートクレーブ(高温高圧容器)を用
いて、325℃で1000ppm Cl-(NaClとして)の溶
液中に1500時間浸漬した。試験終了後、内側試験
片の割れの深さを顕微鏡で測定した。 一方、粒界腐食試験片は60%HNO3+0.1%HF
の沸騰溶液中に4時間浸漬し、そのときの腐食減
量を測定した。 得られた試験結果は第2図ないし第5図にそれ
ぞれグラフとして示す。なお、各グラフ中の参照
番号はそれぞれ第1表中の供試合金番号である。 第2図に示すグラフは、本発明に係る0.02〜
0.03%C−25%Cr−0.6%Moを基本組成とし、Ni
含有量を種々変えて得た合金に1150℃に30分加熱
して焼鈍処理を行い、水冷後、600℃に3時間加
熱して鋭敏化処理し、次いで冷却した試験片を施
し、前述の粒界腐食試験を実施して得たデータを
まとめたものである。上記焼鈍温度は本発明にお
けるそれよりも高い。 本発明合金と同一組成の合金でも、焼鈍温度が
高いと600℃、3時間加熱(鋭敏化処理)後空冷
の処理したときに、Cr炭化物がすべて粒界に析
出するために、粒界近傍にCr欠乏層が生じて、
腐食されるのである。したがつて、焼鈍温度を下
げる必要がある。 第3図に示すグラフは本発明に係る組成の合金
と従来材の耐粒界腐食性を示したものである。い
ずれも0.02〜0.03%C−0.6%Moの組成を有し、
これを900℃で30分間加熱して焼鈍処理を行い、
水冷後、600℃で3時間加熱して鋭敏化処理をし
てから空冷したものである。図中、白抜き丸は
Cr30%を越える場合を、黒丸は25〜30%Crの場
合を示す。図示グラフからも明らかなように、
Ni量が40%未満では、いずれの場合も腐食速度
が大きく、40%以上になると耐粒界腐食性の抵抗
性が向上する。したがつて、Ni量としては、40
%以上必要である。 次に、第4図は、0.02%C−25%Cr−50%Ni
を基本組成として、これにMo、VおよびWのう
ち1種または2種以上を添加した合金を900℃で
30分間加熱して焼鈍処理を行い、水冷後、600℃
で3時間加熱して鋭敏化処理をし、次いで空冷し
たときの耐粒界腐食性を示す。Mo、VおよびW
の少なくとも1種の合計量が0.5%未満では、耐
食性改善の効果が認められないが、0.5%以上添
加されると、耐粒界腐食性の抵抗性が向上するこ
とが明らかとなつた。これは、添加されたMo、、
VおよびWが不働態皮膜を強化しているため、合
金表面に形成されたCr2O3の皮膜が安定に存在出
来るためと考えられる。よつて、Mo、Vおよび
Wはその1種または2種以上が合計で0.5%以上
必要である。 第5図は、耐SCC性に及ぼすNi含有量(%)
とCr含有量(%)との影響をグラフで示したも
のである。供試合金は900℃で30分加熱して焼鈍
処理を行い、水冷後、600℃で3時間加熱して鋭
敏化処理をしてから空冷したものである。図中、
白丸は応力腐食割れがみられなかつた場合、黒丸
は20μ以上の割れがみられた場合をそれぞれ示
す。 Cr量が本発明におけるように20%以上であつ
ても、Ni量が40%未満であれば、粒界型の応力
腐食割れ性を生じる。従つて、40%以上のNi量
が必要である。 第6図イ〜ニに示す本発明にかかる合金の結晶
粒組織の模式図からも明らかなように、本発明に
よれば熱間加工(第6図イ参照)、軟化焼鈍(第
6図ロ参照)、冷間加工(第6図ハ参照)そして
最終焼鈍(再結晶焼鈍)を経て得たミクロ結晶組
織は、第6図ニに示すように、偏平粒でなく再結
晶化した整粒組織となり、少なくとも大部分の未
固溶のクロム炭化物が粒内に析出しており、再結
晶後の新粒界にはほとんど析出が見られず、した
がつて新粒界での鋭敏化は見られず、耐食性、特
に耐粒界応力腐食割れ性の劣化は見られない。 特に、本発明にかかる合金は、再結晶が十分に
行われた、所謂再結晶粒組織となるため、強度が
高くならないから曲げ加工を必要とされるパイプ
等には好ましい材料である。 したがつて、本発明における少なくとも大部分
の未固溶のCr炭化物が粒内に析出した再結晶粒
組織を実現するための具体的処理方法の臨界的意
義の一つは最終焼鈍条件であり、これは850℃以
上、炭素を固溶させない温度以下(もちろん、再
結晶温度以上である)ということであり、その範
囲は第1図に図示した通りである。 一方、第7図イ〜ハは本発明にかかる合金組成
とほぼ同様な合金組成を有する合金を例えば特開
昭58−67854号公報に記載されているような条件
で熱間加工(第7図イ参照)、冷間加工(第7図
ロ参照)そして再結晶温度未満の温度での焼鈍処
理を行つた場合の結晶粒組織の変化を示す模式図
であり、図示結果からも明らかなように、熱間加
工後、38%以上の冷間加工を行うことにより熱間
圧延時の粒界が偏平になり、これを最終焼鈍する
ことにより、焼鈍温度が再結晶温度より低い温度
であることから、第7図ハに示すように、偏平粒
はそのまま保存され、スリツプバンドに沿つた粒
内および粒界にクロム炭化物が微細析出した状態
になる。冷間加工時の歪み導入による駆動力によ
り合金元素(Crなど)の拡散が促進される結果、
焼鈍時の比較的短時間内にクロム炭化物周辺の
Cr欠乏層も回復され、耐食性の観点からは良好
な組織となつている。この結果、図示例の合金で
は未再結晶組織で歪みがかなり残留しているため
強度が高くなり、強度部材に対しては有効である
が、曲げ加工を必要とするようなパイプ等には不
向きな材料であるばかりでなく、耐食性も本発明
の合金と比較すると多少劣化している。
The present invention is a Ni-based high Cr alloy with excellent stress corrosion cracking resistance (hereinafter also referred to as SCC resistance), in particular, a Ni-based high Cr alloy with excellent stress corrosion cracking resistance (hereinafter also referred to as SCC resistance). significantly improved sex
Concerning Ni-based high Cr alloy. Conventionally, nickel, which is said to have excellent stress corrosion cracking resistance, has been used for tubes, containers, and their attached parts in nuclear or chemical plants, etc., which are used in stress corrosion cracking environments containing Cl - ions. Many base alloys are used. However, until now the commonly used 30%
It has been reported that even with Cr-60%Ni alloys, stress corrosion cracking cannot be avoided depending on the usage environment. The object of the present invention is to provide thick plates, round plates, etc. for tubes, containers, and accessory parts of nuclear or chemical plants, etc., which eliminates the drawbacks of the 30% Cr-60% Ni alloy as described above. An object of the present invention is to provide an alloy that is used in the form of a rod or pipe and has excellent corrosion resistance, particularly stress corrosion cracking resistance. Therefore, the present inventors developed a 30% Cr-
