JPH1072639A - Steel material for machine structural use, excellent in machinability, cold forgeability, and hardenability - Google Patents

Steel material for machine structural use, excellent in machinability, cold forgeability, and hardenability

Info

Publication number
JPH1072639A
JPH1072639A JP16301497A JP16301497A JPH1072639A JP H1072639 A JPH1072639 A JP H1072639A JP 16301497 A JP16301497 A JP 16301497A JP 16301497 A JP16301497 A JP 16301497A JP H1072639 A JPH1072639 A JP H1072639A
Authority
JP
Japan
Prior art keywords
steel
less
graphite
hardenability
machinability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16301497A
Other languages
Japanese (ja)
Other versions
JP3721723B2 (en
Inventor
Takashi Iwamoto
岩本  隆
Toshiyuki Hoshino
俊幸 星野
Kenichi Amano
虔一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP16301497A priority Critical patent/JP3721723B2/en
Publication of JPH1072639A publication Critical patent/JPH1072639A/en
Application granted granted Critical
Publication of JP3721723B2 publication Critical patent/JP3721723B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a machinability equal to or higher than that of a Pb-added free cutting steel and to improve a cold forgeability and a hardenability by using mainly graphite and cementite as C to be added to a steel of specific composition and also specifying a graphitization ratio. SOLUTION: This steel material for machine structural use has a composition consisting of, by mass, 0.1-1.5% C, 0.5-2.0% Si, 0.1-2.0% Mn, 0.005-0.1% Al, 0.0015-0.0150% N, 0.0003-0.0150% B, <=0.020% P, <=0.035% S, <=0.0030% O, and the balance Fe with inevitable impurities. Mainly graphite and cementite are used as C to be added, and a ferrite + graphite + cementite structure is formed. Further, the graphitization ratio, defined by [(the amount of graphite)/(the amount of graphite when the contained C is all graphitized)] ×100(%), is regulated to 10-80%. After this steel material is worked into a prescribed shape, induction hardening and tempering are applied to provide a prescribed strength.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、産業機械や自動車
等の機械部品に用いられて好適な機械構造用鋼材に関
し、特に被削性、冷間鍛造性および焼入れ性を兼ね備え
た機械構造用鋼材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel material for a machine structure suitable for use in machine parts such as industrial machines and automobiles, and more particularly to a steel material for a machine structure having machinability, cold forgeability and hardenability. About.

【0002】[0002]

【従来の技術】産業機械や自動車等に用いられる機械部
品は、鋼材を切削または冷間鍛造あるいはそれらの併用
により所定の形状に加工され、その後、焼入れ焼戻し処
理によって、機械部品としての要求特性を確保するとい
う方法により製造される。このような機械部品に用いら
れる鋼材は、まず、被削性および冷間鍛造性が優れてい
ることが要求される。機械構造用鋼の被削性を改善する
手段としては、鋼中にPb、S、Bi、P等の快削性元素を
単独または複合添加する方法が一般的である。特にPbは
被削性を改善する作用が極めて強いために多用されてい
る。しかし一方では、Pbは人体に有害な元素でもあり、
鋼材の製造工程や機械部品の加工工程で大がかりな排気
設備を必要とし、また鋼材のリサイクルの点からも問題
がある。一方、鋼材の冷間鍛造性の改善のためには、P
b、S、Te、Bi、P等の快削性元素は延性、靱性を劣化
させるため、逆に減少させることが望ましい。
2. Description of the Related Art Machine parts used in industrial machines and automobiles are formed by cutting steel, cold forging or a combination thereof to a predetermined shape, and then quenching and tempering to obtain the required characteristics as mechanical parts. It is manufactured by the method of securing. First, steel materials used for such mechanical parts are required to have excellent machinability and cold forgeability. As a means for improving the machinability of the steel for machine structural use, a method of adding a free-cutting element such as Pb, S, Bi, P or the like to the steel alone or in combination is generally used. In particular, Pb is widely used because it has an extremely strong effect of improving machinability. But on the other hand, Pb is also a harmful element to the human body,
Extensive exhaust equipment is required in the manufacturing process of steel products and the processing of machine parts, and there is a problem in terms of recycling steel products. On the other hand, in order to improve the cold forgeability of steel,
Since free-cutting elements such as b, S, Te, Bi, and P deteriorate ductility and toughness, it is desirable to reduce them.

【0003】このようなことから、機械構造用鋼の被削
性と冷間鍛造性を同時に向上させるために、鋼の組織を
フェライト+黒鉛の2相組織とすることが考えられてい
る。例えば特開昭51−57621 号公報には、Siを 1.9〜3.
0 %と高め、微細黒鉛を0.20〜0.44%含有させた冷間鍛
造性に優れた快削鋼が提示されている。また、特開平3
−140411号公報には、調質後の冷間加工性を向上させる
方法が開示されている。この方法は、0.32〜0.54%C
で、Mn、Si、Al含有量を調整した熱延または冷延した鋼
材に、最終冷間加工、焼入れ焼戻しを行う前に 620〜68
0 ℃で15hr以上の焼鈍を施し、ほぼ完全に黒鉛化すると
いうものである。
In view of the above, in order to simultaneously improve machinability and cold forgeability of steel for machine structural use, it has been considered that the structure of the steel is a two-phase structure of ferrite + graphite. For example, JP-A-51-57621 discloses that Si is used in an amount of 1.9 to 3.
A free-cutting steel with a high forgeability of 0% and containing 0.20 to 0.44% of fine graphite and having excellent cold forgeability has been proposed. In addition, Japanese Unexamined Patent Publication No.
JP-A-140411 discloses a method for improving cold workability after tempering. This method uses 0.32-0.54% C
In hot-rolled or cold-rolled steel materials with adjusted Mn, Si, and Al contents, before final cold working and quenching and tempering, 620 to 68
Annealing is performed at 0 ° C for 15 hours or more, and it is almost completely graphitized.

