JP3931400B2 - Method for producing boron steel - Google Patents

Method for producing boron steel Download PDF

Info

Publication number
JP3931400B2
JP3931400B2 JP28565597A JP28565597A JP3931400B2 JP 3931400 B2 JP3931400 B2 JP 3931400B2 JP 28565597 A JP28565597 A JP 28565597A JP 28565597 A JP28565597 A JP 28565597A JP 3931400 B2 JP3931400 B2 JP 3931400B2
Authority
JP
Japan
Prior art keywords
steel
less
temperature
content
hot working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28565597A
Other languages
Japanese (ja)
Other versions
JPH10183238A (en
Inventor
隆治 小山
孝 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP28565597A priority Critical patent/JP3931400B2/en
Publication of JPH10183238A publication Critical patent/JPH10183238A/en
Application granted granted Critical
Publication of JP3931400B2 publication Critical patent/JP3931400B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ボロン鋼鋼材の製造方法に関し、より詳しくはその鋼材又は、その鋼材を素材として加工された各種の部品をオーステナイト域へ再加熱しても結晶粒の粗大化や混粒を生ずることがなく、整細粒組織を有するボロン鋼鋼材の製造方法に関する。
【0002】
【従来の技術】
炭素鋼、なかでも低・中炭素鋼にB(ボロン)を少量添加すれば、CrやMoなどの比較的高価な特殊元素を用いることなく焼入れ性を向上させることができる。したがって、ボロン添加鋼(以下、単にボロン鋼という)は原料コストの低減が可能なため、特に、調質処理(焼入れ・焼戻し処理)して製造される自動車などの高強度ボルト用鋼として注目されている。
【0003】
Bの焼入れ性向上効果を有効に作用させるためには、鋼をAc3変態点以上の温度に加熱してオーステナイト化した時に、Bが窒化物(BN)を形成せずに基地のオーステナイトに固溶していることが必要である。このため、ボロン鋼には通常Tiを添加してTiNを形成させ、これによってNを固定することが行われている。
【0004】
しかし一方では、ボロン鋼ではNが固定されているため、結晶粒粗大化防止に効果を有するAlNの析出が妨げられる。このため、ボロン鋼は比較的低温でオーステナイト結晶粒が粗大化する傾向にある。更に、ボロン鋼は冷間鍛造などの冷間加工を受けた後にオーステナイト化されると、比較的低温で混粒を生じてしまう。
【0005】
オーステナイト結晶粒が粗大化したり混粒が生じたりすると、最終製品である各種の熱処理部品の機械的性質を初めとする性能が劣化したり大きくばらついてしまう。又、大きな熱処理歪が生ずるために曲がり取りのための矯正加工や所望形状への仕上げ整形を行わなければならない場合もある。したがって、ボロン鋼を用いる場合には、そのオーステナイト結晶粒が粗大化したり混粒になることを防止するため、各鋼種ごとに熱処理温度、なかでも最高加熱温度を厳密に管理することが行われており、生産面での大きな問題となっていた。
【0006】
こうした問題を解決するために、例えば特公昭63−64495号公報には、低温加熱法で製造しても浸炭処理時など再加熱時のオーステナイト結晶粒の粗大化を抑制できるTi添加の含B肌焼鋼の製造方法が開示されている。しかし、この公報で提案された技術は、結晶粒の粗大化を結晶粒度番号で4以下と規定し、更に、混粒についての配慮がなされていない。このため、最終の熱処理部品の特性については、産業界の要望を満たせない場合もあった。
【0007】
例えば、JIS G 0551には粒度番号5以上の鋼が「細粒鋼」、粒度番号5未満の鋼が「粗粒鋼」と規定されている。そして、オーステナイト結晶粒度番号が1番大きくなった場合(すなわち結晶粒が微細になった場合)の機械的性質に及ぼす影響、例えば、JIS4号シャルピー衝撃試験片を用いた衝撃特性に及ぼす影響は、破面遷移温度がほぼ20℃低下して靭性が向上することが知られている。このように、結晶粒度番号で4を超える組織が得られたとしても、その粒度番号が4に極めて近いものである場合には、JISで規定された所謂「細粒鋼」の特性が得られない場合があった。
【0008】
【発明が解決しようとする課題】
本発明は、上記の現状に鑑みなされたもので、鋼材自体又は、その鋼材を素材として加工された各種の部品をオーステナイト域へ再加熱しても結晶粒の粗大化や混粒を生ずることがなく、整細粒組織を有するボロン鋼鋼材の製造方法を提供することを目的とする。なかでも、熱間加工後にオフラインでの軟化熱処理を施さずとも容易にボルトなど所望の形状に冷間加工が可能で、且つ、熱処理でBの焼入れ性向上効果を充分に発揮できるとともに、整細粒組織を有するボロン鋼鋼材の製造方法を提供することを主たる目的とする。
【0009】
ここで、「整細粒組織」とは、オーステナイト結晶粒度番号が5以上で、且つ、混粒を生じていない組織のことをいう。なお、「混粒」はJIS G 0551の規定に従うものである。このJIS G 0551の「混粒」の定義から外れたものを本明細書においては「整粒」と呼ぶ。
【0010】
【課題を解決するための手段】
本発明の要旨は、下記(1)、(2)に示すボロン鋼鋼材の製造方法にある。
【0011】
(1)重量%で、C:0.1〜0.5%、Si:0.05〜0.3%、Mn:0.4〜1.4%、Cr:0.05〜1.0%、Al:0.01〜0.10%、B:0.0003〜0.01%、N:0.015%以下、Ti:0.02〜0.08%で且つ、Ti(%)−(48/14)N(%)≧0.02%、残部はFe及び不可避不純物からなる化学組成の鋼材を、1300℃以上の温度に加熱して熱間加工を行い、前記熱間加工を700〜900℃の温度域で仕上げ、次いで、600℃までを5℃/秒以下の冷却速度で冷却することを特徴とするボロン鋼鋼材の製造方法。
【0012】
