US20070006947A1 - Steel wire for cold forging having excellent low temperature impact properties and method of producing the same - Google Patents

Steel wire for cold forging having excellent low temperature impact properties and method of producing the same Download PDF

Info

Publication number
US20070006947A1
US20070006947A1 US11/454,416 US45441606A US2007006947A1 US 20070006947 A1 US20070006947 A1 US 20070006947A1 US 45441606 A US45441606 A US 45441606A US 2007006947 A1 US2007006947 A1 US 2007006947A1
Authority
US
United States
Prior art keywords
steel
low temperature
less
steel wire
tempering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/454,416
Inventor
Soon-Tae Ahn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of US20070006947A1 publication Critical patent/US20070006947A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0093Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for screws; for bolts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten

Definitions

  • the present invention relates to a steel wire or bar (hereinafter, referred to as “steel wire”) which is used as a material for bolts, shafts and PC steel bars for construction applied to parts for machine structures having relatively high strength. More particularly, the present invention pertains to a steel wire for cold forging, which is capable of being applied to cold forging and cold form rolling processes and has improved low temperature toughness in use, thereby assuring excellent low temperature impact properties, and a method of producing the same.
  • steel wire for cold forging which is capable of being applied to cold forging and cold form rolling processes and has improved low temperature toughness in use, thereby assuring excellent low temperature impact properties, and a method of producing the same.
  • a spheroidized material and non-heat treated steel are known as conventional steel for cold plastic working.
  • the spheroidized material is used to produce final goods, such as bolts, it is problematic in that it is must be additionally quenched/tempered to assure tensile strength as desirable properties required after a cold forging process, complicating the production, resulting in increased production costs.
  • non-heat treated steel With respect to non-heat treated steel, the use of non-heat treated steel has increased in automobiles and industrial machine parts mostly in Japan and Europe since it was developed in the middle of the 1970's. A design of an alloy is properly conducted and cooling and rolling conditions are controlled during hot rolling in ironworks to adjust the structure of a material. Thereby, it is possible to conduct a cold forging process while assuring high strength without subsequent heat treatments (quenching/tempering). Accordingly, the non-heat treated steel has advantages of a simplified process and a reduced production cost.
  • a representative example of the non-heat treated steel is disclosed in Japanese Pat. Laid-Open Publication No. Sho. 59-136420, in which the content of manganese is high and a small amount of vanadium as a precipitation hardening element is added to typical carbon steel for machine structures to precipitate the small amount of carbonitride in a ferrite matrix structure during a cooling process after hot forging. Thereby, strength increases, and consequently, it is possible to omit subsequent quenching/tempering processes.
  • the above non-heat treated steel is disadvantageous in that since cold formability and cuttability are poor, it is an unsuitable material for cold working.
  • Japanese Pat. Laid-Open Publication No. Hei. 7-54940 discloses a technology of producing a bolt.
  • carbon content is reduced to improve cold workability
  • a small amount of niobium is added to improve strength and toughness due to the formation of a fine microstructure, and a heat treatment is conducted during a cooling process after hot rolling.
  • the bolt produced by this non-heat treated steel is disadvantageous in that since it has an undesirable life in use in an environment in which tensile and compressive stresses are repeatedly axially applied, it is unsuitable for parts for automobiles.
  • an object of the present invention is to provide a steel wire for cold forging, which has significantly improved low temperature toughness in use, thereby assuring excellent low temperature impact absorption energy, and a method of producing the same.
  • FIG. 1 is a graph showing low temperature impact absorption energy at ⁇ 40° C. as a function of a tempering parameter according to the present invention.
  • FIG. 2 is a histogram showing low temperature impact absorption energies at ⁇ 40° C. for the 9T level of bolts produced using materials of the present invention, spheroidized materials and non-heat treated steels.
  • the present inventor has conducted extensive studies and repeated tests into development of novel steel to accomplish the object of the present invention, resulting in the following finding.
  • a steel wire is subjected to an impact test at a low temperature ( ⁇ 40° C.)
  • the steel wire has excellent low temperature impact absorption energy in comparison with that produced through a conventional method (quenching/tempering processes after a spheroidizing process).
  • a method of producing the steel wire comprises rapidly heating typical carbon steel for machine structures, which is capable of being quenched, to an Ac3 transformation point or higher to limit an austenite grain size to 5-20° C., quenching the heated steel in water or oil, and tempering the quenched steel under tempering conditions such that tensile strength is 70-130 kgf/mm 2 at a tempering parameter (P) ranging from 21,800 to 30,000, which is defined by the following Equation 1.
  • P 1.8 ⁇ ( T+ 273) ⁇ (14.44+log t ) Equation 1 wherein, T is a tempering temperature (° C.), and t is a tempering time (sec).
  • the present invention is characterized in that if a material is tempered under tempering conditions such that tensile strength is 70-130 kgf/mm 2 at a tempering parameter ranging from 21,800 to 30,000 while the material is quenched so that an austenite grain size is made extremely fine in the range of 5-20° C., the resulting material has Charpy impact absorption energy of 60 J/cm 2 or more at a low temperature of ⁇ 40° C. even though it has high strength, and consequently, the material has excellent impact properties in comparison with conventional steel.
  • the steel according to the present invention mostly consists of C—Si—Mn components including 0.10-0.40 wt % C, 1.0 wt % or less of Si, 0.30-2.0 wt % Mn, and the balance of Fe and impurities. If necessary, the steel may further comprise at least one component selected from the group consisting of 0.05-2.0 wt % Cr, 0.05-1.5 wt % Mo, and 0.0003-0.0050 wt % B. The reason why ranges of the components are limited is as follows.
  • C is the most important element essential to improve strength during a quenching process, and generates carbides to increase strength. However, it is one of the strong alloy elements negatively affecting notch toughness, that is, it increases an impact transition temperature and reduces fracture energy. When the content of C is less than 0.10 wt %, a hardening effect by the quenching is insignificant, and when the content is more than 0.40 wt %, a lot of carbide is precipitated, causing reduction of impact toughness.
  • Si is an element used to achieve deoxidation of the steel, and causes solid-solution hardening to improve strength.
  • the content of Si is more than 1.0 wt %, since a great amount of Si is solid-solved in carbide precipitate, movement of carbon is hindered during a tempering process, interrupting spheroidizing of carbide, resulting in reduced impact toughness. Accordingly, it is necessary to limit the content to 1.0 wt % or less.
  • Mn is an element for solid-solution hardening, and is used to prevent reduction of impact toughness caused by use of an excessive amount of C and Si and to supplement reduction in strength of steel having low C and Si content. To accomplish these, it is necessary to use Mn in an amount of at least 0.30 wt %. However, if Mn is used in an excessive amount, toughness and deformation resistance increase. Therefore, the Mn content must not exceed 2.0 wt %.
  • Cr is an element used to improve strength, quenching hardness, and toughness.
  • the content of Cr is less than 0.05 wt %, improvement of the above physical properties is insignificant.
  • the content is more than 2.0 wt %, economic efficiency is reduced because Cr is relatively expensive. Accordingly, the lower and upper limits of the Cr content are set to 0.05 wt % and 2.0 wt %, respectively.
  • the effect caused by use of Mo is almost the same as that of Cr.
  • the content of Mo is less than 0.05 wt %, insufficient results are assured.
  • the content is more than 1.5 wt %, since deformation resistance with respect to cold working increases, the content is set to 1.5 wt % or less.
  • B is an element for improving hardenability.
  • the effect of B is insignificant.
  • the content is more than 0.0050 wt %, hardenability is reduced.
  • B may be combined with N in a structure in use to form BN, causing grain boundary embrittlement.
  • 0.01-0.05 wt % Ti having an affinity with N, which is stronger than B, is added in conjunction with B to increase the effect caused by the use of B.
  • P and S are unavoidable impurities of steel. They cause grain boundary segregation during a tempering process, thereby reducing impact toughness. Furthermore, they reduce a deformation ratio during a cold working process. Thus, it is necessary to limit the content of each of them to 0.030 wt % or less within possible limits.
  • the present inventor has conducted extensive studies into the method of producing steel of the present invention using steel having the above composition, resulting in the finding that, in a steel material which is quenched/tempered, an austenite grain size and tempering conditions (a distribution state and a shape of precipitated carbides, a ratio of ferrite or the like) are very important as factors affecting low temperature impact absorption energy.
  • the reason why the austenite grain size after a quenching process is limited to 5-20 ⁇ m is as follows. Through repeated tests, it can be confirmed that impact toughness is remarkably decreased at a low temperature of ⁇ 40° C. when the size is more than 20 ⁇ m, and that it is difficult to produce grains having a size of less than 5 ⁇ m through typical quenching/tempering processes.
  • the present inventor drew JIS G 4105 SCM420 and JIS G 4051 S22C wire rods having a diameter of 15 mm so that the wire rods each had a diameter of 13.7 mm, rapidly heated the drawn wires to a Ac3 point or higher so that an austenite grain size was 8-14 ⁇ m, quenched the heated wires in water or oil, and tempered the quenched wires with changing the tempering parameter by controlling a heating temperature and a heating time within a tensile strength range of 70-130 kgf/mm 2 . Additionally, the resulting steel wires were subjected to a V-notch specimen and a Charpy impact test at ⁇ 40° C. The results are shown in FIG. 1 .
  • the reason why the impact absorption energy is limited to 60 J/cm 2 or more is that when an SCM435 spheroidized material is cold forged, quenched and tempered to produce a conventional high tensile bolt, impact absorption energy is about 60 J/cm 2 at ⁇ 40° C.
  • the tempering parameter of 21,000 may be assured by properly controlling the heating temperature, the heating time, the heating rate etc. of the quenching and tempering processes within a desired range of tensile strength according to the components of the material.
  • the 9T level of bolts were produced according to JIS standards using materials of the present invention and conventional spheroidized materials and non-heat treated steels, and test pieces were sampled from the bolts.
  • the test pieces were worked at ⁇ 40° C. so as to have V notches, thereby forming standard pieces having a size of 10 mm ⁇ 10 mm.
  • the standard pieces were subjected to a Charpy impact test, and test results were compared to each other. The test results are shown in FIG. 2 .
  • the 9T level of wire rods which were produced using SCM 420 (JIS G 4105) as the material of the present invention according to the method of the present invention, were subjected to cold forging and form rolling processes to produce the bolts.
  • SCM 420 JIS G 4105
  • conventional spheroidized materials which were spheroidized by heating SCM 435 (JIS G 4105) at 760° C. for 6 hours according to a conventional method, were subjected to cold forging and form rolling processes and quenched/tempered to produce the 9T level of bolts.
  • a bolt produced using the material of the present invention has excellent impact toughness in comparison with a bolt employing the conventional spheroidized materials or non-heat treated steels.
  • steel of the present invention has excellent low temperature impact absorption energy that is about 3.7 times as high as a conventional material and about 20 times as high as conventional non-heat treated steel at a low temperature of 40° C.

Abstract

Disclosed is a steel wire for cold forging, which has excellent low temperature impact properties, and a method of producing the same. The steel wire consists of 0.10-0.40 wt % C, 1.0 wt % or less of Si, 0.30-2.0 wt % Mn, 0.03 wt % or less of P, 0.03 wt % or less of S, and the balance of Fe and impurities. The steel wire has an austenite grain size of 5-20 μm, impact absorption energy of 60 J/cm2 or more at −40° C., and tensile strength of 70-130 kgf/mm2. A steel material for cold forming according to the present invention has impact toughness that is greatly superior to a conventional spheroidized material or non-heat treated steel at a low temperature of −40° C.

Description

    TECHNICAL FIELD
  • The present invention relates to a steel wire or bar (hereinafter, referred to as “steel wire”) which is used as a material for bolts, shafts and PC steel bars for construction applied to parts for machine structures having relatively high strength. More particularly, the present invention pertains to a steel wire for cold forging, which is capable of being applied to cold forging and cold form rolling processes and has improved low temperature toughness in use, thereby assuring excellent low temperature impact properties, and a method of producing the same.
  • BACKGROUND ART
  • A spheroidized material and non-heat treated steel are known as conventional steel for cold plastic working. When the spheroidized material is used to produce final goods, such as bolts, it is problematic in that it is must be additionally quenched/tempered to assure tensile strength as desirable properties required after a cold forging process, complicating the production, resulting in increased production costs.
  • With respect to non-heat treated steel, the use of non-heat treated steel has increased in automobiles and industrial machine parts mostly in Japan and Europe since it was developed in the middle of the 1970's. A design of an alloy is properly conducted and cooling and rolling conditions are controlled during hot rolling in ironworks to adjust the structure of a material. Thereby, it is possible to conduct a cold forging process while assuring high strength without subsequent heat treatments (quenching/tempering). Accordingly, the non-heat treated steel has advantages of a simplified process and a reduced production cost.
  • A representative example of the non-heat treated steel is disclosed in Japanese Pat. Laid-Open Publication No. Sho. 59-136420, in which the content of manganese is high and a small amount of vanadium as a precipitation hardening element is added to typical carbon steel for machine structures to precipitate the small amount of carbonitride in a ferrite matrix structure during a cooling process after hot forging. Thereby, strength increases, and consequently, it is possible to omit subsequent quenching/tempering processes. However, the above non-heat treated steel is disadvantageous in that since cold formability and cuttability are poor, it is an unsuitable material for cold working.
  • With respect to another example of non-heat treated steel, Japanese Pat. Laid-Open Publication No. Hei. 7-54940 discloses a technology of producing a bolt. In the technology, in the course of producing parts having a specific shape through a cold forging process after a hot wire rod is rolled, carbon content is reduced to improve cold workability, a small amount of niobium is added to improve strength and toughness due to the formation of a fine microstructure, and a heat treatment is conducted during a cooling process after hot rolling. However, the bolt produced by this non-heat treated steel is disadvantageous in that since it has an undesirable life in use in an environment in which tensile and compressive stresses are repeatedly axially applied, it is unsuitable for parts for automobiles.
  • Yet another example of the conventional non-heat treated steel is disclosed in U.S. Pat. No. 5,554,233, in which when billets containing reinforcement elements for increasing strength are subjected to sequential hot forging and controlled cooling processes to form wire rods, grains of austenite are made fine during a final hot forging process, thereby forming a fine bainite structure during a subsequent cooling process. The non-heat treated steel of the above patent is characterized in that strength and toughness increase due to the fine bainite structure, it is unnecessary to conduct an additional heat treatment process during a cold forging process to produce the bolt, and the steel has remaining compressive stress.
  • The above patent discloses that impact absorption energy is about 10 J/cm2 at −40° C. in view of low temperature toughness.
  • Meanwhile, parts, which are used in devices or automobiles in severely cold regions or polar regions, require a material having excellent low temperature impact toughness. However, conventional non-heat treated steel including the steel of the above patent have insufficient low temperature impact toughness, and thus, there remains a need to develop novel steel having excellent low temperature impact properties.
  • DISCLOSURE OF THE INVENTION
  • Accordingly, the present invention has been made keeping in mind the disadvantages and problems of conventional steel for cold forging, and an object of the present invention is to provide a steel wire for cold forging, which has significantly improved low temperature toughness in use, thereby assuring excellent low temperature impact absorption energy, and a method of producing the same.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other objects, features and other advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
  • FIG. 1 is a graph showing low temperature impact absorption energy at −40° C. as a function of a tempering parameter according to the present invention; and
  • FIG. 2 is a histogram showing low temperature impact absorption energies at −40° C. for the 9T level of bolts produced using materials of the present invention, spheroidized materials and non-heat treated steels.
  • BEST MODE FOR CARRYING OUT THE INVENTION
  • The present inventor has conducted extensive studies and repeated tests into development of novel steel to accomplish the object of the present invention, resulting in the following finding. When a steel wire is subjected to an impact test at a low temperature (−40° C.), it can be seen that the steel wire has excellent low temperature impact absorption energy in comparison with that produced through a conventional method (quenching/tempering processes after a spheroidizing process). A method of producing the steel wire comprises rapidly heating typical carbon steel for machine structures, which is capable of being quenched, to an Ac3 transformation point or higher to limit an austenite grain size to 5-20° C., quenching the heated steel in water or oil, and tempering the quenched steel under tempering conditions such that tensile strength is 70-130 kgf/mm2 at a tempering parameter (P) ranging from 21,800 to 30,000, which is defined by the following Equation 1.
    P=1.8×(T+273)×(14.44+log t)  Equation 1
    wherein, T is a tempering temperature (° C.), and t is a tempering time (sec).
  • In other words, the present invention is characterized in that if a material is tempered under tempering conditions such that tensile strength is 70-130 kgf/mm2 at a tempering parameter ranging from 21,800 to 30,000 while the material is quenched so that an austenite grain size is made extremely fine in the range of 5-20° C., the resulting material has Charpy impact absorption energy of 60 J/cm2 or more at a low temperature of −40° C. even though it has high strength, and consequently, the material has excellent impact properties in comparison with conventional steel.
  • Among steels for machine structures, steel containing specific components must be properly quenched and tempered so as to produce steel having the above characteristics according to the present invention. With respect to this, the chemical composition and heat treatment of the steel, which are required to produce the steel according to the present invention, are as follows.
  • The steel according to the present invention mostly consists of C—Si—Mn components including 0.10-0.40 wt % C, 1.0 wt % or less of Si, 0.30-2.0 wt % Mn, and the balance of Fe and impurities. If necessary, the steel may further comprise at least one component selected from the group consisting of 0.05-2.0 wt % Cr, 0.05-1.5 wt % Mo, and 0.0003-0.0050 wt % B. The reason why ranges of the components are limited is as follows.
  • C: 0.10-0.40 wt %
  • C is the most important element essential to improve strength during a quenching process, and generates carbides to increase strength. However, it is one of the strong alloy elements negatively affecting notch toughness, that is, it increases an impact transition temperature and reduces fracture energy. When the content of C is less than 0.10 wt %, a hardening effect by the quenching is insignificant, and when the content is more than 0.40 wt %, a lot of carbide is precipitated, causing reduction of impact toughness.
  • Si: 1.0 wt % or less
  • Si is an element used to achieve deoxidation of the steel, and causes solid-solution hardening to improve strength. When the content of Si is more than 1.0 wt %, since a great amount of Si is solid-solved in carbide precipitate, movement of carbon is hindered during a tempering process, interrupting spheroidizing of carbide, resulting in reduced impact toughness. Accordingly, it is necessary to limit the content to 1.0 wt % or less.
  • Mn: 0.30-2.0 wt %
  • Mn is an element for solid-solution hardening, and is used to prevent reduction of impact toughness caused by use of an excessive amount of C and Si and to supplement reduction in strength of steel having low C and Si content. To accomplish these, it is necessary to use Mn in an amount of at least 0.30 wt %. However, if Mn is used in an excessive amount, toughness and deformation resistance increase. Therefore, the Mn content must not exceed 2.0 wt %.
  • Cr: 0.05-2.0 wt %
  • Cr is an element used to improve strength, quenching hardness, and toughness. When the content of Cr is less than 0.05 wt %, improvement of the above physical properties is insignificant. When the content is more than 2.0 wt %, economic efficiency is reduced because Cr is relatively expensive. Accordingly, the lower and upper limits of the Cr content are set to 0.05 wt % and 2.0 wt %, respectively.
  • Mo: 0.05-1.5 wt %
  • The effect caused by use of Mo is almost the same as that of Cr. When the content of Mo is less than 0.05 wt %, insufficient results are assured. When the content is more than 1.5 wt %, since deformation resistance with respect to cold working increases, the content is set to 1.5 wt % or less.
  • B: 0.0003-0.0050 wt %
  • B is an element for improving hardenability. When the content of B is less than 0.0003 wt %, the effect of B is insignificant. On the other hand, when the content is more than 0.0050 wt %, hardenability is reduced. Meanwhile, B may be combined with N in a structure in use to form BN, causing grain boundary embrittlement. Accordingly, typically, 0.01-0.05 wt % Ti having an affinity with N, which is stronger than B, is added in conjunction with B to increase the effect caused by the use of B. Additionally, it is preferable to add one or more of Zr, Nb, or Al that act equally with Ti.