Focusing on the fact that 60% Ni-based alloys are finally annealed at a relatively high temperature of 980 to 1150°C depending on the C content and are used in the absence of undissolved carbides, When we investigated the relationship between morphology and corrosion resistance, we found that actively precipitating carbides within grains is more effective in improving stress corrosion cracking resistance. In addition, it has been reported that stress corrosion cracking occurs starting from pitting corrosion in a high-temperature water environment containing Cl - ions, so Mo and W are known to be effective elements for improving pitting corrosion resistance.
When adding V and V to strengthen the film,
The present invention has now been completed based on the discovery that, in combination with the aforementioned carbide precipitation effect, the corrosion resistance, that is, stress corrosion cracking resistance, of the obtained alloy is significantly improved. Here, the gist of the present invention is that the weight%
So, C: 0.04% or less, Si: 1.0% or less, Mn: 1.0% or less, P: 0.030% or less, S: 0.02% or less, Ni: 40-70%, Cr: 25-35%, Al: 0.1- 0.5%, Ti: 0.05-1.0%, total of one or more of Mo, W and V
0.5 to 5.0%, the remainder essentially consists of Fe, and has a recrystallized grain structure in which at least most of the undissolved Cr carbides precipitate within the grains, Cl -
This is a Ni-based high Cr alloy with excellent stress corrosion cracking resistance in high temperature water environments containing ions. Thus, according to the present invention, the stress corrosion cracking resistance of Ni-based high Cr alloys, which had been considered a problem in the past, is significantly improved. In addition to restricting
This is believed to be the result of a synergistic effect by performing the final annealing at a relatively low temperature depending on the C content and simultaneously adding at least one of Mo, W and V as a film strengthening element. The reason why the alloy composition is limited as described above in the present invention is as follows. C: Since C is an element harmful to SCC resistance, its content is limited to 0.04% or less. Si, Mn, Al: All of these elements are deoxidizing elements, and are added in appropriate amounts depending on the melting conditions.
Si, Mn, Al 1.0%, 1.0% and 0.5% respectively
Exceeding the upper limit will degrade the cleanliness of the alloy.
Note that Al has no effect if it is less than 0.1%. Ni: Ni is an effective element for improving corrosion resistance, especially acid resistance and resistance in high-temperature water containing Cl - ions.
Improve SCC properties. For this purpose, Ni needs to be 40% or more, and the upper limit is set to 70% or less, taking into account the addition ratio of alloying elements such as Cr, Mo, W, and V. Cr: Cr is an essential element for improving corrosion resistance, but 25%
If it is less than that, the effect of improving SCC resistance will be small. on the other hand,
When it exceeds 35%, hot workability deteriorates significantly.
Therefore, in the present invention, Cr is limited to 25 to 35%. P: P exists as an impurity in the alloy, and if it exceeds 0.030%, it is harmful to acid resistance and hot workability. S: Similarly, S is a type of impurity, and if present in an amount exceeding 0.02%, it is harmful to acid resistance and hot workability like P. Ti: Ti is added as a stabilizing element.
In other words, even if P and S are controlled below the above values, no significant effect can be obtained, so in the present invention,
By adding 0.05% or more of Ti, the desired hot workability is ensured. On the other hand, if it exceeds 1.0%, the effect will be saturated, so the upper limit should be set at 1.0%.
%. Mo, W, V: These elements are effective for improving pitting corrosion resistance, and particularly improve pitting corrosion resistance in high-temperature water containing Cl - ions. If the total content of at least one of these elements is less than 0.5%, the passive film on the surface is not strengthened, causing pitting corrosion, which deteriorates stress corrosion cracking resistance. On the other hand, if the total content of at least one of these elements exceeds 5.0%, the effect of improving pitting corrosion resistance is saturated, and hot workability is significantly deteriorated.
Therefore, in the present invention, the total amount of one or more of Mo, W and V added is 0.5 to 0.5.
Limit to 5.0%. Next, the present invention is characterized by a recrystallized grain structure in which at least most of the undissolved Cr carbide precipitates within the grains. Points A, B, C, D and E in Figure 1
It is obtained by performing annealing under the annealing conditions within the region surrounded by, and in other words, it can be said to be a structure obtained by such processing.
First, the BC line and CD line indicate the recrystallization curve of the alloy according to the present invention, and since recrystallization does not occur below the respective temperatures indicated by the BC line and CD line, the strength of the annealed alloy is high, and the corrosion resistance is also poor. . Therefore,
Depending on the C content of the alloy, annealing treatment is required at a temperature higher than that indicated by the BC and CD lines. On the other hand, the AE line is the upper limit of the temperature at which carbon in the alloy is not completely dissolved. Therefore, as long as the annealing treatment is performed at a temperature below this temperature, carbides will exist within the grains. However, if annealing is performed at a temperature exceeding the temperature indicated by the AE line, all carbides will precipitate at grain boundaries when sensitizing treatment is performed at 600℃ for 3 hours, resulting in deterioration of intergranular corrosion resistance. . Therefore, in order to prevent all the carbides from precipitating at the grain boundaries,
That is, the final annealing needs to be performed at a temperature below the temperature indicated by the AE line so that at least most of the undissolved Cr carbides are precipitated within the grains. In addition, A (0%, 910℃), B (0%, 850℃), C
(0.02%, 850℃), D (0.04%, 900℃), and E
(0.04%, 1000℃). Next, the present invention will be explained in more detail with reference to Examples. Example: 17 alloys with the chemical composition shown in Table 1.
Kg vacuum furnace, forged under normal conditions, hot rolled and heat treated, then 30% cold worked,
Subsequently, annealing was performed at various temperatures. Furthermore, after performing a heat treatment at 600℃ for 3 hours, that is, a sensitization treatment, which was set based on conditions that predicted the lifespan under actual use, the particles of 3mm thickness x 10mm width x 40mm length were processed. Interfacial corrosion test piece and thickness 2mm x width 10mm
× A stress corrosion crack test piece with a length of 75 mm was taken. These intergranular corrosion test pieces and stress corrosion crack test pieces were polished with No. 320 emery paper and used in the experiments described below. First, two stress corrosion cracking test pieces were polished and then stacked and bent into a U shape to form a double U-bend test piece. Using an autoclave (high temperature and high pressure vessel), this was heated to 1000 ppm Cl - (as NaCl) at 325°C. It was immersed in the solution for 1500 hours. After the test was completed, the depth of the crack in the inner specimen was measured using a microscope. On the other hand, the intergranular corrosion test piece was 60% HNO 3 + 0.1% HF.
It was immersed in a boiling solution for 4 hours, and the corrosion weight loss at that time was measured. The test results obtained are shown as graphs in FIGS. 2 to 5, respectively. The reference numbers in each graph are the match numbers in Table 1. The graph shown in FIG. 2 is 0.02~
The basic composition is 0.03%C-25%Cr-0.6%Mo, and Ni
Alloys obtained with various contents were annealed by heating to 1150°C for 30 minutes, water-cooled, and sensitized by heating to 600°C for 3 hours. This is a compilation of data obtained from conducting field corrosion tests. The above annealing temperature is higher than that in the present invention. Even in an alloy with the same composition as the present alloy, when the annealing temperature is high, all Cr carbides precipitate at the grain boundaries when heated at 600℃ for 3 hours (sensitization treatment) and then air cooled. A Cr-deficient layer occurs,
It corrodes. Therefore, it is necessary to lower the annealing temperature. The graph shown in FIG. 3 shows the intergranular corrosion resistance of the alloy having the composition according to the present invention and the conventional material. Both have a composition of 0.02-0.03%C-0.6%Mo,
This is heated at 900℃ for 30 minutes to perform annealing treatment.
After cooling with water, it was heated at 600°C for 3 hours for sensitization treatment, and then cooled in air. In the diagram, the white circles are
The black circle indicates the case where the Cr content exceeds 30%, and the black circle indicates the case where the Cr content is 25 to 30%. As is clear from the illustrated graph,
When the Ni content is less than 40%, the corrosion rate is high in all cases, and when it is 40% or more, intergranular corrosion resistance improves. Therefore, the amount of Ni is 40
% or more is required. Next, Figure 4 shows 0.02%C-25%Cr-50%Ni
An alloy with the basic composition of which is added one or more of Mo, V and W at 900°C.
Annealed by heating for 30 minutes, then water cooled to 600℃
The intergranular corrosion resistance is shown when the sample is heated for 3 hours for sensitization treatment and then air cooled. Mo, V and W
It has been revealed that if the total amount of at least one of these is less than 0.5%, no effect of improving corrosion resistance is observed, but when it is added in an amount of 0.5% or more, intergranular corrosion resistance is improved. This is the added Mo,
This is thought to be because the Cr 2 O 3 film formed on the alloy surface can stably exist because V and W strengthen the passive film. Therefore, one or more of Mo, V and W must be present in a total amount of 0.5% or more. Figure 5 shows the effect of Ni content (%) on SCC resistance.
This is a graph showing the influence of Cr content (%) and Cr content (%). The test gold was annealed by heating at 900°C for 30 minutes, water-cooled, sensitized by heating at 600°C for 3 hours, and then air-cooled. In the diagram,
White circles indicate cases where no stress corrosion cracking was observed, and black circles indicate cases where cracks of 20μ or more were observed. Even if the Cr content is 20% or more as in the present invention, if the Ni content is less than 40%, intergranular stress corrosion cracking occurs. Therefore, a Ni content of 40% or more is required. As is clear from the schematic diagrams of the crystal grain structure of the alloy according to the present invention shown in Figures 6A to 6D, according to the present invention, hot working (see Figure 6A), softening annealing (see Figure 6Ro), The microcrystalline structure obtained through cold working (see Figure 6 C) and final annealing (recrystallization annealing) is not an oblate grain but a recrystallized regular grain structure, as shown in Figure 6 D. Therefore, at least most of the undissolved chromium carbide is precipitated within the grains, and almost no precipitation is observed at the new grain boundaries after recrystallization, so no sensitization is observed at the new grain boundaries. First, no deterioration in corrosion resistance, especially resistance to intergranular stress corrosion cracking, was observed. In particular, the alloy according to the present invention has a so-called recrystallized grain structure in which recrystallization has been sufficiently performed, so that the strength is not increased, so it is a preferable material for pipes and the like that require bending. Therefore, in the present invention, one of the critical significances of the specific treatment method for realizing a recrystallized grain structure in which at least most of the undissolved Cr carbides are precipitated within the grains is the final annealing condition, This means that the temperature is above 850°C and below the temperature at which carbon is not dissolved as a solid solution (of course, above the recrystallization temperature), and the range is as shown in FIG. On the other hand, FIGS. 7A to 7C show an alloy having almost the same alloy composition as the alloy according to the present invention, for example, under hot working conditions as described in JP-A No. 58-67854. This is a schematic diagram showing changes in the grain structure when performing cold working (see Figure 7B), annealing at a temperature below the recrystallization temperature, and as is clear from the illustrated results. , by performing cold working of 38% or more after hot working, the grain boundaries during hot rolling become flattened, and by final annealing, the annealing temperature is lower than the recrystallization temperature. As shown in FIG. 7C, the oblate grains are preserved as they are, and chromium carbide is finely precipitated inside the grains and at the grain boundaries along the slip band. As a result of the driving force caused by the introduction of strain during cold working, the diffusion of alloying elements (Cr, etc.) is promoted.
around the chromium carbide within a relatively short time during annealing.
The Cr-deficient layer has also been restored, resulting in a good structure from the perspective of corrosion resistance. As a result, the alloy in the illustrated example has an unrecrystallized structure with considerable residual strain, resulting in high strength, which is effective for high-strength members, but unsuitable for pipes that require bending. Not only is the alloy a good material, but its corrosion resistance is also somewhat degraded compared to the alloy of the present invention.

【表】【table】

【表】 含有していない。
[Table] Not contained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明における焼鈍温度をC含有量
に対して示すグラフ;第2図ないし第4図は、本
発明の実施例における耐粒界腐食性の試験結果を
示すグラフ;第5図は、同じく耐応力腐食割れ性
の試験結果を示すグラフ;第6図イないし第6図
ニは、本発明にかかるNi基高Cr合金の結晶粒組
織の加工熱処理時の変化を示す模式的説明図;お
よび第7図イないし第7図ハは、従来例に見られ
る合金の結晶粒組織の加工熱処理時の変化を示す
模式的説明図である。
Figure 1 is a graph showing the annealing temperature in the present invention versus C content; Figures 2 to 4 are graphs showing the intergranular corrosion resistance test results in Examples of the present invention; Figure 5 6 is a graph showing the stress corrosion cracking resistance test results; FIGS. 6A to 6D are schematic explanations showing changes in the grain structure of the Ni-based high Cr alloy according to the present invention during processing heat treatment. FIG. 7A to FIG. 7C are schematic explanatory diagrams showing changes in the crystal grain structure of an alloy in a conventional example during processing and heat treatment.

Claims (1)

【特許請求の範囲】 1 重量%で、 C:0.04%以下、Si:1.0%以下、 Mn:1.0%以下、P:0.030%以下、 S:0.02%以下、Ni:40〜70%、 Cr:25〜35%、Al:0.1〜0.5%、 Ti:0.05〜1.0%、 Mo、WおよびVの1種または2種以上を合計
で0.5〜5.0%、 残部、実質的にFe よりなり、少なくとも大部分の未固溶のCr炭化
物が粒内に析出した再結晶粒組織を有する、Cl-
イオンを含む高温水環境下における耐応力腐食割
れ性に優れたNi基高Cr合金。
[Claims] 1% by weight: C: 0.04% or less, Si: 1.0% or less, Mn: 1.0% or less, P: 0.030% or less, S: 0.02% or less, Ni: 40 to 70%, Cr: 25 to 35%, Al: 0.1 to 0.5%, Ti: 0.05 to 1.0%, one or more of Mo, W and V in a total of 0.5 to 5.0%, the balance consisting essentially of Fe, with at least a large Cl - has a recrystallized grain structure in which undissolved Cr carbides precipitate within the grains.
A Ni-based high Cr alloy with excellent stress corrosion cracking resistance in high-temperature water environments containing ions.
JP10409483A 1982-11-10 1983-06-13 Ni-base high-cr alloy having excellent resistance to stress corrosion cracking Granted JPS59229457A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP10409483A JPS59229457A (en) 1983-06-13 1983-06-13 Ni-base high-cr alloy having excellent resistance to stress corrosion cracking
EP83730106A EP0109350B1 (en) 1982-11-10 1983-11-09 Nickel-chromium alloy
DE8383730106T DE3382433D1 (en) 1982-11-10 1983-11-09 NICKEL CHROME ALLOY.
EP19890103551 EP0329192B1 (en) 1982-11-10 1983-11-09 Nickel-chromium alloy
DE19833382737 DE3382737T2 (en) 1982-11-10 1983-11-09 Nickel-chrome alloy.
US06/878,398 US4715909A (en) 1983-06-13 1986-06-19 Nickel-chromium alloy in stress corrosion cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10409483A JPS59229457A (en) 1983-06-13 1983-06-13 Ni-base high-cr alloy having excellent resistance to stress corrosion cracking

Publications (2)

Publication Number Publication Date
JPS59229457A JPS59229457A (en) 1984-12-22
JPH0153340B2 true JPH0153340B2 (en) 1989-11-14

Family

ID=14371529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10409483A Granted JPS59229457A (en) 1982-11-10 1983-06-13 Ni-base high-cr alloy having excellent resistance to stress corrosion cracking

Country Status (1)

Country Link
JP (1) JPS59229457A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100640A (en) * 1983-11-07 1985-06-04 Nippon Kokan Kk <Nkk> High-chromium alloy having excellent resistance to heat and corrosion
CN106756247B (en) * 2016-10-31 2018-10-26 重庆材料研究院有限公司 A kind of Spent Radioactive liquid processing device making material and preparation method thereof
CN106544547B (en) * 2016-10-31 2018-08-28 重庆材料研究院有限公司 A kind of nuclear field radioactive liquid waste processing corrosion resistant material and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57203739A (en) * 1981-06-11 1982-12-14 Sumitomo Metal Ind Ltd Precipitation hardening alloy of high stress corrosion cracking resistance for high strength oil well pipe
JPS57203738A (en) * 1981-06-11 1982-12-14 Sumitomo Metal Ind Ltd Precipitation hardening alloy of high stress corrosion cracking resistance for high-strength oil well pipe
JPS5811735A (en) * 1981-07-13 1983-01-22 Sumitomo Metal Ind Ltd Production of high-strength oil well pipe of superior stress corrosion cracking resistance
JPS5811736A (en) * 1981-07-13 1983-01-22 Sumitomo Metal Ind Ltd Production of high strength oil well pipe of superior stress corrosion cracking resistance
JPS5867854A (en) * 1981-10-16 1983-04-22 Sumitomo Metal Ind Ltd Preparation of nickel base high chromium alloy excellent in stress, corrosion cracking resistance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57203739A (en) * 1981-06-11 1982-12-14 Sumitomo Metal Ind Ltd Precipitation hardening alloy of high stress corrosion cracking resistance for high strength oil well pipe
JPS57203738A (en) * 1981-06-11 1982-12-14 Sumitomo Metal Ind Ltd Precipitation hardening alloy of high stress corrosion cracking resistance for high-strength oil well pipe
JPS5811735A (en) * 1981-07-13 1983-01-22 Sumitomo Metal Ind Ltd Production of high-strength oil well pipe of superior stress corrosion cracking resistance
JPS5811736A (en) * 1981-07-13 1983-01-22 Sumitomo Metal Ind Ltd Production of high strength oil well pipe of superior stress corrosion cracking resistance
JPS5867854A (en) * 1981-10-16 1983-04-22 Sumitomo Metal Ind Ltd Preparation of nickel base high chromium alloy excellent in stress, corrosion cracking resistance

Also Published As

Publication number Publication date
JPS59229457A (en) 1984-12-22

Similar Documents

Publication Publication Date Title
ES2567193T3 (en) Production method of stainless steels that has improved corrosion resistance
EP0109350A2 (en) Nickel-chromium alloy
EP3115472B1 (en) Method for producing two-phase ni-cr-mo alloys
JP5675958B2 (en) Heat generator tube for steam generator, steam generator and nuclear power plant
JPS6184348A (en) Ni alloy having superior resistance to intergranular corrosion and stress corrosion cracking and superior hot workability
JPH0153340B2 (en)
JPS6053108B2 (en) Manufacturing method of nickel-based high chromium alloy with excellent stress corrosion cracking resistance
JP7445125B2 (en) Austenitic stainless steel pipe
JP5070831B2 (en) Austenitic stainless steel
JP3140319B2 (en) Heat treatment method for Ni-base alloy with excellent corrosion resistance
JPH0114991B2 (en)
JPH0233781B2 (en)
JPH0372705B2 (en)
JP3263378B2 (en) Heat treatment method for Co-based alloy
JPS60245773A (en) Manufacture of highly corrosion resistant ni base alloy
JPH0153341B2 (en)
JPH06128671A (en) Alloy excellent in resistance to stress corrosion cracking
JPS629186B2 (en)
JPH03100148A (en) Heat treatment for high cr-ni-base alloy
JP2004091816A (en) Nickel-based alloy, heat treatment method for nickel-based alloy, and member for nuclear power with the use of nickel-based alloy
JPS5817823B2 (en) Heat treatment method for Ni-based alloy containing Cr
JPS60100629A (en) Production of austenite stainless steel
JPH05112842A (en) Ni-cr alloy low in exposing property and good in alkali corrosion resistance
JPH02247358A (en) Fe-base alloy for nuclear reactor member and its manufacture
JPS6123862B2 (en)