【0004】しかしながら、フェライト+黒鉛の2相の
組織からなる鋼は、極めて軟質の2相の組み合わせであ
るため、冷間鍛造時の変形抵抗が低いなどの優れた特性
を持つ反面、切削時には軟質であるが故に表面にむしれ
を生じやすく、切削後の表面状況は必ずしも優れている
とは言えなかった。また、黒鉛はセメンタイトよりも極
めて安定な析出物であり、黒鉛となったCの鋼中への固
溶はオーステナイト域まで加熱されても非常に困難とな
る。そのため、焼入れに際し、組織がフェライト+黒鉛
の場合には、フェライト+パーライト組織、あるいはフ
ェライト+球状セメンタイト組織の場合にくらべ、充分
な強度が得られない場合があった。特に急熱、短時間保
持となる高周波焼入れの場合に、フェライト+黒鉛組織
で、焼入れ後の強度不足が顕著であった。
[0004] However, a steel having a two-phase structure of ferrite and graphite is an extremely soft combination of two phases, and therefore has excellent characteristics such as low deformation resistance during cold forging, but is soft during cutting. Therefore, the surface was apt to be peeled, and the surface condition after cutting was not always excellent. Graphite is a precipitate that is much more stable than cementite, and it is very difficult to dissolve graphite C into steel even when it is heated to the austenite region. Therefore, in the case of quenching, when the structure is ferrite + graphite, sufficient strength may not be obtained as compared with the case of ferrite + pearlite structure or ferrite + spherical cementite structure. In particular, in the case of induction hardening in which rapid heating and holding for a short time were performed, the strength was insufficient after quenching due to the ferrite + graphite structure.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記した問
題を有利に解決し、従来のPb添加快削鋼と同等以上の被
削性を有し、切削後の表面粗度も小さく、しかも冷間鍛
造性ならびに焼入れ性にも優れた機械構造用鋼材を提供
することを目的とするものである。
DISCLOSURE OF THE INVENTION The present invention advantageously solves the above-mentioned problems, has machinability equal to or higher than that of conventional Pb-added free-cutting steel, has a small surface roughness after cutting, and An object of the present invention is to provide a steel material for a machine structure which is excellent in cold forgeability and hardenability.

【0006】[0006]

【課題を解決するための手段】本発明者らは、種々の検
討を行った結果、黒鉛化を迅進する成分組成とし、さら
に組織をフェライトと添加C量の10〜80%の黒鉛と残り
のC量をセメンタイトとするフェライト+黒鉛+セメン
タイト組織とすることにより、機械構造用鋼材の冷間鍛
造性、被削性、切削後の表面粗度および焼入れ性が向上
するという知見を得た。
As a result of various studies, the present inventors have determined that the composition of the composition is such that it accelerates the graphitization, and that the structure is made up of the ferrite and graphite having a content of 10 to 80% of the added C content. By forming a ferrite + graphite + cementite structure in which the C content of C is cementite, the cold forging property, machinability, surface roughness after cutting and hardenability of the steel material for machine structure are improved.

【0007】鋼中にパーライト等の層状のセメンタイト
やMnS のような介在物が存在すると、冷間加工時にこれ
らの介在物と母相との界面からボイドが発生し、歪み量
の増加にともなってこれらが連結拡大して早期に破壊に
至る。しかし、鋼中に黒鉛が存在すれば、冷間鍛造時に
黒鉛が母相の変形に追従し、黒鉛−母相界面からのボイ
ドの発生が抑制されて、破壊に至るまでの歪み量が大き
くなり、冷間鍛造性が向上する。また、鋼中に黒鉛が存
在すれば、その黒鉛が切削時に潤滑剤として作用し、工
具の温度上昇を抑制するため、被削性が向上する。
When layered inclusions such as pearlite and MnS are present in steel, voids are generated from the interface between these inclusions and the matrix during cold working, and the amount of strain increases. These expand the connection and lead to early destruction. However, if graphite is present in the steel, the graphite will follow the deformation of the matrix during cold forging, and the generation of voids from the graphite-matrix interface will be suppressed, increasing the amount of strain up to fracture. The cold forgeability is improved. Further, if graphite is present in the steel, the graphite acts as a lubricant during cutting and suppresses a rise in the temperature of the tool, thereby improving machinability.

【0008】しかし、黒鉛となったCの鋼中への固溶は
困難となるため、黒鉛のみでは焼入れ性、とくに高周波
焼入れ性が劣る。そこで本発明では、組織中に黒鉛に加
えてセメンタイトを残留させる。セメンタイトを鋼中に
残留させることで、同一C量で比較した場合の鋼中の黒
鉛粒径は微細となり、その結果黒鉛粒自体のマトリック
ス中への固溶も容易となり、この点からも焼入れ性は向
上する。
However, since it becomes difficult to dissolve graphite C into steel, quenchability, especially induction hardening, is poor with graphite alone. Therefore, in the present invention, cementite is left in the structure in addition to graphite. By leaving cementite in the steel, the graphite particle size in the steel when compared with the same C content becomes fine, and as a result, the graphite particles themselves can be easily dissolved in the matrix, and from this point, the quenchability is also high. Improves.

【0009】また、鋼中に一部セメンタイトを残留させ
ることで、全体の硬さを上昇させ、切削後の表面粗度も
改善される。本発明は上記した考えをもとに構成された
ものである。すなわち本発明は、第1発明として、mass
%で、C:0.1 〜1.5 %、Si:0.5〜2.0 %、Mn:0.1
〜2.0 %、Al:0.005 〜0.1 %、N:0.0015〜0.0150
%、B:0.0003〜0.0150%、P:0.020 %以下、S:0.
035 %以下、O:0.0030%以下を含み、残部がFeおよび
不可避的不純物からなり、含有するCが主として黒鉛と
セメンタイトとなり、かつ、{(黒鉛量)/(含有する
Cがすべて黒鉛化したときの黒鉛量)}×100 (%)で
定義される黒鉛化率が10〜80%であることを特徴とする
被削性、冷間鍛造性および焼入れ性に優れた機械構造用
鋼材である。
Further, by leaving cementite partially in the steel, the overall hardness is increased and the surface roughness after cutting is also improved. The present invention has been made based on the above idea. That is, the present invention provides mass
%, C: 0.1 to 1.5%, Si: 0.5 to 2.0%, Mn: 0.1%
2.02.0%, Al: 0.005 to 0.1%, N: 0.0015 to 0.0150
%, B: 0.0003 to 0.0150%, P: 0.020% or less, S: 0.
035% or less, O: 0.0030% or less, the balance consists of Fe and unavoidable impurities, the contained C is mainly graphite and cementite, and {(graphite amount) / (all contained C is graphitized. It is a steel material for machine structural use excellent in machinability, cold forgeability and hardenability, characterized in that the graphitization ratio defined by (amount of graphite)} × 100 (%) is 10 to 80%.

【0010】また第2発明は、第1発明に加えて、mass
%で、Ni:3.0 %以下、Cu:3.0 %以下、Co:3.0 %以
下のうちから選ばれた1種以上を含有することを特徴と
する被削性、冷間鍛造性および焼入れ性に優れた機械構
造用鋼材である。また第3発明は、第1発明または第2
発明に加えて、mass%で、V:0.5 %以下、Nb:0.05%
以下のうちから選ばれた1種以上を含有することを特徴
とする被削性、冷間鍛造性および焼入れ性に優れた機械
構造用鋼材である。
[0010] In the second invention, in addition to the first invention, mass
%, Ni: 3.0% or less, Cu: 3.0% or less, Co: 3.0% or less, excellent in machinability, cold forgeability and hardenability Steel for machine structural use. The third invention is the first invention or the second invention.
In addition to the invention, in mass%, V: 0.5% or less, Nb: 0.05%
It is a steel material for machine structures excellent in machinability, cold forgeability and hardenability, characterized by containing one or more selected from the following.