(2)重量%で、C:0.1〜0.5%、Si:0.05〜0.3%、Mn:0.4〜1.4%、Cr:0.05〜1.0%、Al:0.01〜0.10%、B:0.0003〜0.01%、N:0.015%以下、Ti:0.08%以下、Zr:0.10%以下で且つ、Ti(%)+(48/91)Zr(%):0.02〜0.08%及びTi(%)+(48/91)Zr(%)−(48/14)N(%)≧0.02%、Cu:0〜0.5%、Ni:0〜0.5%、残部はFe及び不可避不純物からなる化学組成の鋼材を、1300℃以上の温度に加熱して熱間加工を行い、前記熱間加工を700〜900℃の温度域で仕上げ、次いで、600℃までを5℃/秒以下の冷却速度で冷却することを特徴とするボロン鋼鋼材の製造方法。
【0013】
以下、上記の(1)、(2)をそれぞれ(1)、(2)の発明という。
【0014】
【発明の実施の形態】
本発明者らは、熱間加工後にオフラインでの軟化熱処理を施さずとも容易にボルトなど所望の形状に冷間加工が可能で、且つ、熱処理でBの焼入れ性向上効果を充分に発揮できるとともに、整細粒の組織となるボロン鋼の製造方法について種々検討した。すなわち、種々のボロン鋼を実験炉溶製して、熱間加工条件及び熱間加工後の冷却条件を変えて、これらの条件が冷間加工性、Bの焼入れ性向上効果及び熱処理後の組織に及ぼす影響を調査した。
【0015】
その結果、下記▲1▼〜▲2▼の知見が得られた。
【0016】
▲1▼熱間加工後に冷却したボロン鋼鋼材の常温(室温)における硬度がHv190以下であれば、オフラインでの軟化熱処理を施さずとも容易にボルトなど所望の形状に冷間加工を行うことができる。
【0017】
▲2▼TiやZrでNを固定するとともに、Nの固定に余剰となるTiやZrを添加し、余剰分のTiやZrをオーステナイト中に充分固溶させてから熱間加工し、その後適正条件で鋼材を冷却すれば、その鋼材を冷却のままあるいはそれを冷間加工した後に950℃以下の温度域でオーステナイト化しても結晶粒の粗大化や混粒を生じない。
【0018】
本発明は、上記の知見に基づいて完成されたものである。
【0019】
以下、本発明の各要件について詳しく説明する。なお、成分含有量の「%」は「重量%」を意味する。
【0020】
(A)鋼材の化学組成
C:
Cは、強度及び焼入れ性を高める作用がある。しかしその含有量が0.1%未満では添加効果に乏しい。一方、0.5%を超えると熱間加工後の冷却条件を制御しても常温における硬度がHvで190を超えるものとなって冷間加工性が低下し、オフラインでの軟化熱処理を施さずにボルトなどの所望の形状に冷間加工しようとする本発明の主たる目的が達せられなくなる。更に、靭性の低下が生じるし、後述するBの焼入れ性向上効果が低下してしまう。したがって、Cの含有量を0.1〜0.5%とした。
【0021】
Si:
Siは、脱酸作用を有する。しかし、その含有量が0.05%未満では前記した効果が得られない。一方、多すぎると冷間加工性及び延性を低下させ、特に、その含有量が0.3%を超えると冷間加工性と延性の著しい低下をもたらす。したがって、Siの含有量を0.05〜0.3%とした。
【0022】
Mn:
Mnは脱酸、脱硫及び焼入れ性を高めるのに必要な元素であり、そのためには0.4%以上の含有量とすることが必要である。一方、1.4%を超えて含有させると偏析して不均一組織の発生をきたすとともに冷間鍛造性を劣化させてしまう。したがって、Mn含有量を0.4〜1.4%とした。
【0023】
Cr:
Crは、強度及び焼入れ性を高める作用がある。しかし、その含有量が0.05%未満では所望の効果が得られない。一方、ボロン鋼においてはCrを1.0%を超えて含有させても前記の効果は飽和し、コストが嵩むばかりとなる。したがって、Crの含有量を0.05〜1.0%とした。
【0024】
Al:
Alは、鋼の脱酸の安定化に有効な元素である。しかし、その含有量が0.01%未満では所望の効果が得られない。一方、0.10%を超えると前記効果が飽和するばかりか、Al23が粗大化して靭性の低下をもたらす。したがって、Alの含有量を0.01〜0.10%とした。
【0025】
B:
Bは鋼中に固溶して焼入れ性を高める作用がある。しかし、その含有量が0.0003%未満では所望の効果が得られない。一方、0.01%を超えて含有させると前記の効果が飽和することに加えて、Fe2B が形成されるので熱間加工性や冷間加工性の低下が生じ、更に靭性の低下をも招く。したがって、Bの含有量を0.0003〜0.01%とした。
【0026】
N:
Nは、Bと反応してBNを形成し焼入れ性の向上に有効な固溶B量を減らすので、固溶B量の確保のためにNの含有量は可及的に少なくする必要がある。しかし、製鋼時にN含有量を0(零)とすることは現実には不可能である。そのため固溶Nを、後述するTiやZrによって、主としてTiNやZrNの形で固定してしまうことが重要である。この場合、固溶N量と添加するTi量やZr量とのバランスは、後述するTiやZrの作用を勘案する必要がある。Nの含有量が0.015%を超えると、熱間加工性や冷間加工性の劣化が生じる。したがって、Nの含有量を0.015%以下とした。
【0027】
Ti、Zr:
Ti、Zrは、鋼中のNをTiN、ZrNとして固定してBNの生成を防止し、Bの焼入れ性向上効果を充分に発揮させる作用がある。更に、Ti、Zrには下記の作用がある。
【0028】
本発明の(1)の発明において、Tiの含有量が0.02%以上で、且つ、Ti(%)−(48/14)N(%)で求められる値が0.02%以上の場合には、熱間加工の加熱時にオーステナイト中に固溶していたTiが、熱間加工及びその後の冷却時にTiCとなって析出し、結晶粒を微細化するとともにオーステナイト化域での熱処理時の混粒発生を防止する。しかし、Tiの含有量が0.08%を超えると前記の効果が飽和して経済性を損なうばかりか、靭性や冷間加工性が劣化するようになる。したがって、(1)の発明にあっては、Ti含有量を0.02〜0.08%で且つ、Ti(%)−(48/14)N(%)≧0.02%とした。
【0029】
本発明の(2)の発明において、TiとZrの含有量に関し、Ti(%)+(48/91)Zr(%)の値で0.02〜0.08%で、且つ、Ti(%)+(48/91)Zr(%)−(48/14)N(%)で求められる値が0.02%以上の場合には、熱間加工の加熱時にオーステナイト中に固溶していたTi、Zrが、熱間加工及びその後の冷却時にTiC、ZrCとなって析出し、結晶粒を微細化するとともにオーステナイト化域での熱処理時の混粒発生を防止する。しかし、Ti(%)+(48/91)Zr(%)の値が0.08%を超えると前記の効果が飽和して経済性を損なうばかりか、靭性や冷間加工性が劣化するようになる。なお、Tiの含有量が0.08%を超えると上記(1)の発明に関して述べたように靭性や冷間加工性が劣化するし、Zr含有量が0.10%を超えても靭性や冷間加工性が劣化する。したがって、(2)の発明にあっては、Ti:0.08%以下、Zr:0.10%以下で且つ、Ti(%)+(48/91)Zr(%):0.02〜0.08%及びTi(%)+(48/91)Zr(%)−(48/14)N(%)≧0.02%とした。
【0030】
Cu:
Cuは添加しなくても良い。添加すれば耐食性を高めたり、冷間加工時に潤滑剤の鋼材への密着性を高める作用を有する。こうした効果を確実に得るには、Cuは0.01%以上の含有量とすることが好ましい。しかし、その含有量が0.5%を超えると熱間加工性及び冷間加工性の低下や靭性の劣化を招く。したがって、(2)の発明にあっては、Cuの含有量を0〜0.5%とした。なお、Cuは0.05%以上含有させることが好ましい。より好ましいCu含有量の下限値は0.10%である。Cu含有量は0.15%以上とすれば一層好ましい。一方、スクラップを溶解原料として用いた鋼(例えば工業的規模の電気炉で溶解した鋼)の場合には、0.1%程度のCuを不純物として含む場合があるが、この不純物としてのCuも上記の作用を有する。
【0031】
Ni:
Niは添加しなくても良い。添加すれば鋼の焼入れ性を向上させ、又、強度を高める作用がある。こうした効果を確実に得るには、Niは0.05%以上の含有量とすることが好ましい。しかし、0.5%を超えて含有させても前記の効果は飽和しコストが嵩むばかりか、冷間加工性の低下をきたす。したがって、(2)の発明にあっては、Niの含有量を0〜0.5%とした。なお、Niは0.10%以上含有させることが好ましい。より好ましいNi含有量の下限値は0.15%である。一方、スクラップを溶解原料として用いた鋼(例えば工業的規模の電気炉で溶解した鋼)の場合には、0.1%程度のNiを不純物として含む場合があるが、この不純物としてのNiも上記の作用を有する。
【0032】
(B)熱間加工
(B−1)加熱
本発明においては、Nを固定した後の余剰のTiやZrを、熱間加工及びその後の冷却時にTiCやZrCとして析出させて、結晶粒の微細化とオーステナイト化域での熱処理時の混粒発生防止を達成する。このためには、Nを固定した後の余剰のTiやZrを熱間加工の加熱時にオーステナイト中に充分に固溶させておく必要がある。そこで、前記(A)項の化学組成を有する鋼材を1300℃以上の温度に加熱する。この加熱温度の上限は特に制限するものではない。しかし、脱炭やスケールロスによるコストアップの抑制、更にはエネルギーコストを抑えるために、1400℃程度を上限とすることが好ましい。
【0033】
(B−2)仕上げ温度
オーステナイト中に固溶させた前記の余剰のTiやZrを、熱間加工及びその後の冷却時にTiCやZrCとして析出させて結晶粒の微細化とオーステナイト化域での熱処理時の混粒発生を防止するとともに、冷却後の常温における硬度をHv190以下としてオフラインでの軟化熱処理を施さずとも容易にボルトなど所望の形状に冷間加工を行うことができるようにするために、熱間加工の仕上げ温度は700〜900℃とする必要がある。
【0034】
熱間加工の仕上げ温度が900℃を超える場合には、熱間加工後の冷却条件を制御しても常温における硬度がHvで190を超えるものとなって冷間加工性が低下し、オフラインでの軟化熱処理を施さずにボルトなどの所望の形状に冷間加工しようとする本発明の主たる目的が達せられなくなる。一方、熱間加工の仕上げ温度が700℃を下回る場合には、熱間加工時の変形が不均一となってオーステナイト領域に再加熱した場合に整細粒組織が得られない場合がある。したがって、前記の仕上げ温度を700〜900℃とした。
【0035】
なお、熱間加工の加工量に関しては特に制限はないが、所望の整細粒組織を得るために、その下限は下記(a)式で表される相当歪で0.8程度とすることが好ましい。この加工量の上限は前記した仕上げ温度が確保でき、且つ、所望の形状が確保できさえすれば、設備面からの上限となる加工量であっても良い。
【0036】
ε={(ε1 2+ε2 2+ε3 2)×2/3}1/2 ・・・・(a)
なお、(a)式におけるε1 、ε2 、ε3 は主方向の対数歪である。
【0037】
(C)熱間加工後の冷却
熱間加工終了後は、冷却速度を制御して冷却することが必要である。この冷却の冷却速度が5℃/秒を超える場合には、ベイナイトやマルテンサイトといった所謂「低温変態組織」となってしまって、常温における硬度がHvで190を超えるものとなって冷間加工性が低下し、オフラインでの軟化熱処理を施さずにボルトなどの所望の形状に冷間加工しようとする本発明の主たる目的が達せられなくなる。したがって、熱間加工後の冷却速度を5℃/秒以下とした。なお、この冷却速度の下限は特に制限するものではないが、生産効率を高めるために0.2℃/秒程度を下限とすることが好ましい。
【0038】
前記の冷却速度での冷却は、熱間加工後600℃までの温度域について行う必要がある。前記の冷却を600℃を超える温度で停止した場合には、所望の整細粒組織が得られない。なお、前記の冷却速度での冷却を終了する温度は550℃とすることが好ましく、500℃とすれば一層好ましい。前記の条件で冷却した後の冷却は、特に規定する必要はない。
【0039】
(A)項に述べた化学組成を有し、(B)及び(C)項で述べた方法で製造されたボロン鋼鋼材は、次に、所定の形状に機械加工されてから所望の特性を付与するために調質処理(焼入れ・焼戻し)などの熱処理を施されるか、もしくは、所望の特性を付与するために調質処理などの熱処理を施されてから所定の形状に機械加工される。あるいは、オフラインでの軟化熱処理を施すことなく、通常の方法によって、鍛造などの冷間加工を受けて所定の形状に加工された後、所望の特性を付与するために調質処理などの熱処理を施される。
【0040】
このようにして製造された鋼材自体又はその鋼材を素材として加工された各種の部品は、オーステナイト域で再加熱されても結晶粒の粗大化や混粒を生ずることがなく整細粒組織を有するため、熱処理歪は極めて小さい。したがって、熱処理後の矯正加工や仕上げ整形加工を行う必要がない。
【0041】
なお、所望の整細粒組織を得るために、前記の冷間加工の加工量は前記した(a)式で表される相当歪で、0.1〜5.0とすることが好ましい。上記の加工量は、冷間加工が例えば冷間伸線と冷間鍛造の組み合わせからなる場合、その総加工量を指すものである。本発明対象鋼を用いて熱間加工と冷却の条件を制御し、常温における硬度をHv190以下とした場合には、上記した範囲の減面率の冷間加工は、オフラインでの軟化熱処理を施すまでもなく、問題なく行うことができる。
【0042】
更に、所望の整細粒組織を得るためには、前記の熱処理におけるオーステナイト化の温度をAc3 変態点+10℃〜950℃とすることが好ましい。より好ましいオーステナイト化の温度はAc3 変態点+20℃〜950℃である。焼戻しする場合その温度は、150〜600℃とすることが好ましい。
【0043】
以下、実施例により本発明を更に詳しく説明する。
【0044】
【実施例】
表1及び表2に示す化学組成の鋼を通常の方法によって試験炉溶製した。表1における鋼A〜Tは化学組成が本発明で規定する範囲内の本発明例の鋼である。一方、表2における鋼a〜qは成分のいずれかが本発明で規定する含有量の範囲から外れた比較例の鋼である。
【0045】
【表1】

Figure 0003931400
【0046】
【表2】
Figure 0003931400
【0047】
次いで、これらの鋼を通常の方法によって分塊圧延して140mm角のビレットとし、表3、表4に示す条件で熱間圧延と冷却を行い、直径11.5mmの線材を製造した。なお、記載の冷却を終了した後は放冷した。
【0048】
【表3】
Figure 0003931400
【0049】
【表4】
Figure 0003931400
【0050】
こうして得られた線材について、横断面のD/4(D=11.5mm)部位のビッカース硬度(Hv)測定を行った。表5、表6に、硬度測定結果を示す。
【0051】
【表5】
Figure 0003931400
【0052】
【表6】
Figure 0003931400
【0053】
次いで、上記のようにして得た直径11.5mmの線材の一部を通常の方法で冷間伸線して直径10.9mmの鋼線とした。なお、この冷間伸線の加工度は、減面率で10.2%(相当歪で0.88)である。この後、上記の直径10.9mmの鋼線を長さ100mmに切断し、920℃で30分加熱保持した後、鋼種に応じて水焼入れ、又は油焼入れし、横断面におけるオーステナイト結晶粒度及び横断面中心部のマルテンサイト分率(面積率)を測定した。
【0054】
表5、表6にオーステナイト結晶粒度番号と中心部のマルテンサイト分率を併せて示す。
【0055】
又、前記のようにして得た直径11.5mmの線材の一部から、直径10mm×長さ20mmの円筒上の試験片を切り出し、500トン高速プレス機を用いて通常の方法で据え込み試験を行い、常温(室温)における変形能を測定した。なお、変形能は据え込み率80%で据え込み試験を行った場合の割れ発生の有無で評価した。なお、前記の冷間伸線と据え込み率80%の据え込みとの総加工量は相当歪で2.49である。
【0056】
表5、表6に据え込み試験結果を併せて示す。
【0057】
表5と表6から、本発明例の鋼を本発明で規定する条件で熱間圧延及び冷却を行うと、硬度はHv190以下で冷間加工性に優れ、且つオーステナイト域で熱処理(焼入れ)しても整細粒組織が得られ、焼入れ性も良好であることが明らかである。
【0058】
一方、本発明例の鋼を用いた場合でも、熱間圧延と冷却の少なくともいずれか一方の条件が本発明で規定する範囲から外れると、硬度がHv190を超えて冷間加工性が劣化したり、結晶粒度番号が5を下回る粗粒となったり、混粒の発生が認められた。
【0059】
比較例の鋼を用いた場合、本発明で規定する条件で熱間圧延及び冷却を行っても、硬度がHv190を超えて冷間加工性が劣化したり、結晶粒度番号が5を下回る粗粒となったり、混粒が発生したり、焼入れ性が劣るためマルテンサイト率が低い。
【0060】
【発明の効果】
本発明のボロン鋼鋼材の製造方法によれば、鋼材自体又は、その鋼材を素材として加工された各種の部品をオーステナイト域へ再加熱しても結晶粒の粗大化や混粒を生ずることがなく、整細粒組織を有するボロン鋼鋼材が得られる。特に、熱間加工後にオフラインでの軟化熱処理を施さずとも容易に冷間加工が可能で、且つ、熱処理でBの焼入れ性向上効果を充分に発揮できるとともに、整細粒組織を有するボロン鋼鋼材が得られる。このため、産業上の効果は極めて大きい。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing boron steel material, and more specifically, the steel material or various parts processed using the steel material as raw materials may cause coarsening of crystal grains or mixed grains even when reheated to an austenite region. The present invention relates to a method for producing a boron steel material having a fine grain structure.
[0002]
[Prior art]
If a small amount of B (boron) is added to carbon steel, especially low / medium carbon steel, the hardenability can be improved without using relatively expensive special elements such as Cr and Mo. Therefore, boron-added steel (hereinafter simply referred to as “boron steel”) can reduce raw material costs, and is particularly attracting attention as steel for high-strength bolts such as automobiles manufactured by tempering (quenching / tempering). ing.
[0003]
In order to effectively improve the hardenability effect of B, when the steel is austenitized by heating to a temperature not lower than the Ac 3 transformation point, B does not form nitrides (BN) and is fixed to the base austenite. It must be dissolved. For this reason, Ti is usually added to boron steel to form TiN, thereby fixing N.
[0004]
However, on the other hand, since boron is fixed in boron steel, precipitation of AlN, which is effective in preventing grain coarsening, is hindered. For this reason, boron steel tends to coarsen austenite grains at a relatively low temperature. Further, when boron steel is austenitized after being subjected to cold working such as cold forging, mixed grains are produced at a relatively low temperature.
[0005]
When austenite crystal grains become coarse or mixed grains are produced, the performance including the mechanical properties of various heat-treated parts as final products deteriorates or varies greatly. In addition, since a large heat treatment distortion occurs, there are cases where it is necessary to perform correction processing for bending and finishing shaping to a desired shape. Therefore, in the case of using boron steel, in order to prevent the austenite crystal grains from becoming coarse or mixed, the heat treatment temperature, particularly the maximum heating temperature, is strictly controlled for each steel type. It was a big problem in production.
[0006]
In order to solve these problems, for example, Japanese Patent Publication No. 63-64495 discloses a Ti-containing B-containing skin that can suppress the coarsening of austenite crystal grains at the time of reheating such as carburizing even if manufactured by a low temperature heating method. A method for producing hardened steel is disclosed. However, in the technique proposed in this publication, the coarsening of crystal grains is defined as 4 or less by the crystal grain size number, and no consideration is given to mixed grains. For this reason, the characteristics of the final heat-treated parts may not meet the demands of the industry.
[0007]
For example, JIS G 0551 stipulates that steel having a particle size number of 5 or more is “fine-grained steel” and steel having a particle size number less than 5 is “coarse-grained steel”. And the influence on the mechanical properties when the austenite grain size number is the largest (that is, when the crystal grains become fine), for example, the impact on the impact characteristics using the JIS No. 4 Charpy impact test piece is It is known that the fracture surface transition temperature is lowered by approximately 20 ° C. and the toughness is improved. Thus, even when a structure having a grain size number exceeding 4 is obtained, if the grain size number is very close to 4, the characteristics of so-called “fine-grained steel” defined by JIS can be obtained. There was no case.
[0008]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described situation, and even if the steel material itself or various parts processed using the steel material as a raw material are reheated to the austenite region, coarsening of crystal grains or mixed grains may occur. An object of the present invention is to provide a method for producing a boron steel material having a fine grain structure. In particular, it is possible to easily cold work into a desired shape such as a bolt without performing off-line softening heat treatment after hot working, and the effect of improving the hardenability of B can be sufficiently exhibited by heat treatment. The main object is to provide a method for producing a boron steel material having a grain structure.
[0009]
Here, the “fine grained structure” refers to a structure having an austenite grain size number of 5 or more and no mixed grains. Note that “mixed grain” conforms to the provisions of JIS G 0551. What deviates from the definition of “mixed grain” in JIS G 0551 is referred to as “sized particle” in this specification.
[0010]
[Means for Solving the Problems]
The gist of the present invention resides in the method for producing boron steel materials shown in the following (1) and (2).
[0011]
(1) By weight, C: 0.1-0.5%, Si: 0.05-0.3%, Mn: 0.4-1.4%, Cr: 0.05-1.0% , Al: 0.01 to 0.10%, B: 0.0003 to 0.01%, N: 0.015% or less, Ti: 0.02 to 0.08%, and Ti (%)-( 48/14) N (%) ≧ 0.02%, the balance is Fe and a steel composition having an unavoidable impurity is heated to a temperature of 1300 ° C. or higher to perform hot working. Finishing in a temperature range of 900 ° C., and then cooling to 600 ° C. at a cooling rate of 5 ° C./second or less.
[0012]
(2) By weight, C: 0.1-0.5%, Si: 0.05-0.3%, Mn: 0.4-1.4%, Cr: 0.05-1.0% Al: 0.01 to 0.10%, B: 0.0003 to 0.01%, N: 0.015% or less, Ti: 0.08% or less, Zr: 0.10% or less, and Ti (%) + (48/91) Zr (%): 0.02-0.08% and Ti (%) + (48/91) Zr (%)-(48/14) N (%) ≧ 0. 02%, Cu: 0 to 0.5%, Ni: 0 to 0.5%, the balance is a steel material having a chemical composition composed of Fe and inevitable impurities, and is hot-worked by heating to a temperature of 1300 ° C or higher. A method for producing a boron steel material, wherein the hot working is finished in a temperature range of 700 to 900 ° C., and then cooled to 600 ° C. at a cooling rate of 5 ° C./second or less.
[0013]
Hereinafter, the above (1) and (2) are referred to as the inventions (1) and (2), respectively.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors can easily cold work into a desired shape such as a bolt without performing offline softening heat treatment after hot working, and can sufficiently exhibit the effect of improving the hardenability of B by heat treatment. Various methods for producing boron steel, which has a fine grain structure, were studied. In other words, various boron steels were melted in an experimental furnace, and hot working conditions and cooling conditions after hot working were changed. These conditions were cold workability, B hardenability improving effect, and microstructure after heat treatment. The effects on the environment were investigated.
[0015]
As a result, the following findings (1) to (2) were obtained.
[0016]
(1) If the hardness of the boron steel material cooled after hot working at normal temperature (room temperature) is Hv 190 or less, it can be easily cold worked into a desired shape such as a bolt without performing off-line softening heat treatment. it can.
[0017]
(2) Fix N with Ti or Zr, add excess Ti or Zr to fix N, dissolve the excess Ti or Zr sufficiently in austenite, and then perform hot working, then appropriate If the steel material is cooled under the conditions, even if the steel material is cooled or cold-worked and then austenitized in a temperature range of 950 ° C. or lower, crystal grains are not coarsened or mixed.
[0018]
The present invention has been completed based on the above findings.
[0019]
Hereinafter, each requirement of the present invention will be described in detail. In addition, “%” of the component content means “% by weight”.
[0020]
(A) Chemical composition C of steel material:
C has an effect of increasing strength and hardenability. However, if the content is less than 0.1%, the effect of addition is poor. On the other hand, if it exceeds 0.5%, even if the cooling conditions after hot working are controlled, the hardness at room temperature exceeds 190 in Hv, the cold workability is reduced, and no offline softening heat treatment is performed. Therefore, the main object of the present invention for cold working into a desired shape such as a bolt cannot be achieved. Furthermore, toughness is reduced, and the effect of improving the hardenability of B, which will be described later, is reduced. Therefore, the content of C is set to 0.1 to 0.5%.
[0021]
Si:
Si has a deoxidizing action. However, if the content is less than 0.05%, the above-described effects cannot be obtained. On the other hand, if the amount is too large, cold workability and ductility are deteriorated. In particular, if the content exceeds 0.3%, cold workability and ductility are significantly reduced. Therefore, the Si content is set to 0.05 to 0.3%.
[0022]
Mn:
Mn is an element necessary for improving deoxidation, desulfurization and hardenability, and for that purpose, the content must be 0.4% or more. On the other hand, if the content exceeds 1.4%, segregation occurs and a non-uniform structure is generated, and the cold forgeability is deteriorated. Therefore, the Mn content is set to 0.4 to 1.4%.
[0023]
Cr:
Cr has the effect of increasing strength and hardenability. However, if the content is less than 0.05%, the desired effect cannot be obtained. On the other hand, in the case of boron steel, if the Cr content exceeds 1.0%, the above effect is saturated and the cost is increased. Therefore, the Cr content is set to 0.05 to 1.0%.
[0024]
Al:
Al is an element effective for stabilizing deoxidation of steel. However, if the content is less than 0.01%, the desired effect cannot be obtained. On the other hand, if it exceeds 0.10%, not only the above-mentioned effect is saturated, but also Al 2 O 3 is coarsened and the toughness is lowered. Therefore, the Al content is set to 0.01 to 0.10%.
[0025]
B:
B has the effect of increasing the hardenability by dissolving in steel. However, if the content is less than 0.0003%, the desired effect cannot be obtained. On the other hand, when the content exceeds 0.01%, in addition to saturation of the above effects, Fe 2 B is formed, resulting in a decrease in hot workability and cold workability, and a further decrease in toughness. Also invite. Therefore, the content of B is set to 0.0003 to 0.01%.
[0026]
N:
Since N reacts with B to form BN and reduces the amount of solid solution B effective for improving hardenability, the content of N needs to be reduced as much as possible to ensure the amount of solid solution B. . However, in reality, it is impossible to set the N content to 0 (zero) during steelmaking. Therefore, it is important to fix the solid solution N mainly in the form of TiN or ZrN by Ti or Zr described later. In this case, the balance between the amount of solute N and the amount of Ti or Zr to be added needs to take into account the effects of Ti and Zr described later. When the N content exceeds 0.015%, the hot workability and the cold workability deteriorate. Therefore, the N content is set to 0.015% or less.
[0027]
Ti, Zr:
Ti and Zr have the effect of fixing N in the steel as TiN and ZrN to prevent the formation of BN and sufficiently exhibit the effect of improving the hardenability of B. Furthermore, Ti and Zr have the following actions.
[0028]
In the invention of (1) of the present invention, when the Ti content is 0.02% or more and the value obtained by Ti (%)-(48/14) N (%) is 0.02% or more In this case, Ti dissolved in the austenite during the hot working heating is precipitated as TiC during the hot working and the subsequent cooling, thereby refining the crystal grains and at the time of the heat treatment in the austenitic region. Prevents mixed grain generation. However, if the Ti content exceeds 0.08%, the above effects are saturated and the economy is impaired, and the toughness and cold workability are deteriorated. Therefore, in the invention of (1), the Ti content is 0.02 to 0.08% and Ti (%) − (48/14) N (%) ≧ 0.02%.
[0029]
In the invention of (2) of the present invention, regarding the contents of Ti and Zr, the value of Ti (%) + (48/91) Zr (%) is 0.02 to 0.08%, and Ti (% ) + (48/91) Zr (%)-(48/14) N (%) was 0.02% or more, it was dissolved in austenite during the hot working heating. Ti and Zr precipitate as TiC and ZrC during hot working and subsequent cooling, thereby refining the crystal grains and preventing the generation of mixed grains during heat treatment in the austenitized region. However, if the value of Ti (%) + (48/91) Zr (%) exceeds 0.08%, the above effects are saturated and the economy is impaired, and the toughness and cold workability are deteriorated. become. If the Ti content exceeds 0.08%, the toughness and cold workability deteriorate as described in the invention of (1) above, and even if the Zr content exceeds 0.10%, the toughness and Cold workability deteriorates. Therefore, in the invention of (2), Ti: 0.08% or less, Zr: 0.10% or less, and Ti (%) + (48/91) Zr (%): 0.02 to 0 0.08% and Ti (%) + (48/91) Zr (%) − (48/14) N (%) ≧ 0.02%.
[0030]
Cu:
Cu may not be added. If added, it has the effect of improving corrosion resistance and improving the adhesion of the lubricant to the steel during cold working. In order to surely obtain such an effect, it is preferable that the Cu content is 0.01% or more. However, when its content exceeds 0.5%, the hot workability and the cold workability are lowered and the toughness is deteriorated. Therefore, in the invention of (2), the Cu content is set to 0 to 0.5%. In addition, it is preferable to contain Cu 0.05% or more. A more preferable lower limit of the Cu content is 0.10%. It is more preferable that the Cu content is 0.15% or more. On the other hand, in the case of steel using scrap as a melting raw material (for example, steel melted in an electric furnace of an industrial scale), about 0.1% of Cu may be included as an impurity. Has the above action.
[0031]
Ni:
Ni need not be added. If added, the hardenability of the steel is improved and the strength is increased. In order to reliably obtain such an effect, it is preferable that Ni is contained in an amount of 0.05% or more. However, even if the content exceeds 0.5%, the above effect is saturated and the cost is increased, and cold workability is lowered. Therefore, in the invention of (2), the Ni content is set to 0 to 0.5%. Ni is preferably contained in an amount of 0.10% or more. A more preferable lower limit of the Ni content is 0.15%. On the other hand, in the case of steel using scrap as a melting raw material (for example, steel melted in an industrial scale electric furnace), about 0.1% of Ni may be included as an impurity. Has the above action.
[0032]
(B) Hot working (B-1) heating In the present invention, excess Ti or Zr after fixing N is precipitated as TiC or ZrC during hot working and subsequent cooling, so that the crystal grains are fine. And prevention of mixed grains during heat treatment in the austenitizing region. For this purpose, it is necessary to sufficiently dissolve excessive Ti or Zr after fixing N in austenite at the time of heating in hot working. Then, the steel material which has the chemical composition of the said (A) term is heated to the temperature of 1300 degreeC or more. The upper limit of the heating temperature is not particularly limited. However, it is preferable to set the upper limit at about 1400 ° C. in order to suppress cost increase due to decarburization and scale loss, and further to reduce energy costs.
[0033]
(B-2) Finishing temperature The excess Ti or Zr dissolved in austenite is precipitated as TiC or ZrC during hot working and subsequent cooling to refine crystal grains and heat treatment in the austenitic region. In order to prevent the occurrence of mixed grains at the time, and to make the cold working into a desired shape such as a bolt easily without applying an off-line softening heat treatment at a normal temperature after cooling of Hv 190 or less The finishing temperature for hot working needs to be 700 to 900 ° C.
[0034]
When the finishing temperature of hot working exceeds 900 ° C., even if the cooling conditions after hot working are controlled, the hardness at room temperature exceeds 190 in Hv, and the cold workability is reduced, and offline. The main object of the present invention to cold work into a desired shape such as a bolt without performing the softening heat treatment is not achieved. On the other hand, when the finishing temperature of hot working is lower than 700 ° C., deformation during hot working becomes non-uniform and a fine grain structure may not be obtained when reheated to the austenite region. Accordingly, the finishing temperature is set to 700 to 900 ° C.
[0035]
In addition, although there is no restriction | limiting in particular regarding the processing amount of a hot processing, In order to obtain a desired fine grain structure, the minimum is set to about 0.8 with the equivalent distortion represented by the following (a) formula. preferable. The upper limit of the processing amount may be the upper processing amount from the equipment surface as long as the above-described finishing temperature can be secured and a desired shape can be secured.
[0036]
ε = {(ε 1 2 + ε 2 2 + ε 3 2 ) × 2/3} 1/2 ... (a)
In the equation (a), ε 1 , ε 2 , and ε 3 are logarithmic strains in the main direction.
[0037]
(C) Cooling after hot working After completion of hot working, it is necessary to control the cooling rate to cool. When the cooling rate of this cooling exceeds 5 ° C./second, it becomes a so-called “low-temperature transformation structure” such as bainite and martensite, and the hardness at room temperature exceeds 190 in Hv and cold workability is achieved. And the main object of the present invention for cold working into a desired shape such as a bolt without performing off-line softening heat treatment cannot be achieved. Therefore, the cooling rate after hot working is set to 5 ° C./second or less. The lower limit of the cooling rate is not particularly limited, but it is preferable to set the lower limit to about 0.2 ° C./second in order to increase production efficiency.
[0038]
It is necessary to perform cooling at the cooling rate in a temperature range up to 600 ° C. after hot working. When the cooling is stopped at a temperature exceeding 600 ° C., a desired fine grain structure cannot be obtained. In addition, it is preferable that the temperature which complete | finishes cooling with the said cooling rate shall be 550 degreeC, and if it is 500 degreeC, it is still more preferable. The cooling after cooling under the above conditions does not need to be specified.
[0039]
The boron steel material having the chemical composition described in the section (A) and manufactured by the method described in the sections (B) and (C) is then machined into a predetermined shape and then has a desired characteristic. Heat treatment such as tempering treatment (quenching / tempering) is applied to impart, or heat treatment such as tempering treatment is imparted to impart desired characteristics, and then machined into a predetermined shape. . Or, after applying a cold working such as forging and processing into a predetermined shape without applying an offline softening heat treatment, a heat treatment such as a tempering treatment is performed to give the desired properties. Applied.
[0040]
The steel material produced in this way or various parts processed using the steel material as a raw material has a fine grain structure without causing coarsening or mixed grains of crystals even when reheated in the austenite region. Therefore, the heat treatment strain is extremely small. Therefore, there is no need to perform correction processing or finish shaping after heat treatment.
[0041]
In addition, in order to obtain a desired fine grain structure, the amount of the cold working is preferably the equivalent strain represented by the above-described formula (a), and is preferably 0.1 to 5.0. The above-mentioned processing amount indicates the total processing amount when the cold working is composed of a combination of cold wire drawing and cold forging, for example. When the hot working and cooling conditions are controlled using the steel of the present invention, and the hardness at normal temperature is set to Hv 190 or less, the cold working with the area reduction rate in the above range is subjected to offline softening heat treatment. It can be done without problems.
[0042]
Furthermore, in order to obtain a desired fine grain structure, it is preferable that the austenitizing temperature in the heat treatment is set to Ac 3 transformation point + 10 ° C. to 950 ° C. A more preferable austenitizing temperature is Ac 3 transformation point + 20 ° C. to 950 ° C. When tempering, the temperature is preferably 150 to 600 ° C.
[0043]
Hereinafter, the present invention will be described in more detail with reference to examples.
[0044]
【Example】
Steels having chemical compositions shown in Tables 1 and 2 were melted in a test furnace by an ordinary method. Steels A to T in Table 1 are steels of the examples of the present invention within the range defined by the present invention in chemical composition. On the other hand, steels a to q in Table 2 are steels of comparative examples in which any of the components is out of the content range defined in the present invention.
[0045]
[Table 1]
Figure 0003931400
[0046]
[Table 2]
Figure 0003931400
[0047]
Next, these steels were divided and rolled into a 140 mm square billet by a normal method, and hot rolled and cooled under the conditions shown in Tables 3 and 4 to produce a wire rod having a diameter of 11.5 mm. In addition, after complete | finishing the description cooling, it stood to cool.
[0048]
[Table 3]
Figure 0003931400
[0049]
[Table 4]
Figure 0003931400
[0050]
Vickers hardness (Hv) measurement of the D / 4 (D = 11.5 mm) portion of the cross section was performed on the wire thus obtained. Tables 5 and 6 show the hardness measurement results.
[0051]
[Table 5]
Figure 0003931400
[0052]
[Table 6]
Figure 0003931400
[0053]
Next, a part of the wire rod having a diameter of 11.5 mm obtained as described above was cold-drawn by a normal method to obtain a steel wire having a diameter of 10.9 mm. In addition, the workability of this cold drawing is 10.2% in terms of area reduction (0.88 in terms of equivalent strain). Thereafter, the steel wire having a diameter of 10.9 mm is cut into a length of 100 mm, heated and held at 920 ° C. for 30 minutes, then water-quenched or oil-quenched according to the steel type, and the austenite grain size and cross-section in the cross section The martensite fraction (area ratio) at the center of the surface was measured.
[0054]
Tables 5 and 6 show the austenite grain size number and the martensite fraction at the center.
[0055]
In addition, a test piece on a cylinder having a diameter of 10 mm and a length of 20 mm was cut out from a part of the wire having a diameter of 11.5 mm obtained as described above, and an upsetting test was performed by a normal method using a 500-ton high-speed press. The deformability at room temperature (room temperature) was measured. The deformability was evaluated by the presence or absence of cracks when the upsetting test was conducted at an upsetting rate of 80%. In addition, the total processing amount of the cold drawing and upsetting at 80% upsetting is 2.49 in terms of equivalent strain.
[0056]
Tables 5 and 6 also show the upsetting test results.
[0057]
From Tables 5 and 6, when hot rolling and cooling the steel of the present invention under the conditions specified in the present invention, the hardness is Hv 190 or less, excellent cold workability, and heat treatment (quenching) in the austenite region. However, it is clear that a fine grain structure is obtained and the hardenability is good.
[0058]
On the other hand, even when the steel of the present invention is used, if the condition of at least one of hot rolling and cooling deviates from the range specified in the present invention, the hardness exceeds Hv190 and the cold workability deteriorates. Further, coarse grains having a grain size number of less than 5 or generation of mixed grains were observed.
[0059]
When the steel of the comparative example is used, even if hot rolling and cooling are performed under the conditions specified in the present invention, the hardness exceeds Hv190 and the cold workability deteriorates, or the grain size number is less than 5. Or mixed grains are generated or the hardenability is poor, so the martensite ratio is low.
[0060]
【The invention's effect】
According to the method for producing a boron steel material of the present invention, even if the steel material itself or various parts processed using the steel material as a raw material are reheated to the austenite region, coarsening of crystal grains and mixed grains do not occur. A boron steel material having a fine grain structure can be obtained. In particular, a boron steel material that can be easily cold worked without performing an off-line softening heat treatment after hot working, can sufficiently exhibit the effect of improving the hardenability of B by the heat treatment, and has a fine grain structure. Is obtained. For this reason, the industrial effect is extremely large.

Claims (2)

重量%で、C:0.1〜0.5%、Si:0.05〜0.3%、Mn:0.4〜1.4%、Cr:0.05〜1.0%、Al:0.01〜0.10%、B:0.0003〜0.01%、N:0.015%以下、Ti:0.02〜0.08%で且つ、Ti(%)−(48/14)N(%)≧0.02%、残部はFe及び不可避不純物からなる化学組成の鋼材を、1300℃以上の温度に加熱して熱間加工を行い、前記熱間加工を700〜900℃の温度域で仕上げ、次いで、600℃までを5℃/秒以下の冷却速度で冷却することを特徴とするボロン鋼鋼材の製造方法。By weight, C: 0.1-0.5%, Si: 0.05-0.3%, Mn: 0.4-1.4%, Cr: 0.05-1.0%, Al: 0.01 to 0.10%, B: 0.0003 to 0.01%, N: 0.015% or less, Ti: 0.02 to 0.08%, and Ti (%)-(48/14 ) N (%) ≧ 0.02%, the balance is a steel material having a chemical composition consisting of Fe and inevitable impurities, heated to a temperature of 1300 ° C. or higher to perform hot working, and the hot working is performed at 700 to 900 ° C. Finishing in a temperature range, and then cooling to 600 ° C. at a cooling rate of 5 ° C./second or less. 重量%で、C:0.1〜0.5%、Si:0.05〜0.3%、Mn:0.4〜1.4%、Cr:0.05〜1.0%、Al:0.01〜0.10%、B:0.0003〜0.01%、N:0.015%以下、Ti:0.08%以下、Zr:0.10%以下で且つ、Ti(%)+(48/91)Zr(%):0.02〜0.08%及びTi(%)+(48/91)Zr(%)−(48/14)N(%)≧0.02%、Cu:0〜0.5%、Ni:0〜0.5%、残部はFe及び不可避不純物からなる化学組成の鋼材を、1300℃以上の温度に加熱して熱間加工を行い、前記熱間加工を700〜900℃の温度域で仕上げ、次いで、600℃までを5℃/秒以下の冷却速度で冷却することを特徴とするボロン鋼鋼材の製造方法。By weight, C: 0.1-0.5%, Si: 0.05-0.3%, Mn: 0.4-1.4%, Cr: 0.05-1.0%, Al: 0.01 to 0.10%, B: 0.0003 to 0.01%, N: 0.015% or less, Ti: 0.08% or less, Zr: 0.10% or less, and Ti (%) + (48/91) Zr (%): 0.02-0.08% and Ti (%) + (48/91) Zr (%)-(48/14) N (%) ≧ 0.02%, Cu: 0 to 0.5%, Ni: 0 to 0.5%, the balance is Fe and a chemical composition consisting of inevitable impurities is heated to a temperature of 1300 ° C. or higher to perform hot working. A method for producing a boron steel material, wherein the processing is finished in a temperature range of 700 to 900 ° C., and then cooled to 600 ° C. at a cooling rate of 5 ° C./second or less.
JP28565597A 1996-10-25 1997-10-17 Method for producing boron steel Expired - Fee Related JP3931400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28565597A JP3931400B2 (en) 1996-10-25 1997-10-17 Method for producing boron steel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP28350796 1996-10-25
JP8-283507 1996-10-25
JP28565597A JP3931400B2 (en) 1996-10-25 1997-10-17 Method for producing boron steel

Publications (2)

Publication Number Publication Date
JPH10183238A JPH10183238A (en) 1998-07-14
JP3931400B2 true JP3931400B2 (en) 2007-06-13

Family

ID=26555066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28565597A Expired - Fee Related JP3931400B2 (en) 1996-10-25 1997-10-17 Method for producing boron steel

Country Status (1)

Country Link
JP (1) JP3931400B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112969808B (en) * 2018-10-30 2022-09-13 杰富意钢铁株式会社 Steel for bolt and method for producing same
US20210404030A1 (en) * 2018-10-30 2021-12-30 Jfe Steel Corporation Steel for bolts, and method of manufacturing same

Also Published As

Publication number Publication date
JPH10183238A (en) 1998-07-14

Similar Documents

Publication Publication Date Title
WO2007074986A1 (en) Steel wire having excellent cold heading quality and quenching property, and method for producing the same
WO2001002615A1 (en) Cold workable steel bar or wire and process
JPH0892690A (en) Carburized parts excellent in fatigue resistance and its production
US20070006947A1 (en) Steel wire for cold forging having excellent low temperature impact properties and method of producing the same
CN109790602B (en) Steel
JP3738004B2 (en) Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method
JP3677972B2 (en) Method for producing steel material for cold forging containing boron
JP3422865B2 (en) Method for producing high-strength martensitic stainless steel member
JPH1129842A (en) Ferrite-pearlite type non-heat treated steel
JP3931400B2 (en) Method for producing boron steel
JPH0425343B2 (en)
JP3149741B2 (en) Non-heat treated steel excellent in fatigue resistance and its manufacturing method
JPH11117019A (en) Production of heat resistant parts
JPH10330836A (en) Production of hot forged parts excellent in machinability and fatigue characteristic
JPH09202921A (en) Production of wire for cold forging
JP2756535B2 (en) Manufacturing method for strong steel bars
JP4006857B2 (en) Cold forging steel for induction hardening, machine structural parts and manufacturing method thereof
JP3543581B2 (en) Ferrite / pearlite non-heat treated steel
JP3075139B2 (en) Coarse-grained case hardened steel, surface-hardened parts excellent in strength and toughness, and method for producing the same
JPH1072639A (en) Steel material for machine structural use, excellent in machinability, cold forgeability, and hardenability
WO2023248556A1 (en) Steel for high-frequency hardening
JPH10265891A (en) Ferrite/pearlite type non-heat treated steel
JP3584726B2 (en) High strength non-heat treated steel
JP3033459B2 (en) Manufacturing method of non-heat treated high strength steel
JP3196006B2 (en) Method of manufacturing non-heat treated steel for hot forging, hot forged non-heat treated product, and hot forged non-heat treated product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040623

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070305

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140323

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees