JPH01139717A - Method for working high cr ferritic steel for use at high temperature - Google Patents

Method for working high cr ferritic steel for use at high temperature

Info

Publication number
JPH01139717A
JPH01139717A JP19079087A JP19079087A JPH01139717A JP H01139717 A JPH01139717 A JP H01139717A JP 19079087 A JP19079087 A JP 19079087A JP 19079087 A JP19079087 A JP 19079087A JP H01139717 A JPH01139717 A JP H01139717A
Authority
JP
Japan
Prior art keywords
steel
heating
ferritic steel
processing
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19079087A
Other languages
Japanese (ja)
Other versions
JPH0699741B2 (en
Inventor
Atsuro Iseda
敦朗 伊勢田
Kunihiko Yoshikawa
吉川 州彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP62190790A priority Critical patent/JPH0699741B2/en
Publication of JPH01139717A publication Critical patent/JPH01139717A/en
Publication of JPH0699741B2 publication Critical patent/JPH0699741B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To improve the creep strength of a high Cr ferritic steel and the characteristics at high temp. without carrying out normalizing by successively subjecting the steel contg. specified amts. of Nb and V to holding at a specified temp., final hot working, quenching and tempering. CONSTITUTION:A precipitation strengthening high Cr ferritic steel contg., by weight, 0.03-0.3% C, <=0.1% N, 5-13% Cr and 0.01-0.1%, in total, of V and/or Nb is cast. The cast steel is hot rolled and the resulting stock is heated, held at 930-1,300 deg.C for >=1 min and finally hot worked. The stock is then quenched to form a martensite structure and it is tempered at the Ac1 point or below or warm worked after heating to the Ac1 point or below. Stress relief annealing at the Ac1 point or below may further be carried out as required.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はV、Nbの1種または2!lを含有する高温用
高Crフェライト鋼の加工方法に関し、更に詳しくは加
工熱処理方法の改良に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention uses one or both of V and Nb! The present invention relates to a method for processing a high-Cr ferritic steel for high temperature use containing L, and more specifically to an improvement in a processing heat treatment method.

〔従来の技術〕[Conventional technology]

高Crフェライト鋼は低合金鋼と比べ強度、耐食性に優
れ、オーステナイト系ステンレス鋼と比べた場合には熱
伝導性が高く、熱膨張係数も小さい。また、応力腐食割
れをおこさない特徴もある。
High Cr ferritic steel has superior strength and corrosion resistance compared to low alloy steel, and has higher thermal conductivity and lower coefficient of thermal expansion than austenitic stainless steel. Another feature is that it does not cause stress corrosion cracking.

このようなことから、この鋼はボイラ、原子力、化学工
業用の耐熱材料として広く使われている。
For these reasons, this steel is widely used as a heat-resistant material for boilers, nuclear power, and the chemical industry.

なかでも、V、Nbなどの析出強化元素を含む高Crフ
ェライト鋼は、高温クリープ強度が高く、オーステナイ
ト系ステンレス鋼に代替するフェライト鋼として注目さ
れている。
Among these, high-Cr ferritic steel containing precipitation-strengthening elements such as V and Nb has high high-temperature creep strength and is attracting attention as a ferritic steel that can replace austenitic stainless steel.

この析出強化型置Crフェライト鋼としては、欧州で広
く使われている1 2Cr−IMo系鋼(DINX20
CrMoWV12)111) 、米国で開発された改良
9Cr−IMow4(ASTM  A2 j3  T9
1!II) 、本発明者らが先に開発したV、Nb添加
の9〜12Cr鋼(特公昭57−36341号、特開昭
58−181849号)などがある。
This precipitation-strengthened Cr-ferritic steel is a 12Cr-IMo steel (DINX20
CrMoWV12)111), modified 9Cr-IMow4 (ASTM A2 j3 T9) developed in the United States
1! II) 9-12Cr steel with addition of V and Nb (Japanese Patent Publication No. 57-36341, Japanese Patent Application Laid-Open No. 58-181849), which was previously developed by the present inventors.

従来、このような析出強化型の高Crフェライト鋼は、
第3図に示されるように、熱間圧延、熱間押出し等の熱
間加工後、熱処理として焼ならしおよび焼もどし処理を
受け、微細析出物を含む焼もどしマルテンサイト組織(
一部にδ−フェライトを含むものもある)にしている。
Conventionally, such precipitation-strengthened high Cr ferritic steels are
As shown in Figure 3, after hot working such as hot rolling and hot extrusion, the tempered martensitic structure containing fine precipitates (
Some of them also contain δ-ferrite).

焼ならし処理は、Ac、変態点以上に加熱し、粗大化し
た炭化物などの析出物を固溶させるとともに、各種合金
成分の偏析を均一化し、その後急冷してマルテンサイト
組織を生成させるのが目的である。一方、焼もどし処理
は、硬いマルテンサイト組織の転位密度を下げ、高温で
長時間安定なMi織と強度を与えるとともに、V、Nb
を含む微細炭窒化物やFe、Crなどの炭窒化物を分散
析出させ靭性と高温強度の優れた性質を付与することが
目的である。
Normalizing treatment is performed by heating Ac, above the transformation point to dissolve precipitates such as coarse carbides into a solid solution, and to homogenize the segregation of various alloy components, followed by rapid cooling to generate a martensitic structure. It is a purpose. On the other hand, the tempering process lowers the dislocation density of the hard martensitic structure, gives the Mi structure and strength that is stable for a long time at high temperatures, and also
The purpose is to disperse and precipitate fine carbonitrides containing carbonitrides such as Fe and Cr, thereby imparting excellent properties such as toughness and high-temperature strength.

焼もどし処理の後に溶接や曲げ加工等の仕上げ加工を行
う場合は、加工後に応力除去焼鈍等の後熱処理が実施さ
れる。
When finishing processing such as welding or bending is performed after tempering, post-heat treatment such as stress relief annealing is performed after the processing.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、このように塑性加工と、熱処理が独立の工程
である場合、特に焼ならし処理がAc=点以上の高温処
理であることから熱処理コストが高価である。さらに加
熱による変形と酸化が著しく、このため熱処理後に行う
矯正と脱スケールも製品のコストをさらに上昇させる結
果になっている。
However, when the plastic working and heat treatment are independent steps as described above, the heat treatment cost is high, especially since the normalizing treatment is a high temperature treatment at or above the Ac= point. Furthermore, the deformation and oxidation caused by heating are significant, and therefore the straightening and descaling performed after the heat treatment further increases the cost of the product.

なお、従来の加工プロセスでこの焼ならし処理を省略し
た場合には、クリープ強度、靭性等の特性が著しく損な
われ、製品価値のない材料しか得られない。
Note that if this normalizing treatment is omitted in the conventional processing process, properties such as creep strength and toughness will be significantly impaired, resulting in a material with no product value.

本発明は、斯かる現状に鑑みなされたもので、焼ならし
処理なしで所定の特性を確保し、これにより大幅な工程
合理化とコスト低減とを図るのみならず、特性の改善も
期待できる新規な加工熱処理方法を提供するものである
The present invention was developed in view of the current situation, and is a novel product that not only ensures predetermined characteristics without the need for normalizing treatment, thereby significantly streamlining the process and reducing costs, but also expects to improve characteristics. The present invention provides a processing heat treatment method.

〔問題点を解決するための手段〕[Means for solving problems]

析出強化型置Crフェライト鋼に実施される焼ならし処
理は、前述したとおり、析出物の固溶、成分の均一化を
図りマルテンサイト組織の生成を行わしめるものである
。工程合理化としてこの焼ならし処理を省略した場合、
高温材料としての特性、とりわけクリープ強度が低下す
る。
As described above, the normalizing treatment performed on precipitation-strengthened Cr ferritic steel is intended to dissolve the precipitates into solid solution, homogenize the components, and generate a martensitic structure. If this normalizing treatment is omitted to streamline the process,
The properties as a high-temperature material, especially the creep strength, decrease.

本発明#らは、析出強化型置Crフェライト鋼について
、新しい熱処理を追加することなく、また特性の低下を
ともなうことなく、焼ならし処理を省略できる方法につ
いて、実験研究を繰り返した結果、熱間圧延等の最終熱
間加工に際して行う加熱が重要な意味をもつことを知見
した。すなわち、熱間圧延等の最終熱間加工に際し、N
b、■等を含む高Crフェライト鋼を930℃以上で1
分以上保持すれば、焼もどし処理との組合せにより、焼
ならし処理を省略しても従来どおりのクリープ特性が確
保され、場合によっては従来よりも優れた特性が得られ
ることを知見したものである。
As a result of repeated experimental research on a method that can omit the normalizing treatment for precipitation-strengthened precipitated Cr ferritic steel without adding any new heat treatment or deteriorating its properties, It was discovered that the heating performed during final hot working such as rolling has an important meaning. In other words, during final hot working such as hot rolling, N
High Cr ferritic steel including b,
It has been discovered that if it is maintained for more than 10 minutes, the same creep characteristics as before can be maintained even if the normalizing treatment is omitted by combining it with tempering treatment, and in some cases, better characteristics than before can be obtained. be.

本発明の方法は斯かる知見を基礎に完成されたもので、
重量%テ’C:o、o 3〜0.3%、N:0.1%以
下、Cr:5〜13%含有し、更にV、Nbの1種また
は2種を(V+Nb)で0.01〜1%添加した析出強
化型の高Crフェライト鋼に対し、次の3つの加工工程
■〜■(第1図(イ)〜(ハ))を採用するものである
The method of the present invention was completed based on such knowledge,
Contains 3 to 0.3% by weight of C: o, o, 0.1% or less of N, and 5 to 13% of Cr, and further contains one or two of V and Nb (V+Nb) at 0.3%. The following three processing steps (1) to (3) (FIG. 1 (a) to (c)) are applied to precipitation-strengthened high Cr ferrite steel containing 01 to 1% additive.

■ 最終熱間加工に際して930〜1300℃に1分以
上加熱保持し、その間に必要な熱間加工を加えた後に、
急冷によりMi織をマルテンサイトにし、さらにAC,
点板下の焼もどし処理を行う(図イ)。
■ During the final hot processing, heat and hold at 930-1300℃ for more than 1 minute, and after adding the necessary hot processing during that time,
The Mi weave becomes martensite by rapid cooling, and then AC,
Perform tempering treatment below the dot plate (Figure A).

■ ■で行われる焼もどし処理時に温間加工を行い、焼
もどし処理時の加熱と温間加工時の加熱を兼ねる(図口
)。
■ Warm processing is performed during the tempering process performed in step (■), and the heating during the tempering process and the heating during the warm processing are performed (Figure guchi).

■ ■で行われる温間加工の後に、さらにAc。■ After the warm processing performed in ■, further Ac.

点板下の歪取り焼鈍を行う(図ハ)。Perform strain relief annealing under the point plate (Figure C).

■が基本の工程であり、熱間圧延、熱間押出し等の最終
熱間加工の際の加工熱処理と、焼もどしによるmm調整
とでクリープ特性の改善を図る。
Step (2) is the basic process, and the creep characteristics are improved by processing heat treatment during final hot processing such as hot rolling and hot extrusion, and mm adjustment by tempering.

また■、■の工程は最終熱間加工後に焼もどし処理を兼
ねた温間加工を行うものである。
Further, in the steps ① and ②, warm working that also serves as tempering treatment is performed after the final hot working.

〔作  用〕[For production]

以下、本発明の方法における成分組成、熱処理条件の各
限定理由を述べ、作用を明らかにする。
Below, the reasons for limiting the component composition and heat treatment conditions in the method of the present invention will be described, and the effects will be clarified.

○ 成分組成 C:マルテンサイト組織化を図るためのオーステナイト
安定化元素で、かつ炭化物を析出させる重要元素である
。0.03%未満の場合、δ−フェライトaが著しく増
加し、強度、靭性を損ない、かつ安定な炭化物を形成し
なくなる。また、0.3%を超える場合、炭化物が増え
て硬化し、著しく加工性と溶接性を損なう。よってCi
は0.03〜0゜3%とした。
○ Component composition C: An austenite stabilizing element for achieving martensite structure, and an important element for precipitating carbides. When it is less than 0.03%, δ-ferrite a increases significantly, impairs strength and toughness, and does not form stable carbides. Moreover, if it exceeds 0.3%, carbides increase and harden, significantly impairing workability and weldability. Therefore, Ci
was set at 0.03 to 0°3%.

Cr:耐酸化性の点から不可欠な元素で、高温用高Cr
鋼としては、5%未満では十分な耐酸化性が得られず、
また13%を超えて添加された場合にはδ−フェライト
量が増加して強度と靭性をt員なう、したがって5〜1
3%とした。
Cr: An essential element from the point of view of oxidation resistance, high Cr for high temperature use.
For steel, if it is less than 5%, sufficient oxidation resistance cannot be obtained;
In addition, when it is added in an amount exceeding 13%, the amount of δ-ferrite increases and the strength and toughness become t-membered.
It was set at 3%.

Nニオ−ステナイト安定化元素で、かつ窒化物を析出さ
せる重要元素である。しかし0.1%を超える場合、著
しく加工性を損ない、靭性、強度が低下するため上限を
0.1%とした。なお、このNは特に添加しなくても0
.01%程度は含有されるので、明確な添加効果を得る
には0.02%以上含有させることが望まれる。
N is a niostenite stabilizing element and an important element for precipitating nitrides. However, if it exceeds 0.1%, workability is significantly impaired and toughness and strength are reduced, so the upper limit was set at 0.1%. Note that this N does not need to be added.
.. Since it is contained in an amount of about 0.01%, it is desirable to contain it in an amount of 0.02% or more in order to obtain a clear addition effect.

V、Nb:いずれもC,Nと結合してV (C。V, Nb: Both combine with C and N to form V (C.

N) 、Nb (C,N)の微細析出物を形成し、クリ
ープ強度の増大に寄与する。V (C,N) 、  N
b (C,N)は粗大化すると効果が低下するため、未
固溶で存在するV (C,N) 、Nb、(C,N)は
強度、靭性に有害である。本発明はこれらの析出強化元
素を有効に微細分散析出させる加工熱処理法を見出した
ものである。そしてV、Nbは1種または2種を(V+
Nb)量で0.01%〜1%添加する。0.01%未満
では、十分な析出強化を得ることができず、また1%を
超える場合は、前工程で生成した粗大なV (C,N)
 、Nb (C。
N), Nb (C,N) forms fine precipitates and contributes to increasing creep strength. V (C,N), N
b Since the effect of (C,N) decreases as it becomes coarser, V (C,N), Nb, and (C,N) that are present in undissolved form are harmful to strength and toughness. The present invention has discovered a processing heat treatment method that effectively finely disperses and precipitates these precipitation-strengthening elements. One or two types of V and Nb (V+
Nb) is added in an amount of 0.01% to 1%. If it is less than 0.01%, sufficient precipitation strengthening cannot be obtained, and if it exceeds 1%, coarse V (C,N) generated in the previous process
, Nb (C.

N)の固溶に長時間を要し、これらの化合物およびM 
z s Cb等の未固溶粗大析出物が残存して強度、靭
性、加工性をt員なう。
It takes a long time for solid solution of N) and these compounds and M
Undissolved coarse precipitates such as z s Cb remain and impair strength, toughness, and workability.

上記以外の成分としてはMo、Wを総量で0.1〜3%
および/またはSi、Mn、SoρAjl!。
Components other than the above include Mo and W in a total amount of 0.1 to 3%
and/or Si, Mn, SoρAjl! .

Ni、Bを含むのが望ましい、ただし、Stは0゜5%
以下、Mnは1.5%以下、5OIA1は0.03%以
下、Niは0.8%以下、Bは0.01%以下であるこ
とが望ましい。不可避の不純物であるP。
It is desirable to contain Ni and B, however, St is 0°5%
Hereinafter, it is desirable that Mn be 1.5% or less, 5OIA1 be 0.03% or less, Ni be 0.8% or less, and B be 0.01% or less. P is an unavoidable impurity.

S、Cuは、それぞれ0.03%以下であることが望ま
しい。
It is desirable that S and Cu are each 0.03% or less.

○ 熱処理 ■〜■(第1図イ〜ハ)の工程における最終熱間加工時
の加熱は、焼ならし処理を省略するため、素材のV (
C,N) 、Nb (C,N) 、M23C。
○ Heating during the final hot working in the steps of heat treatment ■~■ (Fig. 1 A~C) eliminates the normalizing treatment, so the V (
C,N), Nb(C,N), M23C.

、CrzN等の未固溶炭窒化物を固溶させ、かつ合金成
分の均一化を目的として行うものである。
This is carried out for the purpose of dissolving undissolved carbonitrides such as , CrzN, etc., and making the alloy components uniform.

特にV、Nbの炭窒化物の固溶条件として、930℃以
上に加熱する必要がある。V、Nbの添加量が多い場合
は、添加量に応じてより高温加熱を適用することが望ま
しい。930℃未満ではこれらの析出物が十分に固溶せ
ず、強度を著しく撰なうため、下限を930℃とした。
In particular, as a solid solution condition for carbonitrides of V and Nb, it is necessary to heat the material to 930° C. or higher. When the amount of V or Nb added is large, it is desirable to apply higher temperature heating according to the amount added. If the temperature is lower than 930°C, these precipitates will not be sufficiently dissolved and the strength will be significantly lowered, so the lower limit was set at 930°C.

またAc、変態点が930℃以上の鋼では、930℃〜
Ac3点の間でα−フェライトが残存し、V、Nb析出
物の均一固溶が阻害される危険性があるため、AC1点
以上に加熱することが望ましい、加熱温度の上限は、加
熱温度が高いほど均一固溶化が促進されるが、1300
℃を越えるとδ−フェライトが増大し、靭性、強度を損
なうので上限を1300℃とする。
In addition, for Ac, steel with a transformation point of 930℃ or higher, 930℃~
There is a risk that α-ferrite will remain between the 3 AC points and the uniform solid solution of V and Nb precipitates will be inhibited, so it is desirable to heat to the AC 1 point or higher.The upper limit of the heating temperature is The higher the value, the more uniform solid solution formation is promoted, but 1300
If the temperature exceeds .degree. C., .delta.-ferrite increases, which impairs toughness and strength, so the upper limit is set at 1300.degree.

加熱保持時間は析出物を固溶化する条件である。The heating holding time is a condition for converting the precipitate into a solid solution.

保持時間には加工中も含まれる。加熱直後に加工を施し
ても、上記温度にて1分間以上加工されていれば良い、
保持時間が1分未満では、析出物の固溶化と合金成分の
均一化が不十分となり、未固溶粗大析出物が多数残存し
、強度を損なう、保持時間の上限は、加熱保持が長時間
はど特性確保に好都合であるので特に規定しないが、実
用上は部材の均熱保持の観点から(lh/25m重厚さ
)程度が望ましい。
Holding time also includes processing. Even if processing is performed immediately after heating, it is sufficient if processing is performed at the above temperature for at least 1 minute.
If the holding time is less than 1 minute, the solid solution of the precipitates and the homogenization of the alloy components will be insufficient, and many undissolved coarse precipitates will remain, impairing the strength. Although it is not particularly specified as it is convenient for securing the wall characteristics, in practice, it is desirable to have a thickness of about (lh/25 m thick) from the viewpoint of maintaining uniform heat of the member.

加工は、上記加熱温度に保持した状態で行われる場合も
含める。加工終了温度に制限はないが、好ましくはAC
,変態点以上、更に好ましくはAC2変態点以上で加工
を完了し、後に続く急冷で組織のマルテンサイト化が達
成できればよい。
Processing also includes a case where the processing is performed while being maintained at the above heating temperature. There is no limit to the finishing temperature, but preferably AC
It is sufficient if the processing is completed at a temperature higher than the transformation point, more preferably at the AC2 transformation point or higher, and the subsequent rapid cooling can achieve martensitic structure.

加工後の急冷はマルテンサイト組織とするためで、加工
終了温度がA Cz変態点以上の場合は500℃/h以
上の速度で行う、500℃/h未満の冷却では、冷却中
に炭化物+フェライト組織に変化し、健全なマルテンサ
イト組織とならない。
The purpose of rapid cooling after processing is to create a martensitic structure. If the processing end temperature is above the A Cz transformation point, it is performed at a rate of 500°C/h or more. If cooling is less than 500°C/h, carbide + ferrite is formed during cooling. The structure changes and does not become a healthy martensitic structure.

この急渣においては、AC,変態点からマルテンサイト
変態が完了するMf点まで急冷されることが望ましく、
この場合冷却速度の測定は800℃〜500℃での平均
冷却速度について行う、この領域はフェライト生成ノー
ズ領域である。冷却速度の上限は冷却が急なほど良好な
&l織が得られるで特に規定しないが、実操業上は厚肉
材などでは急冷により割れ、変形の生じないように配慮
すべきである。
In this precipitate, it is desirable that the AC be rapidly cooled from the transformation point to the Mf point where martensitic transformation is completed.
In this case, the cooling rate measurements are made for an average cooling rate between 800° C. and 500° C., this region being the ferrite formation nose region. The upper limit of the cooling rate is not particularly specified because the faster the cooling, the better the &l weave can be obtained, but in actual operation, care should be taken to ensure that thick materials do not crack or deform due to rapid cooling.

本発明の方法においては、急冷後のマルテンサイト組織
に一部δ−フェライトが含まれていてもよく、急冷中に
加工が行われてもよい6本発明にによれば焼ならし処理
が不用になり、つづいて焼もどし処理を行う。
In the method of the present invention, the martensitic structure after quenching may partially contain δ-ferrite, and processing may be performed during the quenching.According to the present invention, normalizing treatment is unnecessary. , and then undergoes tempering treatment.

焼もどし処理は、マルテンサイト組織の転位密度が極め
て高く、高温での組織の長時間安定性に欠けるため転位
密度を下げて組織を安定化するために行う、すなわち焼
もどしマルテンサイト組織を得るとともに、V、Nbの
微細炭窒化物とその他の炭化物を微細析出させる。焼も
どし処理の温度をACI点以下とするのは、組織の再オ
ーステナイト化を防ぐためである。
Tempering treatment is performed to lower the dislocation density and stabilize the structure, as the dislocation density of the martensitic structure is extremely high and the structure lacks long-term stability at high temperatures. , V, Nb and other carbides are finely precipitated. The reason why the temperature of the tempering treatment is set to be below the ACI point is to prevent re-austenization of the structure.

■、■の工程は、焼もどし処理中に成形仕上げ加工を行
う場合である。この工程は上記焼もどし処理後に寸法調
整と変形の矯正を温間で行う場合を想定したものであり
、この1間加工を行うための加熱を焼もどし時の加熱と
同時に行って工程の合理化に寄与する。加熱温度がAc
1以上となると、マルテンサイトMi織が再びオーステ
ナイト変態をおこすため不適当である。したがって加熱
温度の上限をAc+点以下とした。温間加工後加工歪が
残る場合は、この残留応力を除去するために後熱処理と
して応力除去焼鈍を行う、応力除去焼鈍温度は再オース
テナイト化を防ぐため上限温度はAC,変態点であり、
下限は必要により適当温度が選ばれる。部材によっては
軟化処理の必要ない場合もあり、2通りの工程■および
■を規定した。
Steps ① and ② are cases in which shaping and finishing processing is performed during the tempering process. This process assumes that dimensional adjustment and deformation correction are performed warmly after the above-mentioned tempering treatment, and the heating for this one-time processing is performed at the same time as the heating during tempering to streamline the process. Contribute. Heating temperature is Ac
If it is 1 or more, the martensitic Mi weave undergoes austenite transformation again, which is inappropriate. Therefore, the upper limit of the heating temperature was set to be below the Ac+ point. If machining strain remains after warm working, stress relief annealing is performed as a post-heat treatment to remove this residual stress.The stress relief annealing temperature has an upper limit temperature of AC, which is the transformation point, to prevent re-austenitization.
An appropriate temperature is selected as the lower limit depending on necessity. Depending on the part, softening treatment may not be necessary, so two processes (1) and (2) were defined.

■〜■の工程においてAc1以下の加熱を行う場合、ボ
イラ熱交換器材料、ボイラ配管材料では700〜800
℃で1h程度の加熱とするのがよい。
When heating to Ac1 or less in the steps of ■ to ■, boiler heat exchanger materials and boiler piping materials have a
It is preferable to heat it at ℃ for about 1 hour.

■〜■の工程により、焼ならし処理を省略することが可
能となる。また、■の工程において、焼もどし時の加熱
が温間加工時の加熱を兼ねるため、成品の熱変形、スケ
ール生成が抑制され、大幅なコスト低減と合理化が可能
となる。
Through the steps (1) to (2), it is possible to omit the normalizing treatment. Furthermore, in the step (2), since the heating during tempering also serves as the heating during warm processing, thermal deformation of the finished product and scale formation are suppressed, making it possible to significantly reduce costs and rationalize.

また成品は、一部δ−フェライトを含有もしくは全く含
有しない焼もどしマルテンサイトm織に微細なV (C
,N) 、Nb (C,N)が分散析出した良好な組織
となり、従来法と同等もしくはそれ以上のクリープ強度
および高温特性をもつものとなる。
In addition, the finished product has fine V (C
.

〔実施例〕〔Example〕

第1表に供試鋼の化学成分を示す、AfI4は米国の改
良9Cr−IMo鋼(ASTM  T91−A2)3鋼
)系でV、Nb複合添加鋼、B鋼は9Cr  2Mo′
iAへの微lNb添加鋼系、C鋼は欧州の12Cr−I
Mo−V鋼(DINX20CrMoWV12)鋼)系で
、いずれも高Crフェライト調の代表鋼種系である。
Table 1 shows the chemical composition of the test steel.AfI4 is an American improved 9Cr-IMo steel (ASTM T91-A2) 3) steel with V and Nb composite additions, and steel B is a 9Cr 2Mo' steel.
A steel with a small amount of Nb added to iA, C steel is European 12Cr-I
These are Mo-V steels (DINX20CrMoWV12) steels, and both are representative steel types with a high Cr ferritic tone.

各鋼は先ず150kgを真空加熱炉で溶解し、インゴッ
トを1150℃〜900℃で熱間鍛造し、t60Xw8
0Xj!200のブロックにして素材とした0次に、こ
の素材に対し、第1図(イ)〜(ハ)に示す加工熱処理
■〜■および第3図に示す従来の加工熱処理を行った。
First, 150 kg of each steel is melted in a vacuum heating furnace, and the ingot is hot-forged at 1150°C to 900°C.
0Xj! Next, this material was made into 200 blocks and subjected to the processing heat treatments 1 to 3 shown in FIGS. 1(a) to 3(c) and the conventional processing heat treatment shown in FIG. 3.

第2表に各熱処理法の熱履歴を示す。Table 2 shows the thermal history of each heat treatment method.

工程Φ〜■における熱間加工として、1100〜900
℃の温度域でロール圧延により60〜80%の加工度を
与えた後、Ms変態点以下まで急冷した。■、■におけ
る温間加工として、780℃で1h均熱後、ロール圧延
により30%の加工度を与えた。■における応力除去焼
鈍は760〜780℃で行った。
As hot processing in steps Φ~■, 1100~900
After giving a working degree of 60 to 80% by roll rolling in the temperature range of .degree. C., the material was rapidly cooled to below the Ms transformation point. As warm working in (2) and (2), after soaking at 780°C for 1 hour, a working degree of 30% was given by roll rolling. The stress relief annealing in (2) was performed at 760 to 780°C.

比較のために実施した従来法の工程として、1000℃
に加熱の後、1000〜800℃で60%の熱間圧延を
行い、しかる後、250℃/hで300℃まで除冷を行
い、以後放冷した。
As a conventional process carried out for comparison, 1000℃
After heating, 60% hot rolling was performed at 1000 to 800°C, and then gradual cooling was performed at 250°C/h to 300°C, and then left to cool.

そして、得られた加工板材の圧延方向肉厚中央部よりJ
IS4号シャルピー衝撃試験片およびφ5XGL30n
引張試験片を採取し、常温引張試験、0℃シャルピー衝
M試験および600℃クリープ破断試験を行った。結果
を第3表に示す。
Then, J
IS4 Charpy impact test piece and φ5XGL30n
A tensile test piece was taken and subjected to a room temperature tensile test, a 0°C Charpy impact M test, and a 600°C creep rupture test. The results are shown in Table 3.

従来法であるA4.B4.C4は標準の焼ならし、焼も
どし処理である。これに比較して本発明法を適用したA
I、A2.As、A6.Bl、B2、B5.B6.CI
、C2,C5,C’6は、いずれもそれぞれの従来法に
比べ同等もしくは若干高めの強度特性を示した。またA
3.B3.C3は、各鋼に工程■を適用した場合である
が、素材加熱温度がAC2変態点より低い900℃に設
定されているため、クリープ破断強度が著しく低い。
Conventional method A4. B4. C4 is a standard normalizing and tempering process. In comparison, A to which the method of the present invention was applied
I, A2. As, A6. Bl, B2, B5. B6. C.I.
, C2, C5, and C'6 all showed strength characteristics that were equivalent to or slightly higher than those of the respective conventional methods. Also A
3. B3. C3 is a case where process (1) is applied to each steel, but the material heating temperature is set at 900°C, which is lower than the AC2 transformation point, so the creep rupture strength is extremely low.

一方C7はCIlに■の工程を適用し、冷却速度が本発
明外の徐冷の場合であり、クリープ強度が著しく低い、
第2図に1例としてC鋼についてのクリープ破断試験結
果を示す。
On the other hand, C7 is a case in which the process (■) is applied to CIl, the cooling rate is slow cooling outside of the present invention, and the creep strength is extremely low.
FIG. 2 shows the creep rupture test results for C steel as an example.

組織的な検討の結果、CIでは従来の焼ならし、焼もど
し材(C4)の組織とほぼ同等で、かつ微細なV (C
,N)が分散析出しているのに対し、強度の低かったC
3は、加工組織の残る細かな焼もどしマルテンサイト組
織で、加工中に粗大化したと考えられる未固溶析出物が
多数確認された。
As a result of structural examination, CI has a structure that is almost the same as that of conventional normalized and tempered material (C4), and has fine V (C
, N) were dispersed and precipitated, whereas C, which had low strength,
No. 3 is a fine tempered martensitic structure in which the processed structure remains, and many undissolved precipitates that are thought to have become coarse during processing were confirmed.

(発明の効果〕 以上の説明から明らかなように、本発明の方法は、板材
、管材、鍛造品の成形加工にあたり、クリープ特性確保
のために焼ならし・焼もどし処理を施していたボイラ、
原子力、化学工業用の析出強化型窩Crフェライト鋼に
対し、焼ならし処理なしで従来と同等もしくはそれ以上
の特性を付与しうろことが明らかであり、これにより工
程を大巾に簡略化し、製造コストの低減に大きな効果を
発揮するものである。
(Effects of the Invention) As is clear from the above description, the method of the present invention can be applied to boilers that have been subjected to normalizing and tempering to ensure creep properties when forming plate materials, pipe materials, and forged products.
It is clear that it is possible to impart properties equivalent to or better than conventional ones to precipitation-strengthened pit Cr ferritic steel for the nuclear power and chemical industries without normalizing treatment, and this greatly simplifies the process. This is highly effective in reducing manufacturing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第112I(イ)〜四は本発明法における加工工程のヒ
ートパターン図、第2図は高温クリープ強度の試験結果
を本発明法と従来法とについて示したグラフ、第3図は
従来法における加工工程のし一ドパターン図である。 手続補正書(放) 昭和63年1咀927日 特許庁長官 吉 1)文 毅 殴 ■、事件の表示 昭和62年特許願第190790号 2、発明の名称 高温用高Crフェライト鋼の加工方法 3、補正をする者 事件との関係 特許出願人 住 所  大阪市東区北浜5丁目15番地名 称(2)
1)住友金属工業株式会社代表者新宮康男 4、代理人 6、補正の対象 図面。 7、補正の内容 図面の第1図を別紙の通り補正いたします。 (第3図は補正なし。) 以   上
112I(a) to 4 are heat pattern diagrams of the processing steps in the method of the present invention, FIG. 2 is a graph showing the test results of high temperature creep strength for the method of the present invention and the conventional method, and FIG. 3 is the processing process in the conventional method. It is a process step pattern diagram. Procedural amendment (released) January 927, 1988 Director General of the Japan Patent Office Yoshi 1) Tsuyoshi Moon ■, Indication of the case 1988 Patent Application No. 190790 2 Title of the invention Processing method of high Cr ferritic steel for high temperature use 3 , Relationship with the case of the person making the amendment Patent applicant address 5-15 Kitahama, Higashi-ku, Osaka Name (2)
1) Sumitomo Metal Industries Co., Ltd. Representative Yasuo Shingu 4, Agent 6, drawings subject to amendment. 7. Details of the amendment Figure 1 of the drawing will be corrected as shown in the attached sheet. (Figure 3 is without correction.)

Claims (3)

【特許請求の範囲】[Claims] (1)重量%でC:0.03〜0.3%、N:0.1%
以下、Cr:5〜13%含有し、更にV、Nbの1種ま
たは2種を(V+Nb)で0.01〜1%添加した高C
rフェライト鋼の最終熱間加工において、930〜13
00℃に1分以上加熱保持して熱間加工を行い、急冷に
より組織をマルテンサイト化した後、Ac_1点以下の
焼もどし処理を行うことを特徴とする高温用高Crフェ
ライト鋼の加工方法。
(1) C: 0.03-0.3%, N: 0.1% in weight%
Hereinafter, high carbon containing 5 to 13% Cr and further adding one or two of V and Nb (V+Nb) at 0.01 to 1%
r In final hot working of ferritic steel, 930-13
A method for processing high-Cr ferritic steel for high temperature use, which comprises performing hot working by heating and holding at 00° C. for 1 minute or more, converting the structure to martensite by rapid cooling, and then performing tempering treatment to Ac_1 point or less.
(2)重量%でC:0.03〜0.3%、N:0.1%
以下、Cr:5〜13%含有し、更にV、Nbの1種ま
たは2種を(V+Nb)で0.01〜1%添加した高C
rフェライト鋼の最終熱間加工において、930〜13
00℃に1分以上加熱保持して熱間加工を行い、急冷に
より組織をマルテンサイト化した後、Ac_1以下の加
熱で温間加工を行うことを特徴とする高温用高Crフェ
ライト鋼の加工方法。
(2) C: 0.03-0.3%, N: 0.1% in weight%
Hereinafter, high carbon containing 5 to 13% Cr and further adding one or two of V and Nb (V+Nb) at 0.01 to 1%
r In final hot working of ferritic steel, 930-13
A method for processing high-temperature high Cr ferritic steel, which is characterized by performing hot working by heating and holding at 00°C for 1 minute or more, converting the structure to martensite by rapid cooling, and then performing warm working by heating to Ac_1 or less. .
(3)重量%でC:0.03〜0.3%、N:0.1%
以下、Cr:5〜13%含有し、更にV、Nbの1種ま
たは2種を(V+Nb)で0.01〜1%添加した高C
rフェライト鋼の最終熱間加工において、930〜13
00℃に1分以上加熱保持して熱間加工を行い、急冷に
より組織をマルテンサイト化した後、Ac_1点以下の
加熱で温間加工を行い、しかる後、Ac_1点以下の応
力除去焼鈍を行うことを特徴とする高温用高Crフェラ
イト鋼の加工方法。
(3) C: 0.03-0.3%, N: 0.1% in weight%
Hereinafter, high carbon containing 5 to 13% Cr and further adding one or two of V and Nb (V+Nb) at 0.01 to 1%
r In final hot working of ferritic steel, 930-13
Hot working is performed by heating and holding at 00℃ for 1 minute or more, and the structure is martensited by rapid cooling, then warm working is performed by heating to Ac_1 point or less, and then stress relief annealing is performed to Ac_1 point or less. A method of processing high Cr ferritic steel for high temperature use, which is characterized by:
JP62190790A 1987-07-29 1987-07-29 Processing method of high Cr ferritic steel for high temperature Expired - Lifetime JPH0699741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62190790A JPH0699741B2 (en) 1987-07-29 1987-07-29 Processing method of high Cr ferritic steel for high temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62190790A JPH0699741B2 (en) 1987-07-29 1987-07-29 Processing method of high Cr ferritic steel for high temperature

Publications (2)

Publication Number Publication Date
JPH01139717A true JPH01139717A (en) 1989-06-01
JPH0699741B2 JPH0699741B2 (en) 1994-12-07

Family

ID=16263783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62190790A Expired - Lifetime JPH0699741B2 (en) 1987-07-29 1987-07-29 Processing method of high Cr ferritic steel for high temperature

Country Status (1)

Country Link
JP (1) JPH0699741B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05331544A (en) * 1992-06-03 1993-12-14 Nippon Steel Corp Manufacture of high cr heat resistant steel having excellent creep strength and good toughness
EP1960558A2 (en) * 2005-12-08 2008-08-27 Noble Advanced Technologies, Inc. Flash tempering process and apparatus
JP2009293063A (en) * 2008-06-03 2009-12-17 Sumitomo Metal Ind Ltd METHOD FOR MANUFACTURING HIGH-Cr HEAT-RESISTANT FERRITIC STEEL MATERIAL
CN104981559A (en) * 2012-12-28 2015-10-14 泰拉能源公司 Iron-based composition for fuel element
JP2018150619A (en) * 2017-02-09 2018-09-27 テラパワー, エルエルシー Composition based on iron for fuel element
US10157687B2 (en) 2012-12-28 2018-12-18 Terrapower, Llc Iron-based composition for fuel element
US10173359B2 (en) 2015-03-04 2019-01-08 Berry Plastics Corporation Multi-layer tube and process of making the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58120764A (en) * 1982-01-08 1983-07-18 Toshiba Corp Moving vane of steam turbine with superior strength at high temperature and low creep crack propagating speed
JPS6267113A (en) * 1985-09-20 1987-03-26 Nippon Chiyuutankou Kk Production of heat resisting steel having excellent creep rupture resistance characteristic
JPS62103345A (en) * 1985-07-09 1987-05-13 Toshio Fujita Rotor of steam turbine for high temperature use and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58120764A (en) * 1982-01-08 1983-07-18 Toshiba Corp Moving vane of steam turbine with superior strength at high temperature and low creep crack propagating speed
JPS62103345A (en) * 1985-07-09 1987-05-13 Toshio Fujita Rotor of steam turbine for high temperature use and its manufacture
JPS6267113A (en) * 1985-09-20 1987-03-26 Nippon Chiyuutankou Kk Production of heat resisting steel having excellent creep rupture resistance characteristic

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05331544A (en) * 1992-06-03 1993-12-14 Nippon Steel Corp Manufacture of high cr heat resistant steel having excellent creep strength and good toughness
EP1960558A2 (en) * 2005-12-08 2008-08-27 Noble Advanced Technologies, Inc. Flash tempering process and apparatus
EP1960558A4 (en) * 2005-12-08 2010-09-01 Noble Advanced Tech Inc Flash tempering process and apparatus
JP2009293063A (en) * 2008-06-03 2009-12-17 Sumitomo Metal Ind Ltd METHOD FOR MANUFACTURING HIGH-Cr HEAT-RESISTANT FERRITIC STEEL MATERIAL
CN104981559A (en) * 2012-12-28 2015-10-14 泰拉能源公司 Iron-based composition for fuel element
JP2016511325A (en) * 2012-12-28 2016-04-14 テラパワー, エルエルシー Iron-based compositions for fuel elements
US10157687B2 (en) 2012-12-28 2018-12-18 Terrapower, Llc Iron-based composition for fuel element
JP2019060023A (en) * 2012-12-28 2019-04-18 テラパワー, エルエルシー Manufacturing method of iron-based composition for fuel element
US10930403B2 (en) 2012-12-28 2021-02-23 Terrapower, Llc Iron-based composition for fuel element
US10173359B2 (en) 2015-03-04 2019-01-08 Berry Plastics Corporation Multi-layer tube and process of making the same
JP2018150619A (en) * 2017-02-09 2018-09-27 テラパワー, エルエルシー Composition based on iron for fuel element
JP2022119901A (en) * 2017-02-09 2022-08-17 テラパワー, エルエルシー Iron-based steel composition for fuel element, fuel element, component of fuel assembly and method for producing steel composition

Also Published As

Publication number Publication date
JPH0699741B2 (en) 1994-12-07

Similar Documents

Publication Publication Date Title
US6531007B1 (en) Method for the manufacture of steel products of a precipitation hardened martensitic steel, steel products obtained with such method and use of said steel products
JPH01139717A (en) Method for working high cr ferritic steel for use at high temperature
JP3961341B2 (en) Manufacturing method of high strength duplex stainless steel sheet for welded structures
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
JP3422865B2 (en) Method for producing high-strength martensitic stainless steel member
JPH11117019A (en) Production of heat resistant parts
JP2659813B2 (en) Manufacturing method of high strength low alloy heat resistant steel
JPH11117020A (en) Production of heat resistant parts
JP4043004B2 (en) Manufacturing method of hollow forgings with high strength and toughness with excellent stress corrosion cracking resistance and hollow forgings
JPH0297619A (en) Method for forming low-alloy steel for high-temperature service
JP3687249B2 (en) 2.25Cr steel softening heat treatment method
JP3214068B2 (en) Method for producing high Cr ferritic steel with excellent creep rupture strength and ductility
JP4732694B2 (en) Nanocarbide precipitation strengthened ultra high strength corrosion resistant structural steel
JPH03249126A (en) Soaking treatment in production of high strength steel
JPH01205029A (en) Manufacture of high-cr ferritic steel stock for high-temperature use
JPH01165718A (en) Production of high-cr ferritic heat resisting steel products
JPS62170419A (en) Production of welded joint having good creep strength
JP3931400B2 (en) Method for producing boron steel
JPH0288716A (en) Manufacture of heat resistant high cr ferritic steel pipe having high creep breaking strength
JP3879232B2 (en) Low-carbon martensitic stainless hot-rolled steel strip and method for producing the same
JPH0670250B2 (en) Manufacturing method of tempered high strength steel sheet with excellent toughness
JPS63210233A (en) Manufacture of high-cr ferritic-steel product excellent in strength at high temperature
JPH101737A (en) Low alloy heat resistant steel, excellent in high temperature strength and toughness, and its production
JPH04354856A (en) Ferritic heat resistant steel excellent in touchness and creep strength and its production
JPH0310051A (en) High-carbon and high-nitrogen stainless steel having high strength and high toughness and its production

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071207

Year of fee payment: 13