  • P and S are unavoidable impurities of steel. They cause grain boundary segregation during a tempering process, thereby reducing impact toughness. Furthermore, they reduce a deformation ratio during a cold working process. Thus, it is necessary to limit the content of each of them to 0.030 wt % or less within possible limits.
  • The present inventor has conducted extensive studies into the method of producing steel of the present invention using steel having the above composition, resulting in the finding that, in a steel material which is quenched/tempered, an austenite grain size and tempering conditions (a distribution state and a shape of precipitated carbides, a ratio of ferrite or the like) are very important as factors affecting low temperature impact absorption energy.
  • In the method of the present invention, the reason why the austenite grain size after a quenching process is limited to 5-20 μm is as follows. Through repeated tests, it can be confirmed that impact toughness is remarkably decreased at a low temperature of −40° C. when the size is more than 20 μm, and that it is difficult to produce grains having a size of less than 5 μm through typical quenching/tempering processes.
  • When producing a quenched/tempered steel wire which has excellent impact absorption energy at a low temperature (−40° C.) according to the present invention, the reason why the tempering conditions are limited so that the parameter of Equation 1 ranges from 21,800 to 30,000 is as follows.
  • The present inventor drew JIS G 4105 SCM420 and JIS G 4051 S22C wire rods having a diameter of 15 mm so that the wire rods each had a diameter of 13.7 mm, rapidly heated the drawn wires to a Ac3 point or higher so that an austenite grain size was 8-14 μm, quenched the heated wires in water or oil, and tempered the quenched wires with changing the tempering parameter by controlling a heating temperature and a heating time within a tensile strength range of 70-130 kgf/mm2. Additionally, the resulting steel wires were subjected to a V-notch specimen and a Charpy impact test at −40° C. The results are shown in FIG. 1.
  • As shown in FIG. 1, when the tempering parameter was 21,000, impact absorption energy was 60 J/cm2 or more at −40° C.
  • In this regard, the reason why the impact absorption energy is limited to 60 J/cm2 or more is that when an SCM435 spheroidized material is cold forged, quenched and tempered to produce a conventional high tensile bolt, impact absorption energy is about 60 J/cm2 at −40° C.
  • The tempering parameter of 21,000 may be assured by properly controlling the heating temperature, the heating time, the heating rate etc. of the quenching and tempering processes within a desired range of tensile strength according to the components of the material.
  • Therefore with respect to low temperature impact toughness of the quenched/tempered steel wire, if a quenched material having fine grains and proper compositions is tempered so that the tempering parameter of Equation 1 is 21,000, it is obvious that it is possible to produce steel wire having excellent impact absorption energy at a low temperature of −40° C. Accordingly, it can be seen a very important factor in the course of producing the quenched/tempered steel wire having excellent low temperature impact properties.
  • A better understanding of the steel wire and its production method according to the present invention may be obtained through the following example which is set forth to illustrate, but is not to be construed as the limit of the present invention.
  • EXAMPLE
  • Having the chemical composition (wt %) shown in the following Table 1 and a diameter of 16 mm, a hot rolled wire rod was drawn so as to have a diameter of 14.7 mm, and then quenched/tempered using a high frequency induction heater which consists of sequential processes. At this stage, samples were produced while a heating temperature, a heating time and a heating rate were controlled to change a tempering parameter so that an austenite grain size was 5-20 μand tensile strength was 70-140 kgf/mm2.
    TABLE 1
    Sam-
    ple C Si Mn P S Cr Mo B Fe
    1 0.15 0.92 0.62 0.010 0.009 Bal.
    2 0.20 0.25 1.37 0.012 0.008 Bal.
    3 0.21 0.23 0.95 0.012 0.007 0.0025 Bal.
    4 0.21 0.25 0.73 0.013 0.011 1.03 Bal.
    5 0.23 0.29 0.83 0.009 0.009 1.12 0.27 Bal.
    6 0.35 0.97 0.75 0.010 0.009 0.97 0.22 Bal.
  • The samples, which were produced under the above conditions, were worked to form JIS Z 2202 No. 4 test pieces (V-notch, 10 mm×10 mm), and the pieces were subjected to a Charpy impact test at a low temperature of −40° C. according to JIS Z 2242 to calculate impact absorption energy. The results are described in the following Table 2.
    TABLE 2
    Tensile Grain Impact
    strength size Tempering absorption
    Samples (kgf/mm2) (μm) parameter energy(J/cm2)
    Sample 1 Exam. 1 73.2 8.2 27320 181.9
    Exam. 2 102.2 12.3 22568 88.3
    CO. EX. 1 109.8 14.1 21010 36.5
    CO. EX. 2 95.4 23.7 24150 51.6
    Sample 2 Exam. 3 75.3 16.4 29074 120.7
    Exam. 4 105.7 16.2 22165 71.4
    CO. EX. 3 89.6 11.2 30850 32.5
    CO. EX. 4 90.7 27.5 25140 50.8
    Sample 3 CO. EX. 5 123.8 13.5 19550 25.3
    Exam. 5 91.3 10.6 28266 198.5
    CO. EX. 6 84.6 11.2 30742 43.4
    CO. EX. 7 82.9 35.0 27990 58.8
    Sample 4 Exam. 6 117.9 10.9 22456 69.8
    Exam. 7 93.2 12.1 27351 179.8
    CO. EX. 8 102.5 11.2 30728 48.9
    CO. EX. 9 127.3 12.6 21668 53.2
    Sample 5 Exam. 8 87.4 13.2 29550 91.6
    Exam. 9 128.1 11.6 22070 69.3
    CO. EX. 10 132.9 10.9 21000 50.5
    CO. EX. 11 120.3 26.8 25630 51.7
    Sample 6 CO. EX. 12 135.4 14.5 21532 55.8
    Exam. 10 101.2 13.7 28465 181.6
    Exam. 11 95.9 6.4 29680 70.5
    CO. EX. 13 98.7 10.5 30742 56.3

    Exam. = Example

    CO. EX. = Comparative example
  • From Table 2, it can be seen that when the samples of the present invention are heat treated so that the austenite grain size is 5-20 μm and the tempering parameter is 21,000, the samples have excellent impact absorption energy of 60 J/cm2 or more at a low temperature of −40° C., thereby assuring excellent low temperature impact toughness. Furthermore, it can be seen that impact absorption energy values may be significantly different from each other if the austenite grain sizes or the tempering parameters are different from each other even though tensile strengths are the same as each other.
  • Additionally, in order to prove superiority of the present invention, the 9T level of bolts were produced according to JIS standards using materials of the present invention and conventional spheroidized materials and non-heat treated steels, and test pieces were sampled from the bolts. The test pieces were worked at −40° C. so as to have V notches, thereby forming standard pieces having a size of 10 mm×10 mm. The standard pieces were subjected to a Charpy impact test, and test results were compared to each other. The test results are shown in FIG. 2.
  • At this stage, the 9T level of wire rods, which were produced using SCM 420 (JIS G 4105) as the material of the present invention according to the method of the present invention, were subjected to cold forging and form rolling processes to produce the bolts. As for the conventional spheroidized materials, which were spheroidized by heating SCM 435 (JIS G 4105) at 760° C. for 6 hours according to a conventional method, were subjected to cold forging and form rolling processes and quenched/tempered to produce the 9T level of bolts. In regard to the conventional non-heat treated steels, when billets containing SMn433 (JIS G 4106) components were hot rolled into wire rods, controlled hot rolling and cooling processes were conducted to make structures fine to produce non-heat treated steels having the 9T level of tensile strength. The resulting non-heat treated steels were subjected to cold forging and form rolling processes to produce bolts.
  • From the results of FIG. 2, it can be seen that a bolt produced using the material of the present invention has excellent impact toughness in comparison with a bolt employing the conventional spheroidized materials or non-heat treated steels.
  • INDUSTRIAL APPLICABILITY
  • As described above, steel of the present invention has excellent low temperature impact absorption energy that is about 3.7 times as high as a conventional material and about 20 times as high as conventional non-heat treated steel at a low temperature of 40° C.

Claims (4)

1. A steel wire for cold forging, which has excellent low temperature impact properties, comprising 0.10-0.40 wt % C, 1.0 wt % or less of Si, 0.30-2.0 wt % Mn, 0.03 wt % or less of P, 0.03 wt % or less of S, and a balance of Fe and impurities, wherein an austenite grain size is 5-20 atm, impact absorption energy is 60 J/cm2 or more at −40° C., and tensile strength is 70-130 kgf/mm2.
2. The steel wire as set forth in claim 1, further comprising at least one component selected from the group consisting of 0.05-2.0 wt % Cr, 0.05-1.5 wt % Mo, and 0.0003-0.0050 wt % B.
3. A method of producing a steel wire for cold forging, which has excellent low temperature impact properties, comprising:
rapidly heating steel, which contains 0.10-0.40 wt % C, 1.0 wt % or less of Si, 0.30-2.0 wt % Mn, 0.03 wt % or less of P, 0.03 wt % or less of S, and a balance of Fe and impurities, to a Ac3 transformation point or higher so that an austenite grain size is 5-20 μm;
cooling the heated steel; and
heat treating the cooled steel in such a way that tensile strength is 70-130 kgf/mm2 at a tempering parameter (P) ranging from 21,800 to 30,000, which is expressed by a following Equation 1, so that impact absorption energy is 60 J/cm2 or more at −40° C.,

P=1.8×(T+273)×(14.44+log t)  Equation 1
 wherein, T is a tempering temperature (° C.), and t is a tempering time (sec).
4. The method as set forth in claim 3, wherein the steel further comprises at least one component selected from the group consisting of 0.05-2.0 wt % Cr, 0.05-1.5 wt % Mo, and 0.0003-0.0050 wt % B.
US11/454,416 2003-12-18 2006-06-16 Steel wire for cold forging having excellent low temperature impact properties and method of producing the same Abandoned US20070006947A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR0093269/2003 2003-12-18
KR10-2003-0093269A KR100536660B1 (en) 2003-12-18 2003-12-18 Steel wire with superior impact absorption energy at law temperature and the method of making the same
PCT/KR2004/003107 WO2005059192A1 (en) 2003-12-18 2004-11-29 Steel wire for cold forging having excellent low temperature impact properties and method of producing same
WOPCT/KR04/03107 2004-11-29

Publications (1)

Publication Number Publication Date
US20070006947A1 true US20070006947A1 (en) 2007-01-11

Family

ID=36791129

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/583,399 Abandoned US20070256767A1 (en) 2003-12-18 2004-11-29 Steel Wire for Cold Forging Having Excellent Low Temperature Impact Properties and Method of Producing the Same
US11/454,416 Abandoned US20070006947A1 (en) 2003-12-18 2006-06-16 Steel wire for cold forging having excellent low temperature impact properties and method of producing the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/583,399 Abandoned US20070256767A1 (en) 2003-12-18 2004-11-29 Steel Wire for Cold Forging Having Excellent Low Temperature Impact Properties and Method of Producing the Same

Country Status (6)

Country Link
US (2) US20070256767A1 (en)
EP (1) EP1697552A4 (en)
JP (1) JP2007513259A (en)
KR (1) KR100536660B1 (en)
CN (1) CN1894432A (en)
WO (1) WO2005059192A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2722113A4 (en) * 2011-06-02 2015-03-11 Samhwa Steel Co Ltd High-strength steel wire having improved mold life for cold forming and method for manufacturing same
EP2977482A4 (en) * 2013-03-20 2016-02-24 Aichi Steel Corp Forged part, method for producing same, and connecting rod

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2576453T3 (en) 2007-04-13 2016-07-07 Sidenor Investigación Y Desarrollo, S.A. Hardened and tempered steel and procedure for obtaining parts of said steel
KR101393444B1 (en) * 2011-12-08 2014-05-15 삼화강봉주식회사 U-bolt and method for processing the same
CN105586528B (en) * 2015-12-18 2018-02-23 天津市东达伟业机车车辆有限公司 A kind of steel alloy and its Technology for Heating Processing
JP6687047B2 (en) * 2017-03-28 2020-04-22 Jfeスチール株式会社 Hot rolled steel
KR101998971B1 (en) * 2017-11-21 2019-07-10 현대제철 주식회사 Non-heat treated steel and method of manufacturing the same
KR102117400B1 (en) * 2018-08-31 2020-06-01 주식회사 포스코 Steel wire rod for cold forging, processed good using the same, and methods for manufacturing thereof
KR102391061B1 (en) * 2020-08-20 2022-04-28 주식회사 포스코 Steel wire having enhanced cold formability and method for manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3532560A (en) * 1963-04-18 1970-10-06 Kobe Steel Ltd Cold-working process
US6752880B2 (en) * 2001-09-14 2004-06-22 Samhwa Steel Co., Ltd. Quenched and tempered steel wire with excellent cold forging properties

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57126913A (en) * 1981-01-27 1982-08-06 Kobe Steel Ltd Production of high-toughness high-strength wire or rod steel
JPS5861219A (en) * 1981-09-28 1983-04-12 Nippon Steel Corp High tensile tough steel with superior delayed rupture resistance
KR910003877B1 (en) * 1988-12-29 1991-06-15 포항종합제철 주식회사 Making process for high-tension steel
JP2864348B2 (en) * 1994-06-27 1999-03-03 高周波熱錬株式会社 High strength and high weldability steel rod or steel wire for prestressed concrete and method for producing the same
KR100256330B1 (en) * 1995-12-26 2000-05-15 이구택 The manufacturing method for tensile strength 120kgf/mm2 high strength steel
JP3966493B2 (en) * 1999-05-26 2007-08-29 新日本製鐵株式会社 Cold forging wire and method for producing the same
JP4435953B2 (en) * 1999-12-24 2010-03-24 新日本製鐵株式会社 Bar wire for cold forging and its manufacturing method
US6475306B1 (en) * 2001-04-10 2002-11-05 Nippon Steel Corporation Hot rolled steel wire rod or bar for machine structural use and method for producing the same
KR100469671B1 (en) * 2002-07-11 2005-02-02 삼화강봉주식회사 Quenched and tempered steel wire with superior characteristics of cold forging

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3532560A (en) * 1963-04-18 1970-10-06 Kobe Steel Ltd Cold-working process
US6752880B2 (en) * 2001-09-14 2004-06-22 Samhwa Steel Co., Ltd. Quenched and tempered steel wire with excellent cold forging properties

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2722113A4 (en) * 2011-06-02 2015-03-11 Samhwa Steel Co Ltd High-strength steel wire having improved mold life for cold forming and method for manufacturing same
EP2977482A4 (en) * 2013-03-20 2016-02-24 Aichi Steel Corp Forged part, method for producing same, and connecting rod
US10822677B2 (en) 2013-03-20 2020-11-03 Aichi Steel Corporation Forged component, method for manufacturing the same, and connecting rod

Also Published As

Publication number Publication date
JP2007513259A (en) 2007-05-24
US20070256767A1 (en) 2007-11-08
EP1697552A1 (en) 2006-09-06
KR20050061805A (en) 2005-06-23
KR100536660B1 (en) 2005-12-14
WO2005059192A1 (en) 2005-06-30
CN1894432A (en) 2007-01-10
EP1697552A4 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
US20070006947A1 (en) Steel wire for cold forging having excellent low temperature impact properties and method of producing the same
EP1119648A1 (en) Cold workable steel bar or wire and process
JP3780999B2 (en) Manufacturing method of non-tempered steel hot forged member
CN100352966C (en) Weldable steel building component and method for making same
JPH08277437A (en) Production of high strength and high toughness non-heat treated steel for hot forging and forged product thereof
EP0980444A1 (en) Steel compositions and methods of processing for producing cold-formed and carburized components with fine-grained microstructures
US7081174B2 (en) Process for producing steel products having improved grain size properties and machinability
KR100470671B1 (en) A method for manufacturing non-hteat-treated steel with excellent cold formability
JP3149741B2 (en) Non-heat treated steel excellent in fatigue resistance and its manufacturing method
JPH0425343B2 (en)
CN114293098A (en) High-strength and high-toughness bainite non-quenched and tempered steel suitable for large-specification forge piece
KR102174416B1 (en) Low Carbon Bainite Micro-alloyed Steels for Cold Heading Applications having High Strength and High Impact Toughness and Method for Manufacturing the Same
JPH04371547A (en) Production of high strength and high toughness steel
JP6791179B2 (en) Non-microalloyed steel and its manufacturing method
JP5233848B2 (en) Non-tempered steel bar for direct cutting
KR20090030544A (en) Non quenched and tempered steel for hot forging with excellent impact toughness and a method for manufacturing the same and the chassis parts for automobile using the same
KR20140012209A (en) Untempered steel for hot casting, hot-casted untempered article and method for producing same
JPH07110970B2 (en) Method for producing acicular ferritic stainless steel with excellent resistance to stress corrosion cracking
JPH04297548A (en) High strength and high toughness non-heat treated steel and its manufacture
CN113637890B (en) Ultra-fine grain seamless steel pipe and manufacturing method thereof
CN111479938B (en) Heat-treatment-curable high-carbon steel sheet and method for producing same
JP3931400B2 (en) Method for producing boron steel
JPH04131323A (en) Production of heat treatment saving type high tensile steel wire having excellent fatigue resistance and wear resistance
JP3606098B2 (en) Method for manufacturing cold forged parts
CN116783316A (en) Wire and part with improved delayed fracture resistance and method of making same

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION