JPS6053108B2 - Manufacturing method of nickel-based high chromium alloy with excellent stress corrosion cracking resistance - Google Patents

Manufacturing method of nickel-based high chromium alloy with excellent stress corrosion cracking resistance

Info

Publication number
JPS6053108B2
JPS6053108B2 JP16601881A JP16601881A JPS6053108B2 JP S6053108 B2 JPS6053108 B2 JP S6053108B2 JP 16601881 A JP16601881 A JP 16601881A JP 16601881 A JP16601881 A JP 16601881A JP S6053108 B2 JPS6053108 B2 JP S6053108B2
Authority
JP
Japan
Prior art keywords
less
alloy
treatment
annealing
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16601881A
Other languages
Japanese (ja)
Other versions
JPS5867854A (en
Inventor
博夫 長野
孝男 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP16601881A priority Critical patent/JPS6053108B2/en
Publication of JPS5867854A publication Critical patent/JPS5867854A/en
Publication of JPS6053108B2 publication Critical patent/JPS6053108B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Description

【発明の詳細な説明】 この発明は、耐応力腐食割れ性にすぐれ、しかもすぐ
れた耐応力腐食割れ性が溶接やその後のSE(Stre
ssrelief)熱処理によつても低下しないニッケ
ル基高クロム合金の製造方法に関する。
Detailed Description of the Invention This invention has excellent stress corrosion cracking resistance, and the excellent stress corrosion cracking resistance can be applied to welding and subsequent SE (Str
ssrelief) relates to a method for producing a nickel-based high chromium alloy that does not deteriorate even after heat treatment.

純水またはCl−イオンを含む高温高圧環境に使用さ
れる化学設備の配管や熱交換器などの材料として、近年
30%Cr−60%Ni系合金が注目され、現在その実
用化が進められている。30%Cr−60%Ni系は、
他の鋼や合金材料に較べ応力腐食割れに対する抵抗性が
すぐれる特徴を有しているとの理由からである。
In recent years, 30%Cr-60%Ni alloy has attracted attention as a material for pipes and heat exchangers for chemical equipment used in high-temperature, high-pressure environments containing pure water or Cl- ions, and its practical application is currently underway. There is. 30%Cr-60%Ni system is
This is because it has superior resistance to stress corrosion cracking compared to other steels and alloy materials.

この材料のかかる有利性は確かであるがしかし、この材
料を用いてもなお、上記環境下での使用中、溶接熱影響
部、更には母材部分にも応力腐食割れ(以下、SCCと
略す)の生じる危険は避けられない。これは、成品の製
造工程で、または機器組立時の溶接及びその後のSR処
理(55()Cに加時間程度加熱保持)により、粒界に
Crカーバイドが析出して粒界近傍にCr欠乏層が生じ
、SCCを生じる結果、圓%Cr−60%Ni系本来の
性能が損われるためと考えられる。 本発明は、製造直
後の成品段階で圓%Cr−60%Ni系本来のすぐれた
耐SCC性を備えるのはもとより、その後の溶接、SR
処理によつてもSCCに対し鋭敏化しないNi基合金成
品の製造方法を提供しようとするものである。すなわち
本発明は、 1C0.04%以下、Sil.O%以下、Mnl.O%
以下、PO.O3%以下、SO.OO5%以下、Ni5
O〜80%、Crl5〜35%、AlO.5O%以下で
、MOO.5〜2.0%、WO.5〜2.0%の一方又
は双方を含有し、残部は実質的にFeからなる合金、2
C0.04%以下、Sil.O%以下、Mnl.O%以
下、PO.O3%以下、SO.OO5%以下、Ni5O
〜80%、Crl5〜35%、AlO.5O%以下、T
iO.2〜1.0%を含み、更にMOO.5〜2.0%
、WO.5〜2.0%の一方又は双方を含有し、残部は
実質的にFeからなる合金、上記何れかの合金を、熱間
加工後、加工率詔%以上て冷間圧延し、引き続き添付図
面の第1図に示すA(0.5、800)、B(0.5、
750)、C(101675)、D(100、675)
、E(1001800)の5点を結ぶ直線で囲まれる範
囲内で、かつ800℃を含まない加熱温度及び保持時間
で最終焼鈍を行うことを特徴とする耐SCC性にすぐれ
たニッケル基高クロム合金の製造方法、を要旨とする。
Although the advantages of this material are certain, even when this material is used, stress corrosion cracking (hereinafter abbreviated as SCC) occurs in the weld heat affected zone and even in the base metal during use under the above environment. ) is unavoidable. This is because Cr carbide precipitates at the grain boundaries during the manufacturing process of the finished product, or during welding during equipment assembly and subsequent SR treatment (heating and holding at 55()C for a period of time), resulting in a Cr-depleted layer near the grain boundaries. It is thought that this is because the original performance of the Cr-60% Ni system is impaired as a result of SCC occurring. The present invention not only has the excellent SCC resistance inherent to the Cr-60% Ni system at the finished product stage immediately after manufacture, but also has the ability to resist subsequent welding and SR.
The object of the present invention is to provide a method for manufacturing Ni-based alloy products that do not become sensitive to SCC even after treatment. That is, the present invention provides 1C of 0.04% or less, Sil. 0% or less, Mnl. O%
Below, P.O. O3% or less, SO. OO5% or less, Ni5
O~80%, Crl5~35%, AlO. 50% or less, MOO. 5-2.0%, WO. An alloy containing 5 to 2.0% of one or both of them, with the remainder consisting essentially of Fe, 2
C0.04% or less, Sil. 0% or less, Mnl. 0% or less, PO. O3% or less, SO. OO5% or less, Ni5O
~80%, Crl5-35%, AlO. 50% or less, T
iO. 2 to 1.0%, and further contains MOO. 5-2.0%
, W.O. An alloy containing 5 to 2.0% of one or both of the elements, with the remainder substantially consisting of Fe, any of the above alloys is hot-worked and then cold-rolled at a working rate of % or more, followed by the attached drawings. A (0.5, 800), B (0.5,
750), C (101675), D (100, 675)
A nickel-based high chromium alloy with excellent SCC resistance, characterized in that the final annealing is carried out within the range surrounded by the straight line connecting the five points of E (1001800) and at a heating temperature and holding time that do not include 800°C. The gist is the manufacturing method.

30%Cr−60%Ni系合金の場合、板及び管などの
成品は一般に、熱間加工後、30%以下の冷延加工を施
し、最終熱処理として、加熱温度950〜1100℃、
保持時間2〜3紛程度の短時間焼鈍を行つて製造される
In the case of 30%Cr-60%Ni alloy, finished products such as plates and tubes are generally subjected to cold rolling of 30% or less after hot working, and as a final heat treatment, the heating temperature is 950 to 1100 °C,
It is manufactured by performing short-time annealing with a holding time of about 2 to 3 times.

このような鋼種では、SR処理での鋭敏化を避けるため
、できるだけ焼鈍後の炭化物の析出を抑えなければなら
ないというのが一.般の常識的な見方である。すなわち
、炭化物の析出量が多いと、SR処理によるCrカーバ
イド析出が加速され、Cr欠乏による鋭敏化の原因とな
り易いのである。未固溶炭化物の析出は、焼鈍温度が高
い程、Cの固溶度が増す関係で、少なくな一る。また、
焼鈍前の冷間加工についてみれば、加工度が小さい程、
炭化物析出の核となるスリップバンドが小さいために炭
化物の析出は抑制される傾向となる。このような訳で、
30%Cr−60%Ni系合金には、先述の如き製造方
法が適用されてい・たわけであるが、しかしこの方法で
は焼鈍温度が高くなる関係上、一方では焼鈍の冷却過程
において鋭敏化する虞れもあり、更には高温焼鈍を経た
成品は、C固溶度の低い温度で実施されるSR処理によ
つて粒界に析出する炭化物の量が多いから、もしCrカ
ーバイドの析出域に入つた場合には、確実に鋭敏化して
しまうという危険をはらんでいるのである。しかるに、
前記本発明の方法に基いて、焼鈍前の冷間加工を従来よ
り高い加工度にて行うと、合金中には著しく多くのスリ
ップバンドが生じることとなる。
For such steel types, in order to avoid sensitization during SR treatment, it is necessary to suppress carbide precipitation after annealing as much as possible. This is a common sense view. That is, when the amount of carbide precipitation is large, Cr carbide precipitation due to SR treatment is accelerated, which tends to cause sensitization due to Cr deficiency. Precipitation of undissolved carbides decreases because the higher the annealing temperature, the more solid solubility of C increases. Also,
Regarding cold working before annealing, the smaller the degree of working, the
Since the slip band, which is the core of carbide precipitation, is small, carbide precipitation tends to be suppressed. For this reason,
The above-mentioned manufacturing method has been applied to the 30% Cr-60% Ni alloy, but since this method requires a high annealing temperature, there is a risk that the annealing may become sensitive during the cooling process. Furthermore, products that have undergone high-temperature annealing have a large amount of carbide precipitated at the grain boundaries due to the SR treatment performed at a temperature where C solid solubility is low. In some cases, there is a risk of becoming more sensitive. However,
If cold working before annealing is performed at a higher degree of working than before based on the method of the present invention, a significantly large number of slip bands will be generated in the alloy.

ここで、800℃未満、すなわち従来より可成り低目の
温度での焼鈍を実施すれば、従来lの場合とは全く逆に
短時間内で合金中には多量の炭化物が粒内に微細に分散
析出することとなる。焼鈍温度を低くするためにCの固
溶度が小さくなることによつて、炭化物の析出すべき量
が多くなるに加え、析出の核となるスリップバンドが予
め多量に発生しているため粒内ての枡出が効果的に保進
される結果である。しかもこの場合、鋭敏化の原因にな
るCrカーバイドの析出についてみれば、多量のスリッ
プバンドによつて析出が早められるにつれ、その析出に
よつて生じたCr欠乏層“の回復も有効に加速されるこ
とになり、このため焼鈍時、第1図のABCラインをこ
える程度の比較的短時間内にCr欠乏層の回復は完了す
る。Cr欠乏層の回復した成品は、少なくともその段階
では鋭敏化しておらず、合金本来の高耐SCC性を備え
ている。上記により得られた成品をSR処理した場合、
更に炭化物が析出するが、この量としてはきわめて少な
く止められる。
Here, if annealing is carried out at a temperature below 800°C, which is considerably lower than the conventional temperature, a large amount of carbides will form in the grains of the alloy in a short period of time, completely contrary to the conventional case. It will be dispersed and precipitated. As the solid solubility of C decreases due to the lower annealing temperature, the amount of carbides to be precipitated increases. This is the result of effective preservation of the situation. Furthermore, in this case, in terms of the precipitation of Cr carbide, which causes sensitization, as the precipitation is accelerated by a large amount of slip bands, the recovery of the Cr-depleted layer caused by the precipitation is also effectively accelerated. Therefore, during annealing, the recovery of the Cr-depleted layer is completed within a relatively short period of time, exceeding the line ABC in Figure 1.The product in which the Cr-depleted layer has been recovered is at least sensitive at that stage. The alloy has the inherent high SCC resistance.When the product obtained above is subjected to SR treatment,
Further, carbides are precipitated, but the amount is kept to be extremely small.

すなわち、SR処理により析出する炭化物の量は、基本
的には当該処理温度と前回の焼鈍温度のC固溶度の差に
比例的であり、従つて焼鈍温度が低ければ低い程SR処
理での析出量は少なくなる。また同時に、焼鈍段階で既
にCrカーバイドの析出が十分行なわれていると、析出
量は一段と低減されるのである。このようにSR処理に
よる炭化物の析出量が少なく、しかも前記の如く予め合
金中に炭化物が微細分散している場合は、たとえSR処
理によつてCrカーバイドが析出してもCr欠乏層は粒
内に分散した炭化物の周囲に生じるだけである。本来鋭
敏化とは、周知の如く粒界に沿つてCr欠乏層が連続発
生してはじめて起こる現象であり、前記ような分散状態
では鋭敏化の懸念は全くない。また、前記焼鈍後、溶接
とSR処理を受けた場合でも、合金中のC量が本発明の
ように0.04%以下のときには、鋭敏化は避けられる
In other words, the amount of carbide precipitated by SR treatment is basically proportional to the difference in C solid solubility between the treatment temperature and the previous annealing temperature, and therefore, the lower the annealing temperature, the greater the amount of carbide in the SR treatment. The amount of precipitation decreases. At the same time, if Cr carbide has already precipitated sufficiently at the annealing stage, the amount of precipitation can be further reduced. In this way, if the amount of carbide precipitated by the SR treatment is small, and if the carbide is already finely dispersed in the alloy as described above, even if Cr carbide is precipitated by the SR treatment, the Cr-depleted layer will be in the grains. It only occurs around the carbides that are dispersed in the carbide. As is well known, sensitization is a phenomenon that occurs only when a Cr-depleted layer is continuously generated along grain boundaries, and there is no concern about sensitization in the above-mentioned dispersed state. Further, even when subjected to welding and SR treatment after the annealing, sensitization can be avoided when the C content in the alloy is 0.04% or less as in the present invention.

溶接によつて高温に加熱された場合、析出炭化物は再度
その加熱温度に対応するC固溶度に従つて溶け込み、次
のSR処理によつて再び析出する軌跡を辿るが、このS
R処理の際、C量が0.04%をこえると、適切な加工
及び熱処理を施しても粒界にCr欠乏層を生じて割れ発
生の原因となる。以下、本発明における製造条件と使用
合金成分限定の理由について説明する。
When heated to a high temperature by welding, the precipitated carbide melts again according to the C solid solubility corresponding to the heating temperature, and follows a trajectory where it precipitates again in the next SR treatment, but this S
During the R treatment, if the C content exceeds 0.04%, a Cr-depleted layer will be formed at the grain boundaries, causing cracking even if appropriate processing and heat treatment are performed. The manufacturing conditions and reasons for limiting the alloy components used in the present invention will be explained below.

第1図は、最終焼鈍における加熱温度と保持時間がSR
処理後の耐SCC性に及ぼす影響を示す図表である。
Figure 1 shows the heating temperature and holding time in the final annealing.
It is a chart showing the influence on SCC resistance after treatment.

これは実験により得られたものであるが、実験は基本的
には後述の実施例に示す方法に則つた。実験に用いた合
金は、後述の第1表の成分をもつものであり、冷間加工
度としては羽%とした。図中0Δ口◇:割れ深さ0.0
57vn未満、●A?◆:同じく0.05Wr!n以上
、を各々示し、A,B,C,D,Eの各点を結んで囲ん
だところが本発明範囲である。加熱温度が800℃をこ
えると、C固溶度が高すぎて焼鈍による炭化物の析出が
不十分となり、その後のSR処理での析出量が増し粒界
への連続析出による鋭敏化を通して耐SCC性が劣化す
る。他方、675℃を下廻ると、いくら長時間保持ても
焼鈍本来の目的てある再結晶が十分達成されない。保持
時間については、0.5時間未満では、800℃未満の
加熱温度の場合は再結晶が十分進展し得ないととも、C
rカーバイド析出によるCr欠乏層の回復が不足しSR
処理後において耐SCC性が低下する。100時間をこ
えると、経済性の面で不利が大きい。
This was obtained through experiments, and the experiments were basically conducted in accordance with the method shown in Examples below. The alloys used in the experiment had the components shown in Table 1 below, and the degree of cold work was expressed in %. 0Δmouth◇ in the figure: Crack depth 0.0
Less than 57vn, ●A? ◆: Same as 0.05Wr! The scope of the present invention is defined by connecting and encircling the points A, B, C, D, and E. When the heating temperature exceeds 800°C, the solid solubility of C is too high and precipitation of carbides during annealing becomes insufficient, and the amount of precipitation increases in the subsequent SR treatment, which improves SCC resistance through sensitization due to continuous precipitation at grain boundaries. deteriorates. On the other hand, if the temperature is lower than 675°C, recrystallization, which is the original purpose of annealing, cannot be sufficiently achieved no matter how long the temperature is maintained. Regarding the holding time, if the holding time is less than 0.5 hours, recrystallization may not progress sufficiently in the case of a heating temperature of less than 800°C.
SR due to insufficient recovery of the Cr-depleted layer due to r-carbide precipitation.
SCC resistance decreases after treatment. If the duration exceeds 100 hours, there will be a significant economic disadvantage.

更に、加熱温度675〜800℃、保持時間0.5〜1
0CJIff間を満たしても、図中B点(イ).峙間、
750℃)とC点(10時間、675℃)を結ふ直線0
の下の領域では、再結晶、Cr欠乏層の回復がともに不
足する。第2図は、上記焼鈍前の冷間加工率と合金中C
量の溶接+SR処理後の酵℃C性に対する影響を示す図
である。
Furthermore, the heating temperature is 675 to 800°C, and the holding time is 0.5 to 1.
Even if the range 0CJIff is satisfied, point B (a) in the figure. Ichima,
750℃) and point C (10 hours, 675℃)
In the region below, both recrystallization and recovery of the Cr-depleted layer are insufficient. Figure 2 shows the cold working rate before annealing and C in the alloy.
FIG. 4 is a diagram showing the influence of the amount of heat on the fermentation temperature C property after welding + SR treatment.

この結果を得た実験も、前記同様基本的には後述の実施
例と同じ方法によつたもので、最終焼鈍は800℃×1
0h1使用合金は第1図の場合と同様である。図中、実
線にて囲んだところが本発明範囲を示す。記号の表わす
意味は、第1図と同じである。冷間加工率は、38%未
満では十分な量のスリップバンドが確保し得ず、焼鈍時
炭化物が粒内に分散した析出状態が得られないとともに
Cr欠乏層の回復促進の効果が不足して、前記の如き低
温で比較的短時間の焼鈍ではCr欠乏層の回復が望めな
いため、溶接+SR処理後は云うに及ばず焼鈍後の段階
ですでに鋭敏化の懸念がある。冷間加工率が詔%以上て
も、合金中C量が多すぎるときは、溶接+SR処理後良
好な耐SCC性が期待できない。一般にC量が多に程、
焼鈍によつて多量の炭化物が得られ易いが、反面、前記
冷間加工+焼鈍によつて析出した炭化物が溶接を受けて
再度溶け、SR処理によつて再析出する炭化物の量が増
し、Crカーバイドの析出による粒界近傍でのCr欠乏
が回避し難くなる。鋭敏化の原因になるこの粒界近傍で
のCr欠乏を防ぐためには、C量0.04%以下が必要
である。次に、本発明対象合金の成分限定(Cを除く)
について記す。Si,Mn,Al:何れも脱酸元素であ
り、各下限値以下では効果がなく、また同じく上限値を
こえると、効果が飽和する許りか、合金の清浄度の劣化
を来たす。
The experiment that yielded this result was basically conducted in the same manner as in the examples described below, and the final annealing was performed at 800°C x 1
The alloy used in 0h1 is the same as in the case of FIG. In the figure, the area surrounded by a solid line indicates the scope of the present invention. The meanings of the symbols are the same as in FIG. If the cold working rate is less than 38%, a sufficient amount of slip bands cannot be secured, and a precipitation state in which carbides are dispersed within the grains during annealing cannot be obtained, and the effect of promoting recovery of the Cr-depleted layer is insufficient. Since recovery of the Cr-depleted layer cannot be expected by annealing at a low temperature and for a relatively short time as described above, there is a concern that sensitization may occur not only after welding + SR treatment but also at the stage after annealing. Even if the cold working rate is 1% or more, if the amount of C in the alloy is too large, good SCC resistance cannot be expected after welding + SR treatment. Generally, the higher the amount of C, the
Although it is easy to obtain a large amount of carbide by annealing, on the other hand, the carbide precipitated by the cold working + annealing melts again during welding, and the amount of reprecipitated carbide increases by the SR treatment. It becomes difficult to avoid Cr deficiency near grain boundaries due to carbide precipitation. In order to prevent Cr deficiency near the grain boundaries, which causes sensitization, a C content of 0.04% or less is required. Next, limit the ingredients of the alloy subject to the present invention (excluding C)
I will write about. Si, Mn, Al: All are deoxidizing elements, and below their respective lower limits they are ineffective, and when they exceed their upper limits, their effects become saturated and the cleanliness of the alloy deteriorates.

Ni:耐食性向上の効果著しく、C1−を含む高温水中
およびアルカリ溶液(NaOFI)環境下でのSCCに
対する抵抗性を改善する基幹元素であり、50%以上の
含有できわめて高い耐食性が期待できる。
Ni: It is a key element that has a remarkable effect of improving corrosion resistance and improves resistance to SCC in high-temperature water containing C1- and in an alkaline solution (NaOFI) environment, and extremely high corrosion resistance can be expected with a content of 50% or more.

一方80%をこえるとその効果は飽和し、添加できるC
r量が制限を受けるので、80%以下とした。Cr:N
i同様、耐食性向上に必須の元素である。
On the other hand, if it exceeds 80%, the effect is saturated and the amount of C that can be added is
Since the r amount is limited, it was set to 80% or less. Cr:N
Like i, it is an essential element for improving corrosion resistance.

15%未満では効果が不足し、他方35%をこえ”ると
熱間加工性の劣化が著しい。
If it is less than 15%, the effect is insufficient, and if it exceeds 35%, the hot workability deteriorates significantly.

Ti:炭化物形成元素であり、鋭敏化処理によつてCを
TiCとして固定するため、有害なCrカーバイドの析
出抑制に有効てある。
Ti: A carbide-forming element, and because C is fixed as TiC through sensitization treatment, it is effective in suppressing the precipitation of harmful Cr carbide.

0.2%未満てはその効果が十分には期待できず、1.
0%を上廻ると合金清浄度の点で問題となる。
If it is less than 0.2%, the effect cannot be fully expected; 1.
If it exceeds 0%, problems arise in terms of alloy cleanliness.

合金成分中、C,Crが比較的低い合金の場合は、特に
Tiを添加する必要はない。MO,W:これらは不働態
皮膜の強化に有効な成分であり、その添加は耐食性改善
をもたらす、・とくに、濃化C卜によるSCCの発生を
遅延させるのに効果的であるが、何れも0.5%以上添
加しないとこのような効果の発現はみられず、2.0%
をこえると合金の清浄度の悪化を惹起する。
In the case of an alloy in which C and Cr are relatively low in the alloy components, it is not necessary to add Ti. MO, W: These are components that are effective in strengthening the passive film, and their addition improves corrosion resistance.In particular, they are effective in delaying the occurrence of SCC caused by concentrated carbon. This effect is not observed unless 0.5% or more is added, and 2.0%
Exceeding this will cause deterioration in the cleanliness of the alloy.

P,S:何れも不純物成分であつて、Pは0.030%
を、Sは0.005%をこえると熱間加工性を害する。
P, S: Both are impurity components, P is 0.030%
If S exceeds 0.005%, hot workability will be impaired.

次に、本発明の実施例について説明する。Next, examples of the present invention will be described.

第1表に示す(4)〜(L)の各成分をもつ合金を30
kg真空溶製し、鍛伸、軟化処理後、第2表に示す各条
件にて冷間加工、最終焼鈍を施した。
30 alloys having each of the components (4) to (L) shown in Table 1
After vacuum melting, forging and softening, cold working and final annealing were performed under the conditions shown in Table 2.

その後更に、550℃、2C@間の低温熱処理(SR処
理に相当)を施し、またはTIG溶接(ナメ付、60A
1フエラーなし)を行なつてからSR処理として上記同
様の低温熱処理を施し、これらの材料から2順厚×10
m巾×75wm長の試験片を2枚ずつ採取した。この2
枚の試験片を重ね合せてU字型に曲げ、これをさらに5
TnIn拘束して、いわゆる二重U字曲げ試験片となし
、これを3eのオートクレーブに貯めた、300ppm
C1−を含有する非脱気300℃の高温水中に100時
間浸漬した。試験後、U字型の内側の試験片について断
面の割れ深さを調査した。結果をまとめて第2表1〜■
に示す。第2表1及び■,■において、冷延加工度、焼
鈍条件が本発明範囲内のもの(1)〜(54)は、SC
Cの最大深さが低温熱処理材、溶接+SR処理材の何れ
の状態ででも0.03Tm以下というきわめて小さな値
を示した。
After that, low-temperature heat treatment (corresponding to SR treatment) at 550℃ and 2C@ is performed, or TIG welding (with a 60A
1 (no error) and then subjected to the same low-temperature heat treatment as above as SR treatment, and from these materials 2 sequential thickness x 10
Two test pieces each measuring m width x 75 wm length were taken. This 2
Stack two test pieces and bend them into a U-shape.
TnIn was restrained to form a so-called double U-shaped bending test piece, which was stored in a 3e autoclave at 300 ppm.
It was immersed for 100 hours in non-degassed high temperature water of 300°C containing C1-. After the test, the crack depth in the cross section of the U-shaped inner test piece was investigated. The results are summarized in Table 2 1~■
Shown below. In Table 2 1 and ■ and ■, those (1) to (54) whose degree of cold rolling and annealing conditions are within the range of the present invention are SC
The maximum depth of C showed an extremely small value of 0.03 Tm or less in both the low temperature heat treated material and the welded + SR treated material.

これに対し、比較例では、(55)〜(82)は焼鈍条
件が本発明範囲外のため低温熱処理材でのSCCが本発
明例より格段に大きく、また(75)〜(82)は冷延
加工度が本発明範囲を下廻るため、溶接+SR処理材の
耐SCC性が著しく劣つている。更に(55)〜(58
)は合金中のC量が高すぎて、溶接+SR処理材のSC
Cが悪くなつている。因みに、常法によつて製造した従
来例(83)〜(84)より、例え合金中C量を低くし
ても、低温熱処理材、溶接+SR処理材の耐.5CC性
は殆んど改善されないことが判る。以上の説明から明ら
かなように本発明の製造方法によれば、耐応力腐食割れ
性にすぐれる30%Cr−60%Ni系合金のその本来
の特性を備えしかもその特性が成品段階のみならず、そ
の後溶接または更にSR処理の影響を受けた場合も良好
なまた維持される合金成品を得ることができ、したがつ
て本発明は溶接組立される耐食機器に60%N1一30
%Cr合金のすぐれた耐食性能をそのまま生かすことを
可能にするという意味で、きわめて利用価値の高い発明
ということができる。
On the other hand, in the comparative examples (55) to (82), the annealing conditions are outside the range of the present invention, so the SCC of the low-temperature heat-treated material is much larger than that of the present invention examples, and (75) to (82) are Since the degree of stretching is below the range of the present invention, the SCC resistance of the welded + SR treated material is significantly inferior. Furthermore, (55) to (58
), the amount of C in the alloy is too high, so welding + SC of SR treated material
C is getting worse. Incidentally, from conventional examples (83) to (84) manufactured by conventional methods, even if the amount of C in the alloy is lowered, the resistance of the low temperature heat treated material and the welded + SR treated material is lower. It can be seen that the 5CC properties are hardly improved. As is clear from the above explanation, according to the manufacturing method of the present invention, the original characteristics of the 30% Cr-60% Ni alloy, which has excellent stress corrosion cracking resistance, can be achieved not only at the finished product stage. , it is possible to obtain an alloy product which is also good and maintained even when subjected to subsequent welding or further SR treatment, and thus the present invention provides for welding-assembled corrosion-resistant equipment with 60% N1-30
This invention can be said to have extremely high utility value in the sense that it makes it possible to take advantage of the excellent corrosion resistance of the %Cr alloy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は60%N1−30%Cr合金の最終焼鈍の加熱
温度と保持時間力δR処理後の耐SCC性に及ぼす影響
を示す図、第2図は同じく冷延加工度と合金中C量の溶
接+SR処理後の耐SCC性に対する影響を表わす図で
ある。
Figure 1 shows the influence of final annealing heating temperature and holding time on SCC resistance after δR treatment for a 60%N1-30%Cr alloy, and Figure 2 also shows the cold rolling degree and C content in the alloy. FIG. 3 is a diagram showing the influence on SCC resistance after welding + SR treatment.

Claims (1)

【特許請求の範囲】 1 C0.04%以下、Si1.0%以下、Mn1.0
%以下、P0.03%以下、S0.005%以下、Ni
50%〜80%、Cr15〜35%、Al0.50%以
下で、Mo0.5〜2.0%、W0.5〜2.0%の一
方または双方を含有し、残部は実質的にFeからなる合
金を、熱間加工後、加工率38%以上で冷間圧延し、引
き続き添付図面の第1図に示すA(0.5、800)、
B(0.5、750)、C(10、675)、D(10
0、675)、E(100、800)の5点を結ぶ直線
で囲まれる範囲内で、かつ800℃を含まない加熱温度
及び保持時間で最終焼鈍を行うことを特徴とする耐応力
腐食割れ性にすぐれたニッケル基高クロム合金の製造方
法。 2 C0.04%以下、Si1.0%以下、Mn1.0
%以下、P0.03%以下、S0.005%以下、Ni
50〜80%、Cr15〜35%、Al0.50%以下
、Ti0.2〜1.0%を含み、更にMo0.5〜2.
0%、W0.5〜2.0%の一方または双方を含有し残
部は実質的にFeからなる合金を、熱間加工後、加工率
38%以上で冷間圧延し、引き続き添付図面の第1図に
示すA(0.5、800)、B(0.5、750)、C
(10、675)、D(100、675)、E(100
、800)の5点を結ぶ直線で囲まれる範囲内で、かつ
800℃を含まない加熱温る耐応力腐食割れ性にすぐれ
たニッケル基高クロム合金の製造方法。
[Claims] 1 C 0.04% or less, Si 1.0% or less, Mn 1.0
% or less, P0.03% or less, S0.005% or less, Ni
50% to 80%, Cr15 to 35%, Al 0.50% or less, and contains one or both of Mo0.5 to 2.0% and W0.5 to 2.0%, and the remainder is substantially made of Fe. After hot working, the alloy is cold rolled at a working rate of 38% or more, and then A(0.5,800) shown in FIG. 1 of the attached drawings,
B (0.5, 750), C (10, 675), D (10
0, 675), E (100, 800), and the final annealing is performed at a heating temperature and holding time that do not include 800°C. A method for producing a nickel-based high chromium alloy with excellent properties. 2 C0.04% or less, Si1.0% or less, Mn1.0
% or less, P0.03% or less, S0.005% or less, Ni
50 to 80%, Cr 15 to 35%, Al 0.50% or less, Ti 0.2 to 1.0%, and further Mo 0.5 to 2.
After hot working, an alloy containing one or both of 0% and 0.5 to 2.0% W, with the remainder substantially consisting of Fe, is cold rolled at a working rate of 38% or more, and then the alloy shown in FIG. A (0.5, 800), B (0.5, 750), C shown in Figure 1
(10, 675), D (100, 675), E (100
A method for producing a nickel-based high chromium alloy having excellent stress corrosion cracking resistance by heating within the range surrounded by the straight line connecting the five points of , 800) and not including 800°C.
JP16601881A 1981-10-16 1981-10-16 Manufacturing method of nickel-based high chromium alloy with excellent stress corrosion cracking resistance Expired JPS6053108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16601881A JPS6053108B2 (en) 1981-10-16 1981-10-16 Manufacturing method of nickel-based high chromium alloy with excellent stress corrosion cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16601881A JPS6053108B2 (en) 1981-10-16 1981-10-16 Manufacturing method of nickel-based high chromium alloy with excellent stress corrosion cracking resistance

Publications (2)

Publication Number Publication Date
JPS5867854A JPS5867854A (en) 1983-04-22
JPS6053108B2 true JPS6053108B2 (en) 1985-11-22

Family

ID=15823384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16601881A Expired JPS6053108B2 (en) 1981-10-16 1981-10-16 Manufacturing method of nickel-based high chromium alloy with excellent stress corrosion cracking resistance

Country Status (1)

Country Link
JP (1) JPS6053108B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10550451B2 (en) 2015-06-26 2020-02-04 Nippon Steel Corporation Ni-based alloy pipe or tube for nuclear power

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6050134A (en) * 1983-08-29 1985-03-19 Sumitomo Metal Ind Ltd Alloy for heat exchanger tube
JPS59229457A (en) * 1983-06-13 1984-12-22 Sumitomo Metal Ind Ltd Ni-base high-cr alloy having excellent resistance to stress corrosion cracking
JPS59211545A (en) * 1983-05-18 1984-11-30 Sumitomo Metal Ind Ltd Nickel alloy with superior stress corrosion cracking resistance
JPS60100655A (en) * 1983-11-04 1985-06-04 Mitsubishi Metal Corp Production of high cr-containing ni-base alloy member having excellent resistance to stress corrosion cracking
JPS60100640A (en) * 1983-11-07 1985-06-04 Nippon Kokan Kk <Nkk> High-chromium alloy having excellent resistance to heat and corrosion
JP3976003B2 (en) 2002-12-25 2007-09-12 住友金属工業株式会社 Nickel-based alloy and method for producing the same
EP2281908B1 (en) 2008-05-22 2019-10-23 Nippon Steel Corporation High-strength ni-base alloy pipe for use in nuclear power plants and process for production thereof
CN112813369B (en) * 2020-12-31 2022-04-12 北京钢研高纳科技股份有限公司 High-strength high-elasticity high-plasticity nickel-based high-temperature alloy strip and preparation process thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10550451B2 (en) 2015-06-26 2020-02-04 Nippon Steel Corporation Ni-based alloy pipe or tube for nuclear power

Also Published As

Publication number Publication date
JPS5867854A (en) 1983-04-22

Similar Documents

Publication Publication Date Title
JPS6053108B2 (en) Manufacturing method of nickel-based high chromium alloy with excellent stress corrosion cracking resistance
JPH0571647B2 (en)
JPH04191319A (en) Manufacture of low carbon martensitic stainless steel line pipe
JPH01275738A (en) Austenite stainless steel
JP2017020054A (en) Stainless steel and stainless steel tube
JPS5940901B2 (en) Corrosion-resistant austenitic stainless steel
JP3848463B2 (en) High strength austenitic heat resistant steel with excellent weldability and method for producing the same
JP3417016B2 (en) Manufacturing method of high toughness martensitic stainless steel seamless steel pipe with excellent hot workability and corrosion resistance
JPS5887224A (en) Production of boiler tube made of austenitic stainless steel
JPH0114991B2 (en)
JPH0247526B2 (en)
JP2017128775A (en) Stainless steel and stainless steel pipe
JPH05311342A (en) Ferritic heat resistant steel excellent in creep strength
JP3687249B2 (en) 2.25Cr steel softening heat treatment method
JPS60258411A (en) Method for working welded steel tube
JPH0382739A (en) Duplex stainless steel excellent in hot workability and corrosion resistance
JPH10237602A (en) Niobium-containing ferritic stainless steel excellent in low temperature toughness of hot rolled sheet
JP7200869B2 (en) Manufacturing method of stainless steel pipe
JP2004018897A (en) High-chromium alloy steel and turbine rotor using this
JP7277751B2 (en) Manufacturing method of stainless steel pipe
JPH069693B2 (en) Method for producing duplex stainless steel pipe with excellent corrosion resistance
JP3589156B2 (en) High strength steel with excellent fracture toughness
JP2583114B2 (en) Low carbon Cr-Mo steel sheet with excellent weld cracking resistance
JPS60100621A (en) Manufacture of austenitic stainless steel with superior strength at high temperature
JPH07188866A (en) Highly pure ferritic stainless steel excellent in resistance to corrosion with nitric acid