【0011】また第4発明は、第1発明または第2発明
または第3発明に加えて、mass%で、Mo:1.0 %以下を
含有することを特徴とする被削性、冷間鍛造性および焼
入れ性に優れた機械構造用鋼材である。また第5発明
は、第1発明または第2発明または第3発明または第4
発明に加えて、mass%で、Ti:0.05%以下、Zr:0.2 %
以下、REM :0.2 %以下のうちから選ばれた1種以上を
含有することを特徴とする被削性、冷間鍛造性および焼
入れ性に優れた機械構造用鋼材である。
According to a fourth invention, in addition to the first invention, the second invention, or the third invention, machinability, cold forgeability, and mass% are not more than 1.0%. It is a steel material for machine structure with excellent hardenability. The fifth invention is the first invention, the second invention, the third invention, or the fourth invention.
In addition to the invention, in mass%, Ti: 0.05% or less, Zr: 0.2%
REM: A steel for machine structural use excellent in machinability, cold forgeability and hardenability, characterized by containing at least one selected from the group consisting of REM: 0.2% or less.

【0012】また、第6発明として、上記第1〜第5発
明のいずれかに記載された鋼材を、所定の形状に加工し
たのち、高周波焼入れ焼戻しを施し所定の強度を付与す
ることを特徴とする機械構造部品の製造方法である。
A sixth invention is characterized in that the steel material according to any one of the first to fifth inventions is processed into a predetermined shape and then subjected to induction hardening and tempering to impart a predetermined strength. This is a method for manufacturing a mechanical structural part.

【0013】[0013]

【発明の実施の形態】以下、本発明における、鋼材の成
分組成の限定理由について説明する。 C:0.1 〜1.5 % Cは、黒鉛相を形成するために必須の成分である。 0.1
%未満では被削性を確保する上で必要な黒鉛相を確保す
ることが困難である。また、 1.5%を超えて添加すると
熱間圧延時の変形抵抗が上昇し、変形能が低下するた
め、熱間圧延材に割れ、きずの発生が増大する。このた
め、Cは 0.1〜1.5 %の範囲とした。
BEST MODE FOR CARRYING OUT THE INVENTION The reasons for limiting the component composition of a steel material in the present invention will be described below. C: 0.1 to 1.5% C is an essential component for forming a graphite phase. 0.1
%, It is difficult to secure a graphite phase necessary for securing machinability. On the other hand, if it is added in excess of 1.5%, the deformation resistance during hot rolling increases, and the deformability decreases. Therefore, C is set in the range of 0.1 to 1.5%.

【0014】Si:0.5 〜2.0 % Siは、セメンタイト中に固溶せず、セメンタイトを不安
定化することにより黒鉛化を促進する元素であるため、
積極的に添加するが、 0.5%未満ではその効果が認めら
れない。しかし、 2.0%を超えると、強度が高くなりす
ぎ延性が劣化する。このため、Siは0.5 〜2.0 %の範囲
とした。さらに好ましい範囲は、黒鉛化促進の観点から
0.7〜1.8 %である。
Si: 0.5 to 2.0% Si is an element which does not form a solid solution in cementite and promotes graphitization by destabilizing cementite.
Actively added, but if less than 0.5%, the effect is not observed. However, if it exceeds 2.0%, the strength becomes too high and the ductility deteriorates. Therefore, the content of Si is set in the range of 0.5 to 2.0%. A more preferable range is from the viewpoint of promoting graphitization.
0.7-1.8%.

【0015】Mn:0.1 〜2.0 % Mnは鋼の脱酸剤として有効であるばかりでなく、焼入れ
性にも有用な元素であるので積極的に添加するが、一方
で、セメンタイト中に固溶し黒鉛化を阻害する。 0.1%
未満の添加では脱酸に効果がなく、また、 2.0%を超え
て添加すると黒鉛化を阻害する。このため、Mnは0.1 〜
2.0 %の範囲とした。なお好ましい範囲は、黒鉛化促進
の観点から 0.1〜1.5 %である。
Mn: 0.1 to 2.0% Mn is not only effective as a deoxidizing agent for steel but also useful for hardenability, so Mn is actively added. Inhibits graphitization. 0.1%
Addition of less than 10% has no effect on deoxidation, and addition of more than 2.0% inhibits graphitization. Therefore, Mn is 0.1 to
The range was 2.0%. The preferred range is 0.1 to 1.5% from the viewpoint of promoting graphitization.

【0016】N:0.0015〜0.0150% Nは、Al、Bと化合してAlN 、BNを形成し、黒鉛の結晶
化の核となる。AlN 、BNの微細分散により、黒鉛化を促
進するとともに黒鉛粒を微細化する。しかし0.0015%未
満の添加では、AlN 、BNが十分に形成されず、一方、0.
0150%を超えて添加すると連続鋳造時に鋳片の割れを促
進するので、Nは0.0015〜0.0150%の範囲とした。
N: 0.0015 to 0.0150% N combines with Al and B to form AlN and BN, and serves as a nucleus for crystallization of graphite. Fine dispersion of AlN and BN promotes graphitization and refines graphite particles. However, when the addition is less than 0.0015%, AlN and BN are not sufficiently formed.
If added in excess of 150%, cracking of the slab is promoted during continuous casting, so N was set in the range of 0.0015 to 0.0150%.

【0017】B:0.0003〜0.0150% Bは、鋼中のNと化合してBNを形成し、これが黒鉛の結
晶化の核として作用し、黒鉛化を促進するとともに黒鉛
粒を微細化するため、本発明において重要な成分であ
る。また、Bは鋼の焼入れ性を高め、焼入れ後の強度を
確保する上でも有用な元素である。0.0003%未満の添加
では、黒鉛化および焼入れ性向上への効果が小さい。し
かし、0.0150%を超えて添加するとBがセメンタイト中
に固溶してセメンタイトを安定化し、逆に黒鉛化を阻害
することになる。このため、Bは0.0003〜0.0150%の範
囲とした。なお、黒鉛化と焼入れ性の観点からBの好適
範囲は0.0005〜0.0100%である。
B: 0.0003 to 0.0150% B combines with N in steel to form BN, which acts as a nucleus for crystallization of graphite, which promotes graphitization and refines graphite grains. It is an important component in the present invention. In addition, B is an element useful for enhancing the hardenability of steel and ensuring the strength after quenching. Addition of less than 0.0003% has little effect on graphitization and improvement of hardenability. However, when added in an amount exceeding 0.0150%, B forms a solid solution in cementite to stabilize cementite, and conversely inhibits graphitization. Therefore, B is set in the range of 0.0003 to 0.0150%. The preferred range of B is 0.0005 to 0.0100% from the viewpoint of graphitization and hardenability.

【0018】Al:0.005 〜0.1 % Alは鋼中のNと反応してAlN を形成し、これが黒鉛の核
形成サイトとして作用することにより黒鉛化を促進する
ので積極的に添加する。しかし 0.005%未満の添加では
その作用が小さく、また、 0.1%を超えて添加すると、
鋳造工程においてAl系酸化物が多数形成されるため、Al
は 0.005〜0.1 %の範囲とした。Al系酸化物は、単独で
も疲労破壊の起点となるばかりでなく、硬質なため、切
削時に工具を摩耗させることにより被削性を低下させ
る。このようなことから、Alの含有量は 0.005〜0.1 %
の範囲とした。
Al: 0.005% to 0.1% Al reacts with N in steel to form AlN, which acts as a nucleation site for graphite to promote graphitization, and is therefore positively added. However, the effect is small when added below 0.005%, and when added over 0.1%,
Since many Al-based oxides are formed in the casting process,
Was in the range of 0.005 to 0.1%. The Al-based oxide alone is not only a starting point of fatigue failure but also hard, so that the machinability is deteriorated by abrading the tool during cutting. Therefore, the content of Al is 0.005 to 0.1%
Range.

【0019】P:0.020 %以下 Pは黒鉛化を阻害するとともに、フェライト相を脆化さ
せ、冷間鍛造性を劣化させる元素である。また、焼入れ
焼戻し時に粒界に偏析し粒界強度を低下させて、疲労亀
裂伝播に対する抵抗を減少させ、疲労強度を低下させる
など、材質に対し悪影響を及ぼす。したがって極力低減
すべきであるが、 0.020%まで許容される。
P: 0.020% or less P is an element that inhibits graphitization, embrittles the ferrite phase, and deteriorates cold forgeability. In addition, during quenching and tempering, segregation at grain boundaries lowers the grain boundary strength, reduces resistance to fatigue crack propagation, and lowers fatigue strength. Therefore, it should be reduced as much as possible, but up to 0.020% is acceptable.

【0020】S:0.035 %以下 Sは鋼中でMnS を形成し、これが冷間鍛造時の割れ発生
の起点となり、冷間鍛造性、疲労特性を劣化させるので
極力低減すべきであるが、 0.035%まで許容される。ま
た、MnS は黒鉛の結晶化の核として作用し黒鉛化を促進
し、黒鉛化の観点からはSは多い方が良いが、多すぎる
と粗大化し粗大な黒鉛を形成する。このようなことか
ら、Sは好ましくは 0.001〜0.025 %である。
S: not more than 0.035% S forms MnS in the steel, which becomes a starting point of crack generation at the time of cold forging and degrades cold forgeability and fatigue characteristics. Therefore, it should be reduced as much as possible. % Is acceptable. Further, MnS acts as a nucleus for crystallization of graphite and promotes graphitization. From the viewpoint of graphitization, it is better that S is large, but if it is too large, it is coarsened to form coarse graphite. For this reason, S is preferably 0.001 to 0.025%.

【0021】O:0.0030%以下 Oは酸化物系非金属介在物を形成し、冷間鍛造性、被削
性および疲労強度をともに低下させるので極力低減すべ
きであるが、0.0030%まで許容される。以上本発明にお
ける必須の成分系について説明したが、本発明において
は以下の各元素を必要に応じて用いることができる。以
下にそれらの限定理由を述べる。
O: 0.0030% or less O forms oxide-based nonmetallic inclusions, and reduces both the cold forgeability, the machinability and the fatigue strength. Therefore, it should be reduced as much as possible. You. Although the essential component system in the present invention has been described above, the following elements can be used as needed in the present invention. The reasons for the limitations are described below.

【0022】Ni:3.0 %以下、Cu:3.0 %以下、Co:3.
0 %以下のうちから選ばれた1種以上 Ni、Cu、Coはいずれも黒鉛化を促進する元素であり、ま
た、焼入れ性を向上させる作用もあわせ持つので、黒鉛
化を促進し焼入れ性を向上させることが可能となる。し
かし、その添加量が0.1 %未満ではその効果は小さく、
3.0%を超えて添加してもその効果は飽和するので、N
i、Cu、Coはいずれも 3.0%以下、好ましくは 0.1〜3.0
%の範囲とした。
Ni: 3.0% or less, Cu: 3.0% or less, Co: 3.
At least one selected from 0% or less Ni, Cu, and Co are all elements that promote graphitization, and also have the effect of improving hardenability, so they promote graphitization and improve hardenability. It can be improved. However, if the addition amount is less than 0.1%, the effect is small,
Even if added over 3.0%, the effect is saturated.
i, Cu, and Co are each 3.0% or less, preferably 0.1 to 3.0%.
%.

【0023】Mo:1.0 %以下 Moは、焼入れ性を高めると同時にMn、Crといった合金元
素に比較してセメンタイトへの分配が小さい。このため
に、黒鉛化を著しく阻害せずに、鋼材の焼入れ性を高め
ることができる。また、Moを添加した鋼材は焼戻し軟化
抵抗が大きいために、同一焼戻し温度では硬さを向上さ
せることが可能となり、この結果、疲労強度を向上させ
ることができる。また、鋼材の焼入れ性を増加させる作
用が大きく、Moを添加した鋼材では熱間圧延のままの状
態においてベイナイト組織とすることが容易である。ベ
イナイト組織は微細な黒鉛の生成に有利であり、その結
果、焼入れ時の黒鉛の溶解も短時間で完了させることが
できる。Moの添加は、疲労強度を一層向上させる必要が
ある場合に用いるが、 0.1%未満の添加ではその効果が
小さく、 1.0%を超えて添加すると黒鉛化を阻害し、冷
間鍛造性および被削性を低下させる。このようなことか
ら、Moは1.0 %以下、好ましくは0.1 〜1.0%の範囲と
した。また冷間鍛造性、被削性の観点からは 0.1〜0.8
%が好ましい。
Mo: 1.0% or less Mo enhances hardenability and at the same time distributes less to cementite than alloy elements such as Mn and Cr. For this reason, the hardenability of a steel material can be improved, without significantly inhibiting graphitization. Further, since the steel material to which Mo is added has a large tempering softening resistance, the hardness can be improved at the same tempering temperature, and as a result, the fatigue strength can be improved. In addition, the effect of increasing the hardenability of the steel material is great, and it is easy for the steel material to which Mo is added to have a bainite structure in a hot-rolled state. The bainite structure is advantageous for producing fine graphite, and as a result, the dissolution of graphite during quenching can be completed in a short time. The addition of Mo is used when it is necessary to further improve the fatigue strength. However, the addition of less than 0.1% has a small effect, and the addition of more than 1.0% inhibits graphitization, and reduces the cold forgeability and machinability. Reduce the nature. For this reason, Mo is set to 1.0% or less, preferably in the range of 0.1 to 1.0%. Also, from the viewpoint of cold forgeability and machinability, 0.1 to 0.8
% Is preferred.

【0024】V:0.5 %以下、Nb:0.05%以下のうちか
ら選ばれた1種以上 V、Nbはともに炭化物形成元素で炭窒化物を形成し強度
を上昇させる。しかし、セメンタイト中にはほとんど固
溶しないので、黒鉛化をさほど阻害しない。V、Nbとも
に焼入れ性を向上させる元素でもあるので、疲労強度を
向上させる必要のある場合に用いてもよい。Vの場合に
は、0.05%未満の添加ではこれらの効果は小さく、他
方、 0.5%を超えて添加しても効果が飽和するので、V
の添加は0.5 %以下、好ましくは0.05〜0.5 %の範囲と
する。一方、Nbの場合には、 0.005%未満の添加では上
記の効果が小さく、また、0.05%を超えて添加しても効
果が飽和するので、Nbの添加は0.05%以下、好ましくは
0.005 〜0.05%の範囲とする。
V: at least one selected from 0.5% or less and Nb: 0.05% or less V and Nb are both carbide-forming elements and form carbonitrides to increase the strength. However, since it hardly forms a solid solution in cementite, it does not significantly inhibit graphitization. Since both V and Nb are elements that improve hardenability, they may be used when it is necessary to improve fatigue strength. In the case of V, these effects are small when the addition is less than 0.05%, while the effect is saturated when added over 0.5%.
Is added to 0.5% or less, preferably in the range of 0.05 to 0.5%. On the other hand, in the case of Nb, the effect described above is small when the addition is less than 0.005%, and the effect is saturated even when the addition exceeds 0.05%, so the addition of Nb is 0.05% or less, preferably
The range is 0.005 to 0.05%.

【0025】Ti:0.05%以下、Zr:0.2 %以下、REM :
0.2 %以下のうちから選ばれた1種以上 Ti、Zrはともに炭窒化物を形成し、これらが黒鉛の結晶
化の核となり黒鉛化を促進する。これらの炭窒化物が微
細分散することにより黒鉛粒を微細化するので、黒鉛粒
をさらに微細化する必要のある場合に用いてもよい。ま
た、Ti、Zrは炭窒化物を形成し、焼入れ時の有効Bを増
加させ焼入れ性を向上させる。このような効果を発揮さ
せるためには、Ti、Zrともに 0.005%以上の添加が望ま
しい。他方、Tiを0.05%およびZrを 0.2%を超えて添加
するとBNを形成するためのNが不足し、その結果、黒鉛
粒が粗大化するとともに黒鉛化時間が極めて長くなるの
で、それぞれ0.05%以下、好ましくは 0.005〜0.05%お
よび0.2 %以下、好ましくは 0.005〜0.2 %の添加とす
る。
Ti: 0.05% or less, Zr: 0.2% or less, REM:
One or more of Ti and Zr selected from 0.2% or less together form carbonitrides, which serve as nuclei for crystallization of graphite and promote graphitization. Since these carbonitrides finely disperse the graphite particles, they may be used when it is necessary to further refine the graphite particles. Further, Ti and Zr form carbonitrides, increase the effective B at the time of quenching, and improve the hardenability. In order to exhibit such an effect, it is desirable to add 0.005% or more of both Ti and Zr. On the other hand, if Ti exceeds 0.05% and Zr exceeds 0.2%, N for forming BN becomes insufficient. As a result, the graphite grains become coarse and the graphitization time becomes extremely long. , Preferably 0.005 to 0.05% and 0.2% or less, preferably 0.005 to 0.2%.

【0026】REM はSと結合し、(REM)Sを形成する。
これが黒鉛化の核となり、黒鉛化を促進するとともに黒
鉛粒を微細化するので、黒鉛粒の微細化および黒鉛化の
促進が必要な場合に用いてもよい。しかし、0.0005%未
満ではその効果に乏しく、 0.2%を超えて添加しても効
果が飽和するので0.2 %以下、好ましくは0.0005〜0.2
%の範囲の添加とする。
REM combines with S to form (REM) S.
This serves as a nucleus of graphitization, which promotes graphitization and refines graphite particles. Therefore, it may be used when it is necessary to refine graphite particles and promote graphitization. However, if the content is less than 0.0005%, the effect is poor. If the content exceeds 0.2%, the effect is saturated, so the content is 0.2% or less, preferably 0.0005 to 0.2%.
%.

【0027】黒鉛化率:10〜80% 黒鉛化率は、黒鉛化率={(黒鉛量)/(含有するCが
すべて黒鉛化したときの黒鉛量)}×100 (%)で定義
する。黒鉛化率が10%未満の場合には、冷間鍛造時の変
形抵抗が上昇し、また切削時の工具寿命も著しく低下す
る。黒鉛化率が80%を超える場合には、切削後の高周波
焼入れ性が劣化する。そのため黒鉛化率は10〜80%の範
囲とした。
Graphitization rate: 10 to 80% The graphitization rate is defined as: graphitization rate = {(amount of graphite) / (amount of graphite when all contained C are graphitized)} × 100 (%). If the graphitization ratio is less than 10%, the deformation resistance during cold forging increases, and the tool life during cutting significantly decreases. If the graphitization ratio exceeds 80%, the induction hardenability after cutting deteriorates. Therefore, the graphitization rate is set in the range of 10 to 80%.

【0028】本発明では、含有するCすべてが黒鉛化す
る必要はなく、一部をセメンタイトとしてあるいはさら
に固溶のままとして存在させる。セメンタイトを残留さ
せることで、黒鉛粒は微細となる。本発明では、鋼中に
一部セメンタイトを残留させることで全体の硬さを上昇
させ、切削後の表面粗度を向上させる。
In the present invention, it is not necessary for all of the C contained to be graphitized, and some of the C is present as cementite or as a solid solution. By leaving cementite, the graphite particles become fine. In the present invention, by leaving some cementite in the steel, the overall hardness is increased, and the surface roughness after cutting is improved.

【0029】また本発明では、黒鉛に加えてセメンタイ
トを残留させることで、焼入れ後とくに高周波焼入れ後
の表面硬さおよび焼入れ深さの向上が可能となる。本発
明鋼の製造方法は通常の方法でよく、特に限定しない。
通常、転炉、電気炉で溶製され、必要に応じてRH脱ガ
ス等、脱ガスや炉外精錬を行ってもよい。溶鋼は、連続
鋳造法あるいは造塊法により凝固される。分塊および/
または熱間圧延により所定の寸法の鋼板、棒鋼、線材等
に圧延される。圧延後、黒鉛化処理を施し製品とする。
黒鉛化処理条件は、 600℃〜Ac1点の温度範囲でN2
囲気中またはH2 等を少量含有した弱還元性雰囲気中で
行うのが好適である。
Further, in the present invention, by leaving cementite in addition to graphite, it is possible to improve the surface hardness and quenching depth after quenching, particularly after induction hardening. The method for producing the steel of the present invention may be an ordinary method and is not particularly limited.
Usually, it is melted in a converter or an electric furnace, and degassing such as RH degassing or refining outside the furnace may be performed as necessary. The molten steel is solidified by a continuous casting method or an ingot making method. Lumps and / or
Alternatively, it is rolled into a steel plate, a steel bar, a wire rod or the like having a predetermined size by hot rolling. After rolling, the product is subjected to a graphitization treatment to obtain a product.
The graphitization is preferably performed in a temperature range of 600 ° C. to one point Ac in an N 2 atmosphere or a weak reducing atmosphere containing a small amount of H 2 or the like.

【0030】[0030]

【実施例】表1に示す化学組成の鋼を、転炉溶製、連続
鋳造によりブルームとし、棒鋼圧延により52mmφ棒鋼と
した。
EXAMPLES Steel having the chemical composition shown in Table 1 was converted to a bloom by converter melting and continuous casting, and a steel bar was rolled to a 52 mmφ steel bar.

【0031】[0031]

【表1】 [Table 1]

【0032】鋼A〜Rは化学組成が本発明の範囲内の鋼
であり、鋼SはB、鋼TはP、鋼UはAl、鋼VはSiが本
発明範囲外の鋼である。また、鋼Wは従来より機械構造
用として用いられているJIS規格のS30C相当鋼、
鋼XはS45C相当鋼に快削性向上元素であるS、Caお
よびPbを添加した快削鋼の例である。なお、S30C相
当の鋼Wは、冷間鍛造性に優れるために冷間鍛造用鋼と
して、また、S45C+S−Ca−Pb快削鋼の鋼Xは、被
削性に優れるために高い被削性の要求される用途に用い
られているものである。
Steels A to R are steels whose chemical composition is within the range of the present invention, steel S is steel B, steel T is P, steel U is Al and steel V is steel outside the range of the present invention. Further, steel W is a steel equivalent to S30C of JIS standard conventionally used for mechanical structures,
Steel X is an example of a free-cutting steel obtained by adding S, Ca and Pb which are free-cutting property improving elements to S45C equivalent steel. The steel W equivalent to S30C is a steel for cold forging because of its excellent cold forgeability, and the steel X of S45C + S-Ca-Pb free-cutting steel is highly machinable because of its excellent machinability. It is used for applications that require

【0033】これらの棒鋼に、 700℃で 100hrまでの黒
鉛化焼鈍処理を施し製品とした。製品について、黒鉛
量および黒鉛粒径の測定、被削性試験、冷間鍛造試
験、高周波焼入れ性試験を実施し、性能を確認した。
また、硬さをビッカース硬さ(10kg荷重)で測定した。
試験方法を下記に示す。 黒鉛量、黒鉛粒径の測定 直棒の1/4 d部から採取した光学顕微鏡用試片につき、
研磨後腐食せず画像解析装置により、断面5箇所、各箇
所につき視野数10として、×400 倍の倍率で黒鉛面積率
を測定しそれらの平均値を黒鉛量とした。黒鉛粒径は10
00〜2000個の黒鉛粒子につき直径を測定しそれらの平均
値を用いた。
These steel bars were subjected to a graphitizing annealing treatment at 700 ° C. for up to 100 hours to obtain products. For the product, the measurement of the amount of graphite and the particle size of the graphite, a machinability test, a cold forging test, and an induction hardening test were performed to confirm the performance.
The hardness was measured by Vickers hardness (10 kg load).
The test method is shown below. Measurement of Graphite Content and Graphite Particle Size For a specimen for optical microscope taken from 1/4 d part of a straight bar,
After polishing, the area ratio of graphite was measured at a magnification of × 400 by using an image analyzer with a cross section of 5 places and 10 fields of view at each place without corrosion, and the average value was taken as the amount of graphite. Graphite particle size is 10
The diameter was measured for 00 to 2000 graphite particles, and the average value thereof was used.

【0034】被削性試験 被削性試験は、高速度工具鋼SKH4を用い、52mmφの
試片を切削速度80m/min 、無潤滑の条件により外周旋削
を行い工具が切削不能となるまでの時間を工具寿命とし
て評価した。 冷間鍛造試験 冷間鍛造性は、焼鈍後の素材より15mmφ×22.5mml の円
柱状試験片を作成し、300tプレスを用いて圧縮試験を
行い、試験時の荷重より変形抵抗を算出した。ここで
は、高さ減少率(圧縮率):60%時の変形抵抗を示し
た。また、繰返し数10個とし、試験片側面の割れ発生の
有無を確認し、試験後の試験片の半数に割れの発生する
圧縮率を限界圧縮率として変形能の指標とした。
Machinability test The machinability test was performed by using a high-speed tool steel SKH4 and cutting the 52 mmφ test piece at a cutting speed of 80 m / min under non-lubricated conditions until the tool became uncuttable. Was evaluated as the tool life. Cold Forging Test The cold forgeability was determined by preparing a cylindrical test piece of 15 mmφ × 22.5 mml from the annealed material, performing a compression test using a 300 t press, and calculating the deformation resistance from the load during the test. Here, the deformation resistance at a height reduction rate (compression rate) of 60% is shown. The number of repetitions was set to 10, and the presence or absence of cracks on the side surface of the test piece was confirmed. The compressibility at which cracks occurred in half of the test pieces after the test was used as an index of deformability as the critical compressibility.

【0035】焼入れ焼戻し材の引張試験 素材から15mmφ×100mmlの試験片を採取し、900 ℃×30
min 加熱したのち水溶性焼入れ液中に焼入れし、その後
500 ℃×1hr加熱保持後水冷する焼入れ焼戻し処理を行
った。処理後の試験片から平行部8mmφ×36mm lの引張
試験片を作製し、引張試験を実施し、降伏強さ(YS)、
引張強さ(TS)、伸び(EL)絞り(RA)を測定した。
Tensile test of quenched and tempered material A test piece of 15 mmφ × 100 mml was collected from the material, and the specimen was heated at 900 ° C. × 30
min After heating, quench in water-soluble quenching solution, then
A quenching and tempering treatment of cooling at a temperature of 500 ° C. for 1 hour and then cooling with water was performed. From the test piece after the treatment, a tensile test piece having a parallel portion of 8 mmφ x 36 mm l was prepared, a tensile test was performed, and the yield strength (YS),
The tensile strength (TS), elongation (EL), and drawing (RA) were measured.

【0036】高周波焼入れ性試験 高周波焼入れ性試験は、素材より30mmφ×100mmlの試験
片を作成し、周波数15kHz 、出力114kW 、試験片移動速
度10mm/sの移動焼入れの条件で高周波焼入れした後、 1
50℃×1hr の焼戻しをして、表面硬さ(HRC )および有
効硬化深さを測定した。
Induction Hardenability Test In the induction hardenability test, a test piece of 30 mmφ × 100 mml was prepared from a material and subjected to induction hardening under the conditions of a frequency of 15 kHz, an output of 114 kW and a moving speed of the test piece of 10 mm / s.
After tempering at 50 ° C. for 1 hour, the surface hardness (HRC) and the effective hardening depth were measured.

【0037】これらの結果を表2に示す。なお、従来鋼
は黒鉛化しなかった。鋼W(S30C相当鋼)については、
745℃×15hr保持後徐冷の球状化焼なまし処理を、ま
た、鋼Xは被削性のみ圧延ままで評価し、その他の試験
は 745℃×15h保持後徐冷の球状化焼なまし処理を、実
施した後に行った。表2中の黒鉛化後硬さの欄には、N
o.39 (鋼W)については球状化焼なまし後の硬さを、N
o.40 (鋼X)については圧延ままの硬さをそれぞれ示
した。
Table 2 shows the results. The conventional steel did not become graphitized. For steel W (S30C equivalent steel)
Slow annealing spheroidizing annealing after holding at 745 ° C x 15 hours, and steel X was evaluated as it is as rolled only for machinability. In other tests, spheroidizing annealing with slow cooling after holding 745 ° C x 15 hours Processing was performed after implementation. In the column for hardness after graphitization in Table 2, N
o.39 For steel (W), the hardness after spheroidizing
For o.40 (steel X), the as-rolled hardness was shown.

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【表3】 [Table 3]

【0040】表2から、本発明鋼と従来鋼とを比較する
と、冷間鍛造時の変形抵抗および界面圧縮率は従来の冷
間鍛造鋼である鋼W(S30C)よりも優れている。また、
被削性についても従来の鋼X(S45C+S−Ca−Pb快削
鋼)よりも優れている。また、黒鉛化率が本発明の範囲
よりも低い場合(No.1,No.4)は、冷間鍛造時の変形抵
抗が高く、切削時の工具寿命も本発明鋼よりも低い。逆
に黒鉛化率が本発明の範囲よりも高いもの(No.3,No.
8)は、切削後の表面粗度が粗く、焼入れ後の特性およ
び高周波焼入れ性が本発明例よりも劣化している。ま
た、黒鉛化に要する時間も本発明の範囲よりも長い。し
かし、冷間鍛造時の変形抵抗および切削時の工具寿命に
関してはむしろ本発明例よりも優れており、切削後の表
面粗度および焼入れ後の特性等が必要とされない用途に
おいては、黒鉛化率の高い鋼の使用も可能である。
From Table 2, when comparing the steel of the present invention with the conventional steel, the deformation resistance and the interfacial compression ratio during cold forging are superior to the conventional cold forged steel, steel W (S30C). Also,
The machinability is also superior to conventional steel X (S45C + S-Ca-Pb free-cutting steel). When the graphitization rate is lower than the range of the present invention (No. 1 and No. 4), the deformation resistance during cold forging is high, and the tool life during cutting is lower than that of the steel of the present invention. Conversely, those having a graphitization ratio higher than the range of the present invention (No. 3, No. 3)
In 8), the surface roughness after cutting is rough, and the properties after quenching and the induction hardening property are lower than those of the present invention. Also, the time required for graphitization is longer than the scope of the present invention. However, the deformation resistance during cold forging and the tool life during cutting are rather superior to those of the present invention, and in applications where surface roughness after cutting and properties after quenching are not required, the graphitization rate It is also possible to use steel with a high hardness.

【0041】Bが本発明の範囲外にある鋼S(No.35 )
は、同程度のC量の鋼B(No.6)に比較して、同一の黒
鉛化率に達するまでに要する黒鉛化処理時間は約10倍も
長くかかっている。また、PおよびAlが本発明の範囲外
である鋼T(No.36 )および鋼U(No.37 )の場合につ
いても、鋼B(No.6)に比較して焼鈍時間は約3〜4倍
長くかかっている。また、Siが本発明の範囲外である鋼
V(No.38 )は、前述の条件にて黒鉛化処理を実施して
も黒鉛は生じなかった。
B is steel S outside the scope of the present invention (No. 35)
As compared with steel B (No. 6) having the same C content, the graphitization treatment time required to reach the same graphitization ratio is about ten times longer. Also, in the case of steel T (No. 36) and steel U (No. 37) in which P and Al are out of the range of the present invention, the annealing time is about 3 to 3 times as compared with steel B (No. 6). It takes four times longer. Further, in steel V (No. 38) in which Si was out of the range of the present invention, no graphite was generated even when the graphitization treatment was performed under the above-described conditions.

【0042】本発明ではCaは添加しないが、疲労強度が
要求されない場合には、Caの添加は黒鉛化の促進および
被削性の改善に対して有効である。
Although Ca is not added in the present invention, when fatigue strength is not required, the addition of Ca is effective for promoting graphitization and improving machinability.

【0043】[0043]

【発明の効果】本発明によれば、Pbを用いるまでもなく
従来のPb快削鋼と同程度あるいはそれ以上の切削時の工
具寿命および切削後の表面粗度を有し、かつ冷間鍛造性
および焼入れ後の特性にも優れた鋼材を提供することが
可能となり、機械部品の製造に資するところが大であ
る。
According to the present invention, not only Pb is used but also the tool life and the surface roughness after cutting are equal to or higher than those of conventional Pb free-cutting steel, and cold forging is performed. It is possible to provide a steel material having excellent properties and properties after quenching, which greatly contributes to the manufacture of machine parts.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/16 C22C 38/16 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location C22C 38/16 C22C 38/16

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 mass%で、 C:0.1 〜1.5 %、 Si:0.5 〜2.0 %、 Mn:0.1 〜2.0 %、 Al:0.005 〜0.1 %、 N:0.0015〜0.0150%、 B:0.0003〜0.0150%、 P:0.020 %以下、 S:0.035 %以下、 O:0.0030%以下 を含み、残部がFeおよび不可避的不純物からなり、含有
するCが主として黒鉛とセメンタイトとなり、かつ下記
に定義する黒鉛化率が10〜80%であることを特徴とする
被削性、冷間鍛造性および焼入れ性に優れた機械構造用
鋼材。 記 黒鉛化率(%)={(黒鉛量)/(含有するCがすべて
黒鉛化したときの黒鉛量)}×100
1. Mass%, C: 0.1-1.5%, Si: 0.5-2.0%, Mn: 0.1-2.0%, Al: 0.005-0.1%, N: 0.0015-0.0150%, B: 0.0003-0.0150% , P: 0.020% or less, S: 0.035% or less, O: 0.0030% or less, with the balance being Fe and unavoidable impurities, containing C being mainly graphite and cementite, and having a graphitization rate defined below. A steel material for machine structure with excellent machinability, cold forgeability and hardenability characterized by being 10 to 80%. Note Graphitization rate (%) = {(graphite amount) / (graphite amount when all contained C are graphitized)} x 100
【請求項2】 請求項1に加えて、mass%で、 Ni:3.0 %以下、 Cu:3.0 %以下、 Co:3.0 %以下 のうちから選ばれた1種以上を含有することを特徴とす
る被削性、冷間鍛造性および焼入れ性に優れた機械構造
用鋼材。
2. The method according to claim 1, further comprising at least one selected from mass%, Ni: 3.0% or less, Cu: 3.0% or less, and Co: 3.0% or less. Steel for machine structural use with excellent machinability, cold forgeability and hardenability.
【請求項3】 請求項1または2に加えて、mass%で、 V:0.5 %以下、 Nb:0.05%以下 のうちから選ばれた1種以上を含有することを特徴とす
る被削性、冷間鍛造性および焼入れ性に優れた機械構造
用鋼材。
3. The machinability according to claim 1 or 2, further comprising at least one selected from mass: V: 0.5% or less and Nb: 0.05% or less. Steel for machine structural use with excellent cold forgeability and hardenability.
【請求項4】 請求項1、2または3に加えて、mass%
で、 Mo:1.0 %以下 を含有することを特徴とする被削性、冷間鍛造性および
焼入れ性に優れた機械構造用鋼材。
4. In addition to claim 1, 2 or 3, mass%
A steel for machine structural use having excellent machinability, cold forgeability and hardenability, characterized by containing Mo: 1.0% or less.
【請求項5】 請求項1、2、3または4に加えて、ma
ss%で、 Ti:0.05%以下、 Zr:0.2 %以下、 REM :0.2 %以下 のうちから選ばれた1種以上を含有することを特徴とす
る被削性、冷間鍛造性および焼入れ性に優れた機械構造
用鋼材。
5. In addition to claim 1, 2, 3 or 4, ma
ss%, Ti: 0.05% or less, Zr: 0.2% or less, REM: 0.2% or less selected from the group consisting of: Excellent steel for machine structural use.
【請求項6】 請求項1ないし5のいずれかに記載の鋼
材を所定の形状に加工したのち、高周波焼入れ焼戻しを
施し所定の強度を付与することを特徴とする機械構造部
品の製造方法。
6. A method for manufacturing a machine structural component, comprising: processing a steel material according to any one of claims 1 to 5 into a predetermined shape, followed by induction hardening and tempering to impart a predetermined strength.
JP16301497A 1996-06-27 1997-06-19 Machine structural steel with excellent machinability, cold forgeability and hardenability Expired - Fee Related JP3721723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16301497A JP3721723B2 (en) 1996-06-27 1997-06-19 Machine structural steel with excellent machinability, cold forgeability and hardenability

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP16725896 1996-06-27
JP8-167258 1996-06-27
JP16301497A JP3721723B2 (en) 1996-06-27 1997-06-19 Machine structural steel with excellent machinability, cold forgeability and hardenability

Publications (2)

Publication Number Publication Date
JPH1072639A true JPH1072639A (en) 1998-03-17
JP3721723B2 JP3721723B2 (en) 2005-11-30

Family

ID=26488605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16301497A Expired - Fee Related JP3721723B2 (en) 1996-06-27 1997-06-19 Machine structural steel with excellent machinability, cold forgeability and hardenability

Country Status (1)

Country Link
JP (1) JP3721723B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6174384B1 (en) 1998-10-15 2001-01-16 Agency Of Industrial Science And Technology Medium-carbon steel having dispersed fine graphite structure and method for the manufacture thereof
JP2005273012A (en) * 2004-02-27 2005-10-06 Jfe Steel Kk Rod parts for machine structure superior in fatigue characteristics, and manufacturing method therefor
JP2018034178A (en) * 2016-08-31 2018-03-08 新日鐵住金株式会社 STRUCTURAL Al-Zr ADDED STEEL AND MANUFACTURING METHOD THEREOF
CN113862609A (en) * 2021-09-03 2021-12-31 北京科技大学 Method for improving wear resistance and friction reduction of medium-low carbon steel workpiece by utilizing carburization and surface graphitization
JP2022538992A (en) * 2020-01-22 2022-09-07 ポスコ Wire rod for graphitization heat treatment, graphite steel, and method for producing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6174384B1 (en) 1998-10-15 2001-01-16 Agency Of Industrial Science And Technology Medium-carbon steel having dispersed fine graphite structure and method for the manufacture thereof
JP2005273012A (en) * 2004-02-27 2005-10-06 Jfe Steel Kk Rod parts for machine structure superior in fatigue characteristics, and manufacturing method therefor
JP4609112B2 (en) * 2004-02-27 2011-01-12 Jfeスチール株式会社 Mechanical structural rod parts with excellent fatigue characteristics
JP2018034178A (en) * 2016-08-31 2018-03-08 新日鐵住金株式会社 STRUCTURAL Al-Zr ADDED STEEL AND MANUFACTURING METHOD THEREOF
JP2022538992A (en) * 2020-01-22 2022-09-07 ポスコ Wire rod for graphitization heat treatment, graphite steel, and method for producing the same
CN113862609A (en) * 2021-09-03 2021-12-31 北京科技大学 Method for improving wear resistance and friction reduction of medium-low carbon steel workpiece by utilizing carburization and surface graphitization
CN113862609B (en) * 2021-09-03 2022-05-27 北京科技大学 Method for improving wear resistance and friction reduction of medium-low carbon steel workpiece by utilizing carburization and surface graphitization

Also Published As

Publication number Publication date
JP3721723B2 (en) 2005-11-30

Similar Documents

Publication Publication Date Title
JP4888277B2 (en) Hot rolled steel bar or wire rod
JP2017141502A (en) Rolling bar wire for cold forging refined article
CN109790602B (en) Steel
JP6679935B2 (en) Steel for cold work parts
JP3721723B2 (en) Machine structural steel with excellent machinability, cold forgeability and hardenability
JP6390685B2 (en) Non-tempered steel and method for producing the same
JP2841468B2 (en) Bearing steel for cold working
JP2011195858A (en) Hot rolled steel for direct machining and method for producing the same
JPH11131187A (en) Rapidly graphitizable steel and its production
JP6459704B2 (en) Steel for cold forging parts
JP3552286B2 (en) Manufacturing method of machine structural steel having excellent machinability, cold forgeability and fatigue strength after quenching and tempering, and a method of manufacturing the member
JP4196485B2 (en) Machine structural steel with excellent machinability, cold forgeability and hardenability
JP2001011571A (en) Steel for machine structure excellent in machinability, cold forgeability and hardenability
JPH0526850B2 (en)
JP3217943B2 (en) Method for producing steel for machine structural use having excellent machinability, cold forgeability and fatigue properties after quenching and tempering
JP3627393B2 (en) Wire rod steel with excellent cold-cutability
JPH11106863A (en) Steel for mechanical structure excellent in cold workability and its production
JP4513206B2 (en) Machine structural steel excellent in machinability and manufacturing method thereof
JP2728355B2 (en) Manufacturing method of machine structural steel with excellent machinability, cold forgeability and fatigue strength
JP4900251B2 (en) Manufacturing method of nitrided parts
JP3903996B2 (en) Steel bar and machine structural member for cold forging with excellent machinability, cold forgeability and fatigue strength characteristics after quenching and tempering
JP4144500B2 (en) Non-tempered steel with excellent balance between strength and machinability and method for producing the same
JP3748696B2 (en) Manufacturing method of connecting rod for automobile
JP2003041344A (en) High-carbon seamless steel pipe superior in secondary workability, and manufacturing method therefor
JP5008804B2 (en) Steel for constant velocity joint outer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees