JPS5867854A - Preparation of nickel base high chromium alloy excellent in stress, corrosion cracking resistance - Google Patents

Preparation of nickel base high chromium alloy excellent in stress, corrosion cracking resistance

Info

Publication number
JPS5867854A
JPS5867854A JP16601881A JP16601881A JPS5867854A JP S5867854 A JPS5867854 A JP S5867854A JP 16601881 A JP16601881 A JP 16601881A JP 16601881 A JP16601881 A JP 16601881A JP S5867854 A JPS5867854 A JP S5867854A
Authority
JP
Japan
Prior art keywords
less
alloy
annealing
treatment
carried out
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16601881A
Other languages
Japanese (ja)
Other versions
JPS6053108B2 (en
Inventor
Hiroo Nagano
長野 博夫
Takao Minami
孝男 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP16601881A priority Critical patent/JPS6053108B2/en
Publication of JPS5867854A publication Critical patent/JPS5867854A/en
Publication of JPS6053108B2 publication Critical patent/JPS6053108B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To obtain the titled alloy in which excellent stress corrosion cracking resistance is not lowered by welding or SR treatment after welding, by a method wherein the cold working ratio of a 30% Cr-60% Ni type alloy after hot working is increased and low temp. long-term annealing within a specific range is carried out as final heat treatment. CONSTITUTION:An alloy containing, on the basis of %, 0.04 or less C, 1.0 or less Si, 1.0 or less Mn, 0.03 or less P, 0.005 or less S, 50-80 Ni, 15-35 Cr, 0.50 or less Al, in addition, 0.5-2.0 Mo and/or 0.5-2.0 W and, according to necessity, 0.2-1.0 Ti and comprises the remainder of substantially Fe is subjected to hot rolling and, after cold rolling is carried out at a working ratio of 38%, final annealing is successively carried out under the heating temp. and the holding time conditions within a range encircled by straight lines connecting points A, B, C, D and E in the drawing. In this case, when a cold working ratio is increased, an extremely large amount of slip bands are generatd in the alloy, and therefore, if annealing is carried out at 850 deg.C or less remarkably lower than a conventional temp., a large amount of carbide in the alloy can be finely dispersed and precipitated in grain within a short time in an opposite manner as compared with a conventional method.

Description

【発明の詳細な説明】 この発明は、耐応力腐食割れ性にすぐれ、しかもすぐれ
た耐応力腐食割れ性が溶接やその後のSR(Stres
s relief)熱処理によっても低下しないニッケ
ル基高クロム合金の製造方法に関する。
Detailed Description of the Invention This invention has excellent stress corrosion cracking resistance, and the excellent stress corrosion cracking resistance can be applied to welding and subsequent SR (Stress Corrosion).
The present invention relates to a method for producing a nickel-based high chromium alloy that does not deteriorate even after heat treatment.

純水またはC6−イオンを含む高温高圧環境に使用され
る化学設備の配管や熱交換器などの材料として、近年3
0%Cr−60%Ni系合金が注目され、現在その実用
化が進められている。30%Cr−60%Ni系は、他
の鋼や合金材料に較べ応力腐食割れに対する抵抗性がす
ぐれる特徴を有しているとの理由からである。この材料
のかかる有利性は確かであるがしかし、この材料を用い
てもなお、上記環境下での使用中、溶接熱影響部、更に
は母材部分にも応力腐食割れ(以下、SCCと略す)の
生じる危険は避けられない。これは、成品の製造工程で
、または機器組立時の溶接及びその後のSR処理(55
0°Cに20時間程度加熱保持)によシ、粒界にCrカ
ーバイドが析出して粒界近傍にCr欠乏層が生じ、SC
Cを生じる結果、30 ’1bcr−60ZNi系本来
の性能が損われるためと考えられる。
In recent years, three
A 0%Cr-60%Ni alloy has attracted attention, and its practical use is currently underway. This is because the 30% Cr-60% Ni system is characterized by superior resistance to stress corrosion cracking compared to other steels and alloy materials. Although the advantages of this material are certain, even when this material is used, stress corrosion cracking (hereinafter abbreviated as SCC) occurs in the weld heat affected zone and even in the base metal during use under the above environment. ) is unavoidable. This is done during the manufacturing process of finished products or during welding during equipment assembly and subsequent SR treatment (55
After heating and holding at 0°C for about 20 hours, Cr carbide precipitates at the grain boundaries, creating a Cr-depleted layer near the grain boundaries, and SC
This is considered to be because the original performance of the 30'1bcr-60ZNi system is impaired as a result of the generation of C.

本発明は、製造直後の成品段階で30%Cr−60%N
i系本来のすぐれた耐SCC性を備えるのはもとより、
その後の溶接、SR処理によってもSCCに対し鋭敏化
しないNi基合金成品の製造方法を提供しようとするも
のである。
The present invention uses 30%Cr-60%N at the finished product stage immediately after manufacture.
In addition to having the excellent SCC resistance inherent to the i series,
The present invention aims to provide a method for manufacturing a Ni-based alloy product that does not become sensitized to SCC even after subsequent welding and SR treatment.

すなわち本発明は、 (i)C0,04チ以下、Si 1.0%以下、Mn 
1.0%以下、Po、03%以下、SO,005%以下
、(’Ji 50〜80 %、Cr15〜35%、Ag
0.50%以下で、必要に応じTi0.2〜1.0%を
含み、残部は実質的にFeからなる合金、■C0,04
%以下、Si1.0%以下、Mn1.0%以下、Po、
03 %以下、SO,005%以下、N150〜80%
、Cr15〜35%、AJ 0.50%以Fで、Mo 
0.5〜2.0 ’%、Wo、5〜2.0チの一方また
は双方を含み、更に必要に応じTi 0.2〜1.0チ
を含有し、残部は実質的にFeからなる合金、 上記前れかの合金を、熱間加工後、加工率38%以上で
冷間圧延し、引き続き添付図面の@1図に示すA(0,
5,850)、B (0,5,750)、C(1代67
5)、D(100,675)、E(100,850)の
5点を結ぶ直線で囲まれる範囲内の加熱温度及び保持時
間で最終焼鈍を咎うことを特徴とする耐SCC性にすぐ
れたニッケル基高クロム合金の製造方法、を要旨とする
That is, the present invention provides (i) C0.04 or less, Si 1.0% or less, Mn
1.0% or less, Po, 03% or less, SO, 005% or less, ('Ji 50-80%, Cr15-35%, Ag
An alloy containing 0.50% or less and 0.2 to 1.0% of Ti as necessary, with the remainder essentially consisting of Fe, ■C0,04
% or less, Si 1.0% or less, Mn 1.0% or less, Po,
03% or less, SO, 005% or less, N150-80%
, Cr15-35%, AJ 0.50% or more F, Mo
0.5 to 2.0'%, Wo, 5 to 2.0%, or both of them, further containing 0.2 to 1.0% of Ti as necessary, and the remainder substantially consisting of Fe. Alloy, After hot working, the above alloy is cold rolled at a working rate of 38% or more, and then A(0,
5,850), B (0,5,750), C (1st generation 67
5) Excellent SCC resistance characterized by final annealing at a heating temperature and holding time within the range surrounded by the straight line connecting the five points D (100,675) and E (100,850). The gist of this paper is a method for producing a nickel-based high chromium alloy.

30%Cr−60%Ni系合金の場合、板及び管などの
成品は一般に、熱間加工後、30%以下の冷延加110
0℃、保持時ll52〜300程度の短時間焼鈍を行っ
て製造される。このような鋼種では、S=R処理での鋭
敏化を避けるため、できるだけ焼鈍後の炭化物の析出を
抑えなければならないというのが一般の常識的な見方で
ある。すなわち、炭化物の析出量が多いと、SR処理に
よるCrカーバイド析出が加速され、Cr欠乏による鋭
敏化の原因となり易いのである。未固溶炭化物の析出は
、焼鈍温度が、高い程、Cの固溶度が増す関係で、少な
くなる。
In the case of 30%Cr-60%Ni alloy, finished products such as plates and tubes are generally cold-rolled to 110% or less after hot working.
It is manufactured by performing short-time annealing at 0° C. and a holding temperature of about 152 to 300. In order to avoid sensitization in the S=R treatment for such steel types, it is generally accepted that precipitation of carbides after annealing must be suppressed as much as possible. That is, when the amount of carbide precipitation is large, Cr carbide precipitation due to SR treatment is accelerated, which tends to cause sensitization due to Cr deficiency. Precipitation of undissolved carbides decreases because the higher the annealing temperature, the higher the solid solubility of C.

また、焼鈍前の冷間加工についてみれば、加工度が小さ
い程、炭化物析出の核となるスリップバンドが小さいた
めに炭化物の析出は抑制される傾向となる。このような
訳で、30%Cr−60%Ni系合金には、先述の如き
製造方法が適用されていたわけであるが、しかしこの方
法では焼鈍温度が高くなる関係上、一方では焼鈍の冷却
過程において鋭敏化する虞れもあり、更には高温焼鈍を
経た成品は、C固溶度の′低い温度で実施されるSR処
理によって粒界に析出する炭化物の量が多いから、もし
Crカーバイドの析出域に入った場合には、確実に鋭敏
化してしまうという危険をはらんでいるのである0 しかるに、前記本発明の方法に基いて、焼鈍前の冷間加
工を従来より高い加工度にて行うと、合金中には著しく
多くのスリップバンドが生じることとなる。ここで、8
50°C以下、すなわち従来より可II)低目の温度で
の焼鈍を実施すれば、従来の場合とは全く逆に短時間内
で合金中には多量の炭化物が粒内に微細に分散析出する
こととなる。
Furthermore, regarding cold working before annealing, the smaller the degree of working, the smaller the slip band that becomes the core of carbide precipitation, so carbide precipitation tends to be suppressed. For this reason, the manufacturing method described above has been applied to the 30%Cr-60%Ni alloy, but since this method requires a high annealing temperature, on the other hand, the cooling process of annealing is Furthermore, products that have undergone high-temperature annealing have a large amount of carbide precipitated at grain boundaries due to the SR treatment performed at a low temperature of C solid solubility, so if Cr carbide precipitates However, based on the method of the present invention, cold working before annealing is performed at a higher degree of working than before. This results in significantly more slip bands occurring in the alloy. Here, 8
If annealing is carried out at a temperature lower than 50°C, which is lower than conventional II), a large amount of carbides will be finely dispersed and precipitated within the grains in the alloy within a short time, completely contrary to the conventional case. I will do it.

焼鈍温度を低くするためにCの固溶度が小さくなること
によって、炭化物の析出すべき量が多くなるに加え、析
出の核となるスリップバンドが予め多量に発生している
ため粒内での析出が効果的に促進される結果である。し
かもこの場合、鋭敏化の原因になる0カーバイドの析出
についてみれば、多量のスリップバンドによって析出が
早められるにつれ、その析出によって生じたCr欠乏層
の回復も有効に加速されることになり、このため焼鈍時
、第1図のABC,ラインをこえる程度の比較的短時間
内に0欠乏層の回復は完了する。Cr欠乏層の回復した
成品は、少なくともその段階では鋭敏化しておらず、合
金本来の高耐SCC性を備えている。
As the solid solubility of C decreases due to the lower annealing temperature, the amount of carbides to be precipitated increases, and since a large amount of slip bands, which become the nucleus of precipitation, have already been generated, This is a result of effectively promoting precipitation. Moreover, in this case, regarding the precipitation of zero carbide, which causes sensitization, as the precipitation is accelerated by a large amount of slip bands, the recovery of the Cr-depleted layer caused by the precipitation is also effectively accelerated. During annealing, the recovery of the 0-depleted layer is completed within a relatively short time, just enough to cross the line ABC in FIG. A product in which the Cr-depleted layer has been recovered is not sensitized, at least at that stage, and has the high SCC resistance inherent to the alloy.

上記をこより得られた成品をSR処理した場合、更に炭
化物が析出するが、この量としてはきわめて少なく止め
られる。すなわち、SR処理により析出する炭化物の量
は、基本的には当該処理温度と11回の焼鈍温度のC固
溶度の差に比例的であり、従って焼鈍温度が低ければ低
い程SR処理での析出量は少なくなる。まだ同時に、焼
鈍段階で既にCrカーバイドの析出が十分性なわれてい
ると、析出量は一段と低減されるのである。このように
SR処理による炭化物の析出量が少なく、しかも前記の
如く予め合金中に炭化物が微細分散している場合は、た
とえSR処理によってCrカーバイドが析出してもCr
欠乏層は粒内に分散した炭化物の周囲に生じるだけであ
る。本来鋭敏化とは、周知の如く粒界に沿ってCr欠乏
層が連続発生してはじめて起こる現象であり、前記よう
な分散状態では鋭敏化の懸念は全くない。
When the product obtained from the above is subjected to SR treatment, carbides are further precipitated, but the amount can be kept extremely small. In other words, the amount of carbide precipitated by the SR treatment is basically proportional to the difference in C solid solubility between the treatment temperature and the 11th annealing temperature, and therefore, the lower the annealing temperature, the greater the amount of carbide in the SR treatment. The amount of precipitation decreases. At the same time, if the precipitation of Cr carbide is already sufficient during the annealing stage, the amount of precipitation is further reduced. In this way, if the amount of carbide precipitated by the SR treatment is small, and if the carbide is finely dispersed in the alloy in advance as described above, even if Cr carbide is precipitated by the SR treatment, the Cr
The depletion layer only occurs around the carbides dispersed within the grains. As is well known, sensitization is a phenomenon that occurs only when Cr-depleted layers are continuously generated along grain boundaries, and there is no concern about sensitization in the above-mentioned dispersed state.

また、前記焼鈍後、溶接とSR処理を受けた場合でも、
合金中のC量が本発明のように0.04%以下のときに
は、鋭敏化は避けられる。溶接によって高温に加熱され
た場合、析出炭化物は再度その加熱温度に対応するC固
溶度に従って溶は込み、次のSR処理によって再び析出
する軌跡を辿るが、このSR処理の際、C量が0.04
%をこえると、適切な加工及び熱処理を施しても粒界に
Cr欠乏層を生じて割れ発生の原因となる。
In addition, even when subjected to welding and SR treatment after the annealing,
When the amount of C in the alloy is 0.04% or less as in the present invention, sensitization can be avoided. When heated to a high temperature by welding, precipitated carbides re-incorporate according to the C solid solubility corresponding to the heating temperature, and follow a trajectory where they precipitate again in the next SR treatment, but during this SR treatment, the amount of C increases. 0.04
%, even if appropriate processing and heat treatment are performed, a Cr-depleted layer will be formed at the grain boundaries, causing cracks to occur.

以下、本発明における製造条件と使用合金成分限定の理
由について説明する。
The manufacturing conditions and reasons for limiting the alloy components used in the present invention will be explained below.

第1図は、最終焼鈍における加熱温度と保持時間がSR
処理後の耐SCC性に及ぼす影響を示す図表である。こ
れは実験により得られたものであるが、実験は基本的に
は後述の実施例に示す方法に則った。実験に用いた合金
は、後述の第1表の成分をもつものであり、冷間加工度
としては38%とした。図中、O:割れ深さ0.05a
未満、X:同じく0.05回以上、を各々示し、A、 
B、 C,D、 Eの各点を結んで囲んだところが本発
明範囲である。
Figure 1 shows the heating temperature and holding time in the final annealing.
It is a chart showing the influence on SCC resistance after treatment. This was obtained through experiments, and the experiments were basically conducted in accordance with the method shown in Examples below. The alloy used in the experiment had the components shown in Table 1 below, and the degree of cold working was 38%. In the figure, O: crack depth 0.05a
less than, X: also indicates 0.05 times or more, A,
The scope of the present invention is surrounded by connecting points B, C, D, and E.

加熱温度が850°Cをこえると、C固溶度が高すぎて
焼鈍による炭化物の析出が不十分となり、その後のSR
処理での折血量が増し粒界への連続析出による鋭敏化を
通して耐SCC性が劣化する。他方、675℃を下廻る
と、いくら長時間保持でも焼鈍本来の目的である再結晶
が十分達成されない。保持時11」Jについては、01
5時間未満では、850′c以下の加糖温度の場合は再
結晶が十分進展し得ないとともに、Crカーバイド析出
にょるCr欠乏層の回復が不足しSR処理後において耐
SCC性が低下する。
When the heating temperature exceeds 850°C, the C solid solubility is too high and precipitation of carbides by annealing is insufficient, resulting in poor SR
The amount of broken blood during treatment increases and SCC resistance deteriorates through sensitization due to continuous precipitation at grain boundaries. On the other hand, if the temperature is lower than 675°C, recrystallization, which is the original purpose of annealing, cannot be sufficiently achieved no matter how long the temperature is maintained. When holding 11"J, 01
If the sugaring temperature is less than 5 hours, recrystallization cannot proceed sufficiently, and recovery of the Cr-deficient layer due to Cr carbide precipitation is insufficient, resulting in a decrease in SCC resistance after the SR treatment.

100時間をこえると、経済性の而で不利が大きい。If it exceeds 100 hours, there is a big disadvantage in terms of economy.

f、 ニ、加熱温度675〜850′c1保持時間0.
5〜100時間を満たしても、図中B点(025時間、
750c)と0点(10時四重675℃〕を結ぶ直線B
Cの下の領域では、再結晶、Cr欠乏層の回復がともp
こ不足する。
f, d. Heating temperature 675-850'c1 Holding time 0.
Even if 5 to 100 hours are satisfied, point B in the figure (025 hours,
Straight line B connecting 750c) and 0 point (10 o'clock quadruple 675℃)
In the region under C, recrystallization and recovery of the Cr-depleted layer occur together with p
There is a shortage of this.

第2図は、上記焼鈍前の冷間加工率と合金中C量の溶接
+SRSR処理後SCC性に対する影響を示す図である
。この結果を得た実験も、前記同様基本的には後述の実
施例と同じ方法によったもので、最終焼鈍は800°c
X10hx使用合金は第1図の場合と同様である。図中
、実線にて囲んだところが本発明範囲を示す。OlXの
表わす意味は、第1図と同じである。冷間加工率は、3
8qb未満では十分なIA:のスリップバンドが確保し
得す、焼鈍時炭化物が粒内に微細に分散した析出状態が
得られないとともに0欠乏層の回復促進の効果が不足し
て、前記の如き低温で比較的短時間の焼鈍ではCr欠乏
層の回復が望めないため、溶接+SRSR処理後うに及
ばず焼鈍後の段階ですでに鋭敏化の懸念がある。冷間加
工率が38%以上でも、合金中C量が多すぎるときは、
溶接+SR処理後良好な耐SCC性が期待できない。一
般にc歌が多い程、焼鈍によって多量の炭化物が得9れ
易いが、反面、前記冷間加工+焼鈍によって析出した炭
化物が溶接を受けて再度溶け、SR処理によって再析出
する炭化物の量が増し、0カーバイドの析出による粒界
近傍での0欠乏が回避し難くなる◇鋭敏化の原因になる
この粒界近傍での0欠乏を防ぐためには、C量0.04
%以下が必要である。
FIG. 2 is a diagram showing the influence of the cold working rate before annealing and the amount of C in the alloy on the SCC property after welding + SRSR treatment. The experiment that yielded this result was basically conducted using the same method as the examples described below, and the final annealing was performed at 800°C.
The alloy used in X10hx is the same as in FIG. In the figure, the area surrounded by a solid line indicates the scope of the present invention. The meaning of OlX is the same as in FIG. The cold working rate is 3
If it is less than 8 qb, a sufficient slip band of IA cannot be secured, but a precipitation state in which carbides are finely dispersed within the grains during annealing cannot be obtained, and the effect of promoting recovery of the zero-depleted layer is insufficient, resulting in the above-mentioned problems. Since the Cr-depleted layer cannot be expected to be recovered by annealing at a low temperature and for a relatively short time, there is a concern that sensitization may occur already at the stage after the annealing, which is not as good as after welding + SRSR treatment. Even if the cold working rate is 38% or more, if the amount of C in the alloy is too large,
Good SCC resistance cannot be expected after welding + SR treatment. In general, the more c-shaped, the easier it is to obtain a large amount of carbide through annealing, but on the other hand, the carbide precipitated by the cold working + annealing melts again during welding, and the amount of carbide redecipitated by the SR treatment increases. , it becomes difficult to avoid 0 deficiency near grain boundaries due to precipitation of 0 carbide ◇In order to prevent this 0 deficiency near grain boundaries, which causes sensitization, the amount of C must be 0.04
% or less is required.

次に、本発明対象合金の成分限定(Cを除く)について
記す。
Next, the ingredient limitations (excluding C) of the alloy targeted by the present invention will be described.

Si、Mn、Ae:何れも脱酸元素であり、各下限値以
下では効果がなく、また同じく上限値をこえると、効果
が飽和する許シか、合金の清浄度の劣化を来たす。
Si, Mn, Ae: All of them are deoxidizing elements, and below their respective lower limits, they are ineffective, and when the upper limits are exceeded, either the effects become saturated or the cleanliness of the alloy deteriorates.

Ni:耐食性向上の効果著しく、C#−を含む高温水中
およびアルカリ溶液(NaOH)環境下でのSCCに対
する抵抗性を改善する基幹元素であり、50チ以上の含
有できわめて高い耐食性が期待できる。
Ni: It is a key element that has a remarkable effect of improving corrosion resistance and improves resistance to SCC in high-temperature water containing C#- and in an alkaline solution (NaOH) environment, and extremely high corrosion resistance can be expected when the Ni content is 50 or more.

一方80%をこえるとその効果は飽和し、添加できるC
r量が制限を受けるので、80チ以下とした。
On the other hand, if it exceeds 80%, the effect is saturated and the amount of C that can be added is
Since the r amount is limited, it was set to 80 inches or less.

Cr:Ni同様、耐食性向上に必須の元素である。Cr: Like Ni, this is an essential element for improving corrosion resistance.

15チ未満では効果が不足し、他方35チをこえると熱
間加工性の劣化が著しい。
If the thickness is less than 15 inches, the effect will be insufficient, while if it exceeds 35 inches, the hot workability will deteriorate significantly.

Ti:炭化物形成元素であり、鋭敏化処理によってCを
TiCとして固定するため、有害な0カーバイドの析出
抑制に有効である。0.2%未満ではその効果が十分に
は期待できず、1.0%を上廻ると合金清浄度の点で問
題となる。含金成分中、C,Crが比較的低い合金の場
合は、特にTiを添加する必要はない。
Ti: A carbide-forming element, and because C is fixed as TiC through sensitization treatment, it is effective in suppressing the precipitation of harmful zero carbide. If it is less than 0.2%, the effect cannot be fully expected, and if it exceeds 1.0%, problems will arise in terms of alloy cleanliness. In the case of an alloy in which C and Cr are relatively low in the metal-containing components, it is not necessary to add Ti.

MへW:これらは不働態皮膜の強化に有効な成分であり
、その添加は耐食性改善をもたらす、とくに、濃化C6
−によるSCCの発生を遅延させるのに効果的であるが
、何れも0.5チ以上添加しないえると合金の清浄度の
悪化を惹起する。
M to W: These are components effective in strengthening the passive film, and their addition improves corrosion resistance, especially concentrated C6.
- is effective in delaying the occurrence of SCC caused by -, but if neither is added at least 0.5 g, the cleanliness of the alloy will deteriorate.

汽S:何れも不純物成分であって、0.030%をこえ
ると熱同加工性を害する。
Steam S: Both are impurity components, and if they exceed 0.030%, they impair thermal processability.

次に、本発明の実施例について説明する。Next, examples of the present invention will be described.

第1表に示す(2)〜0の各成分をもつ合金を30−真
空溶製し、鍛伸、軟化処理後、第2表に示す各条件にて
冷間加工、最終焼鈍を施しだ。その後更に% 550”
120時間の低温熱処理(SR処理に相当)を施し、ま
たはTIG溶接(ナメ付、60A1フエラーなし)を行
なってからSR処理として上記同様の低温熱処理を施し
、これらの材料から2部属XIQm巾×75M長の試験
片を2枚ずつ採取した。この2枚の試験片を重ね合せて
U字型に曲げ、これをさらに5IIIII+拘束して、
いわゆる二重U字曲げ試験片となし、こh5を、3Jα
−一トクレーブに貯めた、300 pr′m Cp−を
含有する非脱気300°Cの高温水中゛1・− に1ooo時間浸漬した。試験後、U字型の内側の試験
片について断面の割れ深さを調査した。結果をまとめて
第2表工及び■に示す。
Alloys having the components (2) to 0 shown in Table 1 were vacuum melted for 30 minutes, forged and stretched, and softened, then cold worked and final annealed under the conditions shown in Table 2. After that, %550”
After 120 hours of low-temperature heat treatment (equivalent to SR treatment) or TIG welding (with tongue, 60A1 without fuel), low-temperature heat treatment similar to the above is performed as SR treatment, and from these materials two parts XIQm width x 75M are made. Two long test pieces were taken. These two test pieces were overlapped and bent into a U shape, and this was further restrained by 5III+.
The so-called double U-shaped bending test piece is made of h5, 3Jα
- It was immersed for 100 hours in non-degassed high temperature water at 300°C containing 300 pr'm Cp which had been stored in a tococlave. After the test, the crack depth in the cross section of the U-shaped inner test piece was investigated. The results are summarized in the second table and ■.

第 1 表(wt%) 第   2   表 −エ 第  2  表 −〇 第2表I及び■において、冷延加工度、焼鈍条件が本発
明範囲内のもの(1)〜(図は、SCCの最大深さが低
温熱処理材、溶接+SR処理材の何れの状態ででも0.
03fl以下というきわめて小さな値を示した。これに
対し、比較例では、(2,’ll〜G2は焼鈍条件が本
発明範囲外のため低温熱処理材でのSCCが本発明例よ
り格段に犬きく、またO′3)〜ODは冷延加工度が本
発明範囲を下廻るため、溶接+SR処理材の耐SCC性
が著しく劣っている。更にC匈〜(4υは、合金中のC
量が高すぎて、溶接+SR処理材のSccが著しくなっ
ている。因みに、常法によって製造した従来例(4カ〜
(411i1より、例え合金中C量を低くしても、低温
熱処理材、溶接+SR処理材の耐SCC性は殆んど改善
されないことが判る。
Table 1 (wt%) Table 2 -D Table 2 -〇In Table 2 I and The depth is 0.0 for both low temperature heat treated material and welded + SR treated material.
It showed an extremely small value of 0.03fl or less. On the other hand, in the comparative example, the annealing conditions for (2,'ll~G2) are outside the range of the present invention, so the SCC of the low temperature heat-treated material is much higher than that of the present invention example, and the SCC for (O'3)~OD is Since the degree of stretching is below the range of the present invention, the SCC resistance of the welded + SR treated material is significantly inferior. Furthermore, C ~ (4υ is C in the alloy
The amount is too high, and the Scc of the welded + SR treated material becomes significant. By the way, conventional examples (4 to
(From 411i1, it can be seen that even if the amount of C in the alloy is lowered, the SCC resistance of the low temperature heat treated material and the welded + SR treated material is hardly improved.

以上の説明から明らかなように本発明の製造方法によれ
ば、耐応力腐食割れ性にすぐれる30%Cr−60%N
i系合金のその本来の特性を備えしかもその特性が成品
段階のみならず、その後溶接または更にSR処理の影響
を受けた場合も良好なまま維持される合金成品を得るこ
とができ、したがつて本発明は溶接組立される耐食機器
に60%Ni−30%Cr合金のすぐれた耐食性能をそ
のまま生かすことを可能にするという意味で、きわめて
利用価値の高い発明ということができる。
As is clear from the above explanation, according to the manufacturing method of the present invention, 30%Cr-60%N, which has excellent stress corrosion cracking resistance,
It is possible to obtain an alloy product which has the original properties of the i-series alloy and whose properties remain good not only at the finished product stage but also when subjected to subsequent welding or further SR treatment, and thus The present invention can be said to be an extremely useful invention in the sense that it makes it possible to take advantage of the excellent corrosion resistance of the 60% Ni-30% Cr alloy in corrosion-resistant equipment assembled by welding.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は60%Ni−30%Cr合金の最終焼鈍の加熱
温度と保持時間がSR処理後の1Tlt SCC性に及
ぼす影響を示す図、第2図は同じく冷延加工度と合金中
C?の溶接子SR処理後の耐SCC性に対する影響を表
わす図である。 第  1  図 イ呆持蒔周(h) 第2図 ・イト車中C髪(%)
Figure 1 is a diagram showing the influence of final annealing heating temperature and holding time on 1Tlt SCC property after SR treatment of a 60%Ni-30%Cr alloy, and Figure 2 is also a diagram showing the effects of cold rolling workability and C? FIG. 3 is a diagram showing the influence on SCC resistance after welding element SR treatment. Fig. 1. A dumbfounded hair (h) Fig. 2. C hair in the car (%)

Claims (2)

【特許請求の範囲】[Claims] (1)  CO,04%以下、Si 1.0チ以下、M
ll 1.0%以下、Po、03チ以下、50.005
%以下、Ni 50%〜80%、Cr15〜35%、A
g0.50%以下で、必要に応じTiO32〜1.0チ
を含み、残部は実質的にFeからなる合金を、熱間加工
後、加工率38チ以りで冷間圧延し、引き続き添付図面
の第1図に示すA(0,5,850)、13(0,5,
750)、C(10,675)、r)(100,675
)、E(100,850)の5点を結ぶ直線で囲まれる
範囲内の、加熱温度及び保持時間で最終焼鈍を行うこと
を特数とする耐応力腐食割れ性しこすぐれた二・ンケル
基高クロム合金の製造方法。
(1) CO, 04% or less, Si 1.0 or less, M
ll 1.0% or less, Po, 03chi or less, 50.005
% or less, Ni 50% to 80%, Cr15 to 35%, A
After hot working, an alloy containing 0.50% or less of TiO and 1.0% of TiO, with the remainder substantially consisting of Fe, is then cold-rolled at a working rate of 38% or more, and then the alloy is shown in the attached drawings. A (0,5,850), 13 (0,5,
750), C(10,675), r)(100,675
), E(100,850), the final annealing is carried out at a heating temperature and holding time within the range surrounded by the straight line connecting the five points. Method for manufacturing high chromium alloys.
(2)  C0,04qb以下、Si 1.0%以下、
Mn 1.0 %リード、Po、03チ以下、50.0
05%以下、Ni 50〜80%、Cr15〜35%、
A1.50%以下で、Mo 0.5〜2.0%、Wo、
5〜2.0%の一方寸たは双方を含有しさらをこ必要に
応じTi 0.2〜1.0%を含み、残部は実質的にF
eからなる合金を、熱間加工後、加工率38チ以上で冷
間圧延し、引き続き添付図面の第1図に示すA(0,5
,850)、B(0,5,750)、C(10,675
)、D(100,675)、E(100,850)の5
点を結ぶ直線で囲まれる範囲内の加熱温度及び保持時間
で最終焼鈍を行うことを特徴とする耐応力腐食割れ性に
すぐれたニッケル基高クロム合金の製造方法。
(2) C0.04qb or less, Si 1.0% or less,
Mn 1.0% lead, Po, 03 chi or less, 50.0
05% or less, Ni 50-80%, Cr15-35%,
A 1.50% or less, Mo 0.5 to 2.0%, Wo,
Contains 5 to 2.0% of one or both of Ti and optionally 0.2 to 1.0% of Ti, and the remainder is substantially F.
After hot working, the alloy consisting of A (0,5
,850), B(0,5,750), C(10,675
), D (100,675), E (100,850) 5
A method for producing a nickel-based high chromium alloy with excellent stress corrosion cracking resistance, characterized by performing final annealing at a heating temperature and holding time within a range surrounded by straight lines connecting points.
JP16601881A 1981-10-16 1981-10-16 Manufacturing method of nickel-based high chromium alloy with excellent stress corrosion cracking resistance Expired JPS6053108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16601881A JPS6053108B2 (en) 1981-10-16 1981-10-16 Manufacturing method of nickel-based high chromium alloy with excellent stress corrosion cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16601881A JPS6053108B2 (en) 1981-10-16 1981-10-16 Manufacturing method of nickel-based high chromium alloy with excellent stress corrosion cracking resistance

Publications (2)

Publication Number Publication Date
JPS5867854A true JPS5867854A (en) 1983-04-22
JPS6053108B2 JPS6053108B2 (en) 1985-11-22

Family

ID=15823384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16601881A Expired JPS6053108B2 (en) 1981-10-16 1981-10-16 Manufacturing method of nickel-based high chromium alloy with excellent stress corrosion cracking resistance

Country Status (1)

Country Link
JP (1) JPS6053108B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59211545A (en) * 1983-05-18 1984-11-30 Sumitomo Metal Ind Ltd Nickel alloy with superior stress corrosion cracking resistance
JPS59229457A (en) * 1983-06-13 1984-12-22 Sumitomo Metal Ind Ltd Ni-base high-cr alloy having excellent resistance to stress corrosion cracking
JPS6050134A (en) * 1983-08-29 1985-03-19 Sumitomo Metal Ind Ltd Alloy for heat exchanger tube
JPS60100640A (en) * 1983-11-07 1985-06-04 Nippon Kokan Kk <Nkk> High-chromium alloy having excellent resistance to heat and corrosion
JPS60100655A (en) * 1983-11-04 1985-06-04 Mitsubishi Metal Corp Production of high cr-containing ni-base alloy member having excellent resistance to stress corrosion cracking
WO2009142228A1 (en) 2008-05-22 2009-11-26 住友金属工業株式会社 High-strength ni-base alloy pipe for use in nuclear power plants and process for production thereof
US7799152B2 (en) 2002-12-25 2010-09-21 Sumitomo Metal Industries, Ltd. Method for manufacturing nickel alloy
CN112813369A (en) * 2020-12-31 2021-05-18 北京钢研高纳科技股份有限公司 High-strength high-elasticity high-plasticity nickel-based high-temperature alloy strip and preparation process thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6399224B2 (en) 2015-06-26 2018-10-03 新日鐵住金株式会社 Ni-base alloy tube for nuclear power

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59211545A (en) * 1983-05-18 1984-11-30 Sumitomo Metal Ind Ltd Nickel alloy with superior stress corrosion cracking resistance
JPH0153340B2 (en) * 1983-06-13 1989-11-14 Sumitomo Kinzoku Kogyo Kk
JPS59229457A (en) * 1983-06-13 1984-12-22 Sumitomo Metal Ind Ltd Ni-base high-cr alloy having excellent resistance to stress corrosion cracking
JPS6050134A (en) * 1983-08-29 1985-03-19 Sumitomo Metal Ind Ltd Alloy for heat exchanger tube
JPH0233781B2 (en) * 1983-08-29 1990-07-30 Sumitomo Kinzoku Kogyo Kk
JPS60100655A (en) * 1983-11-04 1985-06-04 Mitsubishi Metal Corp Production of high cr-containing ni-base alloy member having excellent resistance to stress corrosion cracking
JPS6157390B2 (en) * 1983-11-04 1986-12-06 Mitsubishi Metal Corp
JPS6221857B2 (en) * 1983-11-07 1987-05-14 Nippon Kokan Kk
JPS60100640A (en) * 1983-11-07 1985-06-04 Nippon Kokan Kk <Nkk> High-chromium alloy having excellent resistance to heat and corrosion
US7799152B2 (en) 2002-12-25 2010-09-21 Sumitomo Metal Industries, Ltd. Method for manufacturing nickel alloy
WO2009142228A1 (en) 2008-05-22 2009-11-26 住友金属工業株式会社 High-strength ni-base alloy pipe for use in nuclear power plants and process for production thereof
US8246766B2 (en) 2008-05-22 2012-08-21 Sumitomo Metal Industries, Ltd. High-strength Ni-based alloy tube for nuclear power use and method for manufacturing the same
CN112813369A (en) * 2020-12-31 2021-05-18 北京钢研高纳科技股份有限公司 High-strength high-elasticity high-plasticity nickel-based high-temperature alloy strip and preparation process thereof

Also Published As

Publication number Publication date
JPS6053108B2 (en) 1985-11-22

Similar Documents

Publication Publication Date Title
JPS5867854A (en) Preparation of nickel base high chromium alloy excellent in stress, corrosion cracking resistance
JPH0569885B2 (en)
JP2017020054A (en) Stainless steel and stainless steel tube
JP3848463B2 (en) High strength austenitic heat resistant steel with excellent weldability and method for producing the same
JP3319222B2 (en) Manufacturing method of high chromium ferritic steel with excellent creep characteristics of welded joint
JPH07292445A (en) Duplex stainless clad steel, its production and welding method therefor
JPS60131958A (en) Production of precipitation strengthening type ni-base alloy
JPS5887224A (en) Production of boiler tube made of austenitic stainless steel
JP3705391B2 (en) Nb-containing ferritic stainless steel with excellent low temperature toughness of hot-rolled sheet
JPH01139717A (en) Method for working high cr ferritic steel for use at high temperature
JPH0787989B2 (en) Gas shield arc welding method for high strength Cr-Mo steel
JPH0233781B2 (en)
JP3687249B2 (en) 2.25Cr steel softening heat treatment method
JPS61104054A (en) High-strength and high-toughness welded clad steel pipe for line pipe
JPH09291308A (en) Production of high chrome ferritic heat resistant steel
JPS59211526A (en) Production of two-phase steel of martensite and ferrite
JP2004018897A (en) High-chromium alloy steel and turbine rotor using this
JPH0320410A (en) Production of high-cr ferritic heat-resisting steel tube having high creep rupture strength
JPS60245773A (en) Manufacture of highly corrosion resistant ni base alloy
JP2659814B2 (en) Manufacturing method of high strength low alloy heat resistant steel
JPS61144284A (en) Production of clad material
JP2002194466A (en) Nickel based alloy clad steel and its production method
JPH0288716A (en) Manufacture of heat resistant high cr ferritic steel pipe having high creep breaking strength
JPS62170419A (en) Production of welded joint having good creep strength
JPH067803A (en) Production of clad steel stock of austenitic stainless steel