JP3196006B2 - Method of manufacturing non-heat treated steel for hot forging, hot forged non-heat treated product, and hot forged non-heat treated product - Google Patents

Method of manufacturing non-heat treated steel for hot forging, hot forged non-heat treated product, and hot forged non-heat treated product

Info

Publication number
JP3196006B2
JP3196006B2 JP14692895A JP14692895A JP3196006B2 JP 3196006 B2 JP3196006 B2 JP 3196006B2 JP 14692895 A JP14692895 A JP 14692895A JP 14692895 A JP14692895 A JP 14692895A JP 3196006 B2 JP3196006 B2 JP 3196006B2
Authority
JP
Japan
Prior art keywords
hot
heat treated
steel
bainite
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14692895A
Other languages
Japanese (ja)
Other versions
JPH08319536A (en
Inventor
啓督 高田
賢一郎 内藤
秋男 小野
活己 南條
徹 桜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Nippon Steel Corp
Original Assignee
Mitsubishi Motors Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15418751&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3196006(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Motors Corp, Nippon Steel Corp filed Critical Mitsubishi Motors Corp
Priority to JP14692895A priority Critical patent/JP3196006B2/en
Publication of JPH08319536A publication Critical patent/JPH08319536A/en
Application granted granted Critical
Publication of JP3196006B2 publication Critical patent/JP3196006B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、自動車,産業機械など
の機械部品に加工される鋼素材のうち、特に熱間での鍛
造,転造などで加工された後、熱間加工まま、もしくは
時効処理を施されて機械部品となる、熱間鍛造用非調質
鋼素材および熱間鍛造非調質品の製造方法ならびに熱間
鍛造非調質品に関するものであって、特に、熱間鍛造ま
まで高強度,高靱性であり、かつ高周波焼入れが可能で
あることを特徴とする。
BACKGROUND OF THE INVENTION The present invention relates to a steel material processed into a machine part such as an automobile or an industrial machine, which is processed by hot forging or rolling, and then hot worked or The present invention relates to a method for producing a hot-forged non-heat-treated steel material for hot forging, a hot-forged non-heat-treated product, and a hot-forged non-heat-treated product, which is a mechanical component after being subjected to aging treatment. It is characterized by high strength and high toughness as it is, and capable of induction hardening.

【0002】[0002]

【従来の技術】自動車,産業用機械部品の多くは、素材
棒鋼を熱間で加工後、焼入れ焼戻し処理(調質処理)に
より組織を微細化し、強度と靱性を高めて使用している
が、近年はコスト削減のため、調質処理を省略したまま
使用される機械部品,いわゆる熱間鍛造用非調質鋼(以
下単に非調質鋼と称する)部品が急速に普及してきてい
る。
2. Description of the Related Art Most of automotive and industrial machine parts are used after hot working bar stock, then quenching and tempering treatment (tempering treatment) to refine the structure and increase strength and toughness. In recent years, in order to reduce costs, mechanical parts used without the tempering treatment, that is, non-heat-treated steel for hot forging (hereinafter simply referred to as non-heat-treated steel) parts have rapidly become widespread.

【0003】また最近は、地球環境保護のため、自動車
の低燃費化が求められるようになってきているが、自動
車の低燃費化を達成するための有効な方法の一つは車両
軽量化であり、強度の向上による部品の小型軽量化が指
向されている。
Recently, it has been required to reduce the fuel consumption of automobiles in order to protect the global environment. One of the effective methods for achieving fuel economy of automobiles is to reduce vehicle weight. There is a need to reduce the size and weight of parts by improving strength.

【0004】これらの要求に応えるべく、約1000M
Pa以上の高強度非調質鋼が研究されているが、特に近
年形状が複雑化しつつある自動車部品などに対しては、
熱間鍛造後空冷して用いられる、いわゆる焼入れ歪のな
いベイナイト型非調質鋼が適している。
[0004] To meet these demands, about 1000M
Research has been conducted on high-strength non-heat treated steels of Pa or higher, but especially for automobile parts and the like whose shape is becoming more complicated in recent years.
Bainite type non-heat treated steel having no so-called quenching distortion, which is used after hot forging and air cooling, is suitable.

【0005】[0005]

【発明が解決しようとする課題】しかし、ベイナイト組
織の非調質鋼に関しては、現在十分な研究が進んでいる
とは言い難い。例えば、一般に熱間鍛造ままのベイナイ
ト型非調質品は、熱間鍛造後の空冷時にベイナイト変態
温度域を通過する時間が十分でないなどの理由のため、
変態しきれないオーステナイトが室温まで保存され、ベ
イナイト組織中にオーステナイト組織が残留する。
However, it is difficult to say that sufficient research has been made on non-heat treated steel having a bainite structure. For example, in general, a hot-forged bainite type non-refined product is not sufficiently timed to pass through the bainite transformation temperature range during air cooling after hot forging.
Austenite that cannot be transformed is stored to room temperature, and the austenite structure remains in the bainite structure.

【0006】この軟質な残留オーステナイトが存在する
ため、熱間鍛造ままでは降伏強さや靱性が低いのがベイ
ナイト非調質鋼の難点であり、従来は焼戻しを施してオ
ーステナイト組織を分解して対処していたが、熱間鍛造
ままの状態で降伏強さと靱性を向上させる方法について
は有効な手段がなかった。
[0006] Due to the presence of this soft retained austenite, the yield strength and toughness of hot forged steel are low, which is a disadvantage of bainite non-heat treated steel. Conventionally, tempering is performed to decompose the austenite structure. However, there was no effective means for improving the yield strength and toughness in the hot forged state.

【0007】またフェライト・パーライト型非調質鋼の
場合、炭素量が多くなると強度は上昇し、靱性が低下す
ることが知られており、これまではベイナイト型につい
ても同様の傾向があると考えられてきた。そのため、
0.30%を超える高炭素を含むベイナイト非調質鋼の
発明は少なく、たとえ発明の請求の範囲に炭素量0.3
0%以上の範囲の鋼が含まれていたとしても、実施例に
はそのような高炭素鋼の記載は少ない。
In the case of ferritic / pearlite type non-heat treated steel, it is known that the strength increases and the toughness decreases as the carbon content increases. I have been. for that reason,
There are few inventions of bainite non-heat treated steel containing high carbon exceeding 0.30%, and even if the carbon content is 0.3
Even if steel in the range of 0% or more is included, there are few descriptions of such high carbon steel in the examples.

【0008】一方シャフト類は、高周波焼入れにより表
層を硬化して使用されるが、高周波焼入れにより十分な
硬さを得るためには0.3%以上の炭素が必要である。
0.30%超の炭素を含み、しかも焼戻しが不必要なベ
イナイト型非調質鋼が完成されれば、各種部品への適用
範囲は大きく広がる。
On the other hand, shafts are used after hardening the surface layer by induction hardening, and in order to obtain sufficient hardness by induction hardening, 0.3% or more of carbon is required.
If a bainite type non-heat treated steel containing more than 0.30% of carbon and requiring no tempering is completed, its application range to various parts is greatly expanded.

【0009】炭素0.30%超を含有し、焼戻しが不要
なベイナイト型非調質鋼の発明としては、例えば、特開
平3−260010号公報がある。この発明は、特に鋳
造条件を制御することにより、熱間鍛造ままの部品の材
質を向上させるのみならず、Al添加量も調整して、鋳
造性も高めた非調質鋼の製造方法,および非調質鋼部品
の製造方法である。
As an invention of a bainite type non-heat treated steel containing more than 0.30% of carbon and requiring no tempering, there is, for example, JP-A-3-260010. The present invention not only improves the quality of hot forged parts by controlling the casting conditions, but also adjusts the amount of Al added to improve the castability of a non-heat treated steel, and This is a method for producing a non-heat treated steel part.

【0010】上記発明の実施例には、引張り強さ,降伏
強さ,および衝撃値が示されているが、最大の引張り強
さは1000MPa(102kgf/mm2 )に及ばな
い。また低温衝撃値は実用上不都合のない値であるが、
引張り強さ93.8kgf/mm2 以上では3kgf・
m/cm2 (29.4J/cm2 )であり、非常に良好
であるとは言えない。
In the embodiments of the present invention, tensile strength, yield strength and impact value are shown, but the maximum tensile strength is less than 1000 MPa (102 kgf / mm 2 ). The low-temperature impact value is a value that does not cause any practical inconvenience,
If the tensile strength is 93.8 kgf / mm 2 or more, 3 kgf
m / cm 2 (29.4 J / cm 2 ), which is not very good.

【0011】特開平4−285118号公報には、特定
の成分の鋼を熱間鍛造後、200〜500℃から室温ま
でを徐冷することにより、降伏強度を向上させる方法が
開示されているが、最大800分かかる徐冷は、徐冷設
備の設置などコストが問題となる。
Japanese Patent Application Laid-Open No. 4-285118 discloses a method for improving the yield strength by hot-forging steel of a specific component and then gradually cooling the steel from 200 to 500 ° C. to room temperature. In the case of slow cooling, which takes up to 800 minutes, cost is a problem, such as installation of slow cooling equipment.

【0012】特開平6−88162号公報は、高い耐久
限度比をもつ引張り強さが90kgf/mm2 (882
MPa)以上の高強度,高靱性非調質鋼であるが、降伏
点には言及しておらず、依然として熱間鍛造ままのベイ
ナイト非調質鋼の弱点である低降伏点(あるいは低降伏
比)の問題は解決されていない。またこの発明では高靱
性化するためには炭素量0.3%以下が望ましいとして
いる。
Japanese Patent Application Laid-Open No. Hei 6-88162 discloses a tensile strength having a high durability limit ratio of 90 kgf / mm 2 (882).
MPa) or higher strength, high toughness non-heat treated steel, but does not mention the yield point, and still has a low yield point (or low yield ratio) which is a weak point of bainite non-heat treated steel as hot forged. ) Has not been resolved. Further, in the present invention, in order to increase the toughness, the amount of carbon is preferably 0.3% or less.

【0013】近年は、自動車の低燃費化要求はますます
強く、部品の一層の高強度化,特に高降伏点化と高靱性
化が要請されているばかりでなく、低合金省工程による
コストダウンが強く求められており、前記それぞれの発
明では、いまだ十分ではないのが実情である。
In recent years, there has been an increasing demand for low fuel consumption of automobiles, and not only is demand for higher strength of parts, especially higher yield point and higher toughness, but also cost reduction by low alloy saving process. However, in each of the above-mentioned inventions, the fact is that it is still not enough.

【0014】本発明は上記課題を解決し、熱間鍛造まま
の焼戻しなしで高強度,特に高降伏強さと高靱性を具備
し、かつ高周波焼入れ可能な、合金コストの低いベイナ
イト型熱間鍛造非調質鋼部品用の素材,すなわち熱間鍛
造用非調質鋼と、この鋼を用いた熱間鍛造非調質品の製
造方法,ならびに熱間鍛造非調質品を提供する。
The present invention solves the above-mentioned problems, and provides a bainite-type hot forging method which has high strength without tempering as hot forging, particularly high yield strength and high toughness, and which can be induction hardened and has a low alloy cost. Provided are a material for a tempered steel part, that is, a non-heat treated steel for hot forging, a method for producing a hot forged non-heat treated product using this steel, and a hot forged non-heat treated product.

【0015】[0015]

【課題を解決するための手段】ベイナイト非調質品の降
伏強さと、主に衝撃値で測定される靱性を高めるため
に、これまでは焼戻しが行われてきた。焼戻しは、残留
オーステナイトを分解して鋼を強靱化する作用があるも
のと考えられる。よって降伏強さと靱性を高める方法
は、残留オーステナイトが生成しないような成分と、冷
却方法を組合わせることが考えられるが、どのような成
分であっても、熱間鍛造ままで1000MPa以上とな
るように成分を調整した場合、熱間鍛造ままの組織から
残留オーステナイトをなくすることは困難である。
SUMMARY OF THE INVENTION Tempering has heretofore been performed to increase the yield strength of bainite non-refined products and toughness as measured primarily by impact value. Tempering is considered to have the effect of decomposing the retained austenite to strengthen the steel. Therefore, a method of increasing the yield strength and toughness is considered to combine a component that does not generate retained austenite and a cooling method. However, any component may be 1000 MPa or more as hot forged. When the components are adjusted to the above values, it is difficult to eliminate the residual austenite from the structure as hot forged.

【0016】また調整冷却による残留オーステナイトの
低減は、たとえそれが可能であったとしてもコストの大
幅な上昇を招く。しかし本発明者らが詳しく調べたとこ
ろ、降伏強さと靱性は残留オーステナイトの総量のみな
らずその分布にも大きく影響を受け、たとえオーステナ
イトの総量が従来鋼並みでも、ベイナイト組織中に微細
に分散しているのであれば、降伏強さと靱性は向上する
ことが分かった。
Further, the reduction of the retained austenite by the controlled cooling causes a significant increase in cost even if it is possible. However, when the present inventors examined in detail, the yield strength and toughness were greatly affected by not only the total amount of retained austenite but also its distribution, and even if the total amount of austenite was equal to that of conventional steel, it was finely dispersed in the bainite structure. If so, the yield strength and toughness were found to be improved.

【0017】また組織の微細化,特に熱間鍛造時の再加
熱オーステナイト組織の微細化と、冷却されてベイナイ
組織に変態した時のベイナイトラスの微細化は、降伏強
さと靱性の向上に大きく寄与する。
The refinement of the structure, particularly the refinement of the reheated austenite structure during hot forging and the refinement of the bainite lath when cooled and transformed into a bainite structure, greatly contribute to the improvement in yield strength and toughness. I do.

【0018】従来の研究,例えばCAMP−ISIJ
Vol.5(1992)−801には、熱間鍛造ままを
再現した組織が、V,Moの添加によって微細化し、延
性が向上したことが報告されているが、降伏強さの向上
は認められないと記載されている。同報告の鋼成分で
は、再加熱オーステナイト組織,ベイナイトラス組織及
び残留オーステナイト組織の微細分散化が不十分なため
と考えられる。
Conventional research, for example, CAMP-ISIJ
Vol. 5 (1992) -801, it is reported that the microstructure obtained by reproducing the hot forged state is refined by the addition of V and Mo, and the ductility is improved. However, improvement of the yield strength is not recognized. Has been described. It is considered that the steel components reported in this report are due to insufficient fine dispersion of the reheated austenite structure, bainite lath structure and retained austenite structure.

【0019】本発明者らが見出した鋼成分の調整による
組織微細化法は、高炭素と主要な合金元素、Si,M
n,Cr,Vの組合わせ、およびTi,Alの窒化物の
分散である。従来炭素の添加量増加は、降伏強さと靱性
を低下させるものと考えられてきたが、実は炭素を0.
3%超に高めることにより、旧オーステナイト粒界付近
に残留するオーステナイトが微細なものとなり、またベ
イナイトラス組織を容易に、しかも非常に微細化でき
る。
The method of refining the structure by adjusting the steel composition found by the present inventors is based on the high carbon and main alloying elements Si, M
Combination of n, Cr, V, and dispersion of nitride of Ti, Al. Conventionally, it has been thought that an increase in the amount of added carbon lowers the yield strength and toughness.
By increasing the content to more than 3%, the austenite remaining near the prior austenite grain boundary becomes fine, and the bainite lath structure can be easily and very finely divided.

【0020】その結果、炭化物の増加にもかかわらず降
伏強さ,靱性が向上する。またさらに、TiNおよびA
lNの微細分散化は、再加熱時のオーステナイト組織の
微細化を通じたベイナイトパケットの微細化に非常に有
効であり、高い降伏強さと衝撃値を得るのに必須であ
る。以上のような知見により完成した本発明は、すなわ
ち下記(1)〜(3)で示す通りである。
As a result, the yield strength and the toughness are improved despite the increase in carbide. Still further, TiN and A
Fine dispersion of 1N is very effective for miniaturization of the bainite packet through miniaturization of the austenite structure at the time of reheating, and is essential for obtaining a high yield strength and impact value. The present invention completed based on the above findings is as shown in the following (1) to (3).

【0021】(1) 第1の本発明は、重量%で、 C :0.30超 〜0.60%, Si:0.20 〜0.52%, Mn:1.60超 〜3.00%, Cr:0.05 〜2.00%, Ti:0.005 〜0.050%, Al:0.005 〜0.050%, N :0.0098〜0.0146%, さらに、V:0.01〜0.30%,Nb:0.01〜
0.30%の1種または2種を含み、残部がFeおよび
不可避不純物よりなり、かつ下記数4で表わされる炭素
当量Ceq.が0.82%以上であり、熱間鍛造し放冷
後の金属組織が体積の80%以上がベイナイト組織であ
る強靱性を有する熱間鍛造用非調質鋼である。
(1) In the first invention, C: over 0.30 to 0.60%, Si: 0.20 to 0.52 %, Mn: over 1.60 to 3.00% by weight. %, Cr: 0.05 to 2.00%, Ti: 0.005 to 0.050%, Al: 0.005 to 0.050%, N: 0.0098 to 0.0146 %, and V: 0.01 to 0.30%, Nb: 0.01 to
0.30% of one or two kinds, the balance being Fe and unavoidable impurities, and the carbon equivalent Ceq. Ri Der but more than 0.82%, hot forging was allowed to cool
A non-heat treated steel for hot forging having a toughness in which 80% or more of the volume of the subsequent metal structure is a bainite structure .

【0022】(2) 第2の本発明は、重量%で、 C :0.30超 〜0.60%, Si:0.20 〜0.52%, Mn:1.60超 〜3.00%, Cr:0.05 〜2.00%, Ti:0.005 〜0.050%, Al:0.005 〜0.050%, N :0.0098〜0.0146%, さらに、V:0.01〜0.30%,Nb:0.01〜
0.30%の1種または2種を含み、残部がFeおよび
不可避不純物よりなり、かつ下記数4で表わされる炭素
当量Ceq.が0.82%以上である熱間鍛造用非調質
鋼を、金属組織の体積の80%以上がベイナイト組織と
なるように1270K以上の温度で加工,放冷するこ
と、または1270K以上の温度で加工,放冷後550
Kから900Kで時効することを特徴とする高周波焼入
れが可能な熱間鍛造非調質品の製造方法である。
(2) In the second invention, C: over 0.30 to 0.60%, Si: 0.20 to 0.52 %, Mn: over 1.60 to 3.00% by weight. %, Cr: 0.05 to 2.00%, Ti: 0.005 to 0.050%, Al: 0.005 to 0.050%, N: 0.0098 to 0.0146 %, and V: 0.01 to 0.30%, Nb: 0.01 to
0.30% of one or two kinds, the balance being Fe and unavoidable impurities, and the carbon equivalent Ceq. Hot forging microalloyed steel, more than 80% of the volume of the metal structure and bainite is but 0.82% or more
So as processed at temperatures above 1270K, cool to it, or processed at temperatures above 1270K, cool after 550
A method for producing a hot-forged non-refined product that can be induction hardened and is characterized by aging from K to 900K.

【0023】(3) 第3の本発明は、重量%で、 C :0.30超 〜0.60%, Si:0.20 〜0.52%, Mn:1.60超 〜3.00%, Cr:0.05 〜2.00%, Ti:0.005 〜0.050%, Al:0.005 〜0.050%, N :0.0098〜0.0146%, さらに、V:0.01〜0.30%,Nb:0.01〜
0.30%の1種または2種を含み、残部がFeおよび
不可避不純物よりなり、かつ下記数4で表わされる炭素
当量Ceq.が0.82%以上である成分を有し、組織
の体積の80%以上がベイナイト組織であり、かつ引張
り強さが1000MPa以上である高周波焼入れが可能
な強靱性を有する熱間鍛造非調質品である。
(3) In the third invention, C: over 0.30 to 0.60%, Si: 0.20 to 0.52 %, Mn: over 1.60 to 3.00% by weight. %, Cr: 0.05 to 2.00%, Ti: 0.005 to 0.050%, Al: 0.005 to 0.050%, N: 0.0098 to 0.0146 %, and V: 0.01 to 0.30%, Nb: 0.01 to
0.30% of one or two kinds, the balance being Fe and unavoidable impurities, and the carbon equivalent Ceq. Hot forged non-heat-treated having a toughness capable of induction hardening having a component of 0.82% or more, a bainite structure of 80% or more of the structure volume, and a tensile strength of 1000 MPa or more. Goods.

【0024】[0024]

【数4】Ceq.(%)=C(%)+0.10(%S
i)+0.18(%Mn)+0.21(%Cr)+0.
328(%V+%Nb)
## EQU4 ## Ceq. (%) = C (%) + 0.10 (% S
i) +0.18 (% Mn) +0.21 (% Cr) +0.
328 (% V +% Nb)

【0025】[0025]

【作用】以下作用とともに、本発明の限定理由について
説明する。
The reason for limiting the present invention together with the operation will be described below.

【0026】C:Cは鋼の強靱化元素である。0.30
%以下では熱間鍛造ままの組織の微細化、および残留オ
ーステナイトの微細分散化が不十分となり、降伏強さと
靱性が低下する。また0.30%以下では、1000M
Pa以上の引張り強さを実現するために多量の合金が必
要となり、コストが高くなると共に、熱間鍛造時の変形
抵抗を大きくするため鍛造型の寿命が短くなる。さらに
0.30%以下では、高周波焼入れした場合の表面硬さ
が通常必要とされる程度を下回り、高周波焼入れ用とし
て実用的でない。また0.60%を超えると、かえって
降伏強さが低下し、さらに鍛造放冷時にフェライトやパ
ーライト組織が変態しやすくなる。
C: C is a toughening element of steel. 0.30
% Or less, the structure as hot forged and the fine dispersion of retained austenite become insufficient, and the yield strength and toughness decrease. Also, at 0.30% or less, 1000M
In order to achieve a tensile strength of Pa or more, a large amount of alloy is required, which increases the cost and shortens the life of the forging die to increase deformation resistance during hot forging. Further, if it is 0.30% or less, the surface hardness after induction hardening is lower than normally required, and is not practical for induction hardening. On the other hand, when the content exceeds 0.60%, the yield strength is rather lowered, and the ferrite and the pearlite structure are liable to be transformed during forged cooling.

【0027】Si:Siは固溶強化元素であり0.2
0%以上の添加で効果があるが、0.52%を超えて添
加するとフェライトやパーライト組織が変態し易くな
り、機械的性質が低下する。
[0027] Si: Si is a solid solution strengthening element, 0.2
Addition of 0% or more is effective. However, if it exceeds 0.52 %, ferrite or pearlite structure is easily transformed and mechanical properties are deteriorated.

【0028】Mn:Mnは焼入れ性を高めて、鍛造放冷
ままの組織をベイナイトに変態させる。また適度な添加
は鋼を強靱化する。1.60%以下では、熱間鍛造,放
冷ままでの組織がベイナイトに変態しにくく、また3.
00%を超えると、マルテンサイトが変態して必要以上
に硬くなり、靱性,被削性を低下させる。
Mn: Mn enhances the hardenability and transforms the as-cooled structure into bainite. Also, an appropriate addition increases the toughness of the steel. If the content is 1.60% or less, the structure while hot forging and cooling is not easily transformed into bainite.
If it exceeds 00%, the martensite is transformed and becomes harder than necessary, thereby reducing toughness and machinability.

【0029】Cr:CrはMnと同様の働きをするが、
ベイナイト変態開始温度を低下させて組織を微細化する
ためには、Mn,Vなどとの併用が有効である。Crを
多量に添加するとマルテンサイトが変態するため、2.
00%以下とする。また鋼製造における工程能力で保証
できる0.05%以上に限定する。
Cr: Cr has the same function as Mn,
In order to reduce the bainite transformation start temperature and refine the structure, it is effective to use Mn and V together. If a large amount of Cr is added, martensite is transformed.
00% or less. Also, it is limited to 0.05% or more that can be guaranteed by the process capability in steel production.

【0030】Ti,Al:Ti,Alは窒化物として鋼
中に析出分散することにより、鍛造再加熱時のオーステ
ナイト組織の粗大化を防止し、降伏強さと靱性を高め
る。粗大化防止に必要な添加量は、Ti:0.002%
以上,Al:0.005%以上であるが、多量に添加す
ると析出物が粗大化して鋼を脆化するため、上限をT
i:0.050%,Al:0.050%とする。
Ti, Al: Ti, Al precipitates and disperses in the steel as nitrides, thereby preventing the austenite structure from being coarsened during forging reheating and increasing the yield strength and toughness. The amount added for preventing coarsening is Ti: 0.002%
As described above, Al is 0.005% or more, but if added in a large amount, the precipitates become coarse and the steel becomes brittle, so the upper limit is set to T.
i: 0.050%, Al: 0.050%.

【0031】N:Nは各種窒化物を形成して熱間鍛造時
のオーステナイト組織の粗大化を防止することにより、
ベイナイトパケットを微細化し、降伏強さを高める元素
であり、最低0.0098%以上が必要である。しかし
0.0146%を超えて添加しても効果は飽和する。
N: N forms various nitrides to prevent the austenite structure from becoming coarse during hot forging.
It is an element that refines bainite packets and increases the yield strength, and requires at least 0.0098 % or more. However
The effect saturates even if it exceeds 0.0146 %.

【0032】V,Nb:V,Nbは鍛造時にはベイナイ
ト変態温度を低下させて鍛造放冷ままのベイナイト組織
を微細組織とし靱性を高め、また鍛造後の放冷時に析出
して鋼を強化する。さらに鋼中に固溶したままのV,N
bは時効において析出してさらに鋼を強化する作用があ
る。これらの効果を発揮させるためには、V,Nbとも
に0.01%以上の添加が必要である。しかしコストを
抑えるためそれぞれの上限を0.30%とする。
V, Nb: V and Nb lower the bainite transformation temperature during forging to make the bainite structure as-forged and cooled to a fine structure to increase the toughness, and precipitate upon cooling after forging to strengthen the steel. In addition, V, N in solid solution in steel
b has the effect of precipitating during aging and further strengthening the steel. In order to exhibit these effects, it is necessary to add 0.01% or more of both V and Nb. However, the upper limit is set to 0.30% in order to suppress costs.

【0033】熱間鍛造非調質状態,焼戻し後の鋼の引張
り強さを調整するため、本発明者らは熱間鍛造を想定し
て、種々の成分の鋼を高温に加熱,放冷した場合の引張
り特性,組織を調べた。試験は鋼を1500K300秒
の加熱後1.0K/Sの冷却速度で冷却して行った。こ
の試験結果から、引張り強さと合金成分との関係を調べ
たところ、下記数5,数6が得られた。
In order to adjust the tensile strength of the steel after tempering in a hot forged non-tempered state, the present inventors heated and allowed the steel of various components to be heated to a high temperature, assuming hot forging. Tensile properties and microstructure were examined. The test was performed by heating the steel at 1500 K for 300 seconds and then cooling it at a cooling rate of 1.0 K / S. When the relationship between the tensile strength and the alloy component was examined from the test results, the following Expressions 5 and 6 were obtained.

【0034】[0034]

【数5】Ceq.(%)=C(%)+0.10(%S
i)+0.18(%Mn)+0.21(%Cr)+0.
328(%V+%Nb)
## EQU5 ## Ceq. (%) = C (%) + 0.10 (% S
i) +0.18 (% Mn) +0.21 (% Cr) +0.
328 (% V +% Nb)

【0035】[0035]

【数6】 TS(MPa)=1046×Ceq.+144[Formula 6] TS (MPa) = 1046 × Ceq. +144

【0036】ここで炭素当量Ceq.を0.82%以上
とすることにより、本発明の鋼を熱間にて鍛造,放冷し
た場合の引張り強さを1000MPa以上とすることが
できる。また、このとき本発明鋼であれば、組織はベイ
ナイト単相,もしくは若干のフェライト,オーステナイ
トあるいはマルテンサイトを含むベイナイト組織とな
る。
Here, the carbon equivalent Ceq. Is set to 0.82% or more, the tensile strength when the steel of the present invention is hot forged and allowed to cool can be set to 1000 MPa or more. At this time, in the case of the steel of the present invention, the structure becomes a bainite single phase or a bainite structure containing a small amount of ferrite, austenite or martensite.

【0037】本発明の鋼は熱間鍛造後時効することによ
り、主にベイナイト鋼中に含まれる軟質な残留オーステ
ナイトの分解,あるいはマルテンサイトの焼戻しを通じ
て、降伏強さ、衝撃値で計られる靱性を一層高めること
ができる。これら時効の効果を期待するためには、鍛造
後550K以上の温度で時効するのが効率が良い。時効
温度が550K未満では降伏強さを高められないか、あ
るいは長時間が必要となる。
The steel of the present invention is subjected to aging after hot forging to thereby improve the toughness measured by yield strength and impact value mainly through decomposition of soft retained austenite contained in bainite steel or tempering martensite. Can be further enhanced. In order to expect these effects of aging, it is efficient to age at 550 K or more after forging. If the aging temperature is lower than 550K, the yield strength cannot be increased or a long time is required.

【0038】一般に、900K以下での時効後の引張り
強さおよび硬さは、放冷時より若干低下するので、切削
加工しやすくなる利点がある。しかし900Kを超える
と、引張り強さの低下が著しく実用的ではない。比較的
高い時効温度を採用する場合には、時効硬化元素である
V,Nbを適量添加することにより、引張り強さの低下
が防止できる。
In general, the tensile strength and hardness after aging at 900 K or lower are slightly lower than those at the time of cooling, and thus there is an advantage that cutting can be easily performed. However, when the temperature exceeds 900 K, the tensile strength is significantly reduced and is not practical. When a relatively high aging temperature is employed, a reduction in tensile strength can be prevented by adding an appropriate amount of the age hardening elements V and Nb.

【0039】前記(2)記載の第2の本発明の製造方法
における加工に際しては、鋼をオーステナイト単相と
し、かつ熱間鍛造時の変形抵抗を下げて、鍛造型寿命を
実用的な長さとするため、1270K以上の温度で加工
することが必要である。また自動車用部品の大きさの範
囲であれば、本発明の鋼を加工後に特別な冷却を施すこ
となく、放冷ままでベイナイト組織を主体とする組織と
なり、1000MPa以上の引張り強さを得ることがで
きる。
At the time of working in the second manufacturing method of the present invention described in the above (2), the steel is made of an austenitic single phase, the deformation resistance during hot forging is reduced, and the life of the forging die is reduced to a practical length. Therefore, it is necessary to process at a temperature of 1270K or more. In addition, if the size of the automotive component is within the range, the steel of the present invention does not undergo any special cooling after processing, and becomes a structure mainly composed of a bainite structure while being left to cool, and has a tensile strength of 1000 MPa or more. Can be.

【0040】前記(3)記載の第3の本発明の非調質品
においては、結果として組織の体積の80%以上がベイ
ナイト組織である時に高強度と高靱性が得られる。冷却
条件によりベイナイト組織が80%未満となった場合、
混在する他の組織のため機械的性質が低下する場合があ
る。
In the non-refined product according to the third aspect of the present invention as described in the above (3), high strength and high toughness can be obtained when at least 80% of the volume of the structure is a bainite structure. When the bainite structure becomes less than 80% due to cooling conditions,
Mechanical properties may be degraded due to other mixed tissues.

【0041】例えば、混在する組織がフェライト,パー
ライトの場合には引張り強さが低下し、マルテンサイト
とオーステナイトの混合組織が混在した場合には、引張
り強さが上がり靱性が低下する。
For example, when the mixed structure is ferrite or pearlite, the tensile strength decreases, and when the mixed structure of martensite and austenite is mixed, the tensile strength increases and the toughness decreases.

【0042】被削性向上のため、S,Pb,Bi,T
e,Se,およびCaを適量添加しても、本発明の材質
は劣化しない。被削性の向上のためには、S:0.02
〜0.10%,Pb:0.005〜0.50%,Bi:
0.010〜0.50%,Te:0.001〜0.20
%,Se:0.010〜0.50%の添加が望ましく、
特に超硬工具を用いた切削における被削性を重要視する
場合は、Ca:0.0004〜0.0050%の添加が
効果的である。
For improving machinability, S, Pb, Bi, T
Even if appropriate amounts of e, Se, and Ca are added, the material of the present invention does not deteriorate. To improve machinability, S: 0.02
-0.10%, Pb: 0.005-0.50%, Bi:
0.010 to 0.50%, Te: 0.001 to 0.20
%, Se: 0.010-0.50% is desirable,
Particularly, when the machinability in cutting using a carbide tool is regarded as important, the addition of Ca: 0.0004 to 0.0050% is effective.

【0043】なおSは、MnSを形成して被削性を向上
すると共に、旧オーステナイト粒の粗大化を防止し、靱
性を改善する働きもある。
S forms MnS to improve machinability, and also functions to prevent coarsening of prior austenite grains and improve toughness.

【0044】[0044]

【実施例】表1,表2に示した種々の組成の鋼を150
kg真空溶解炉で溶製し、厚さ40mmに成型した鋼を
素材とした。これらの鋼を1475Kで1200Sの加
熱後、直ちに50%の鍛造加工,放冷を行い、その後放
冷ままの鋼、あるいはさらに570K,830Kで60
分の時効を行った鋼について、引張り試験,衝撃試験を
行った。また同鋼を直径20mmの棒に加工して、高周
波焼入れし、表層下の焼入れ部の硬さを測定した。
EXAMPLES Steels of various compositions shown in Tables 1 and 2 were used for 150 times.
A steel melted in a kg vacuum melting furnace and molded to a thickness of 40 mm was used as a material. Immediately after heating these steels at 1,475 K for 1200 S, they were forged 50% and allowed to cool, and then left as they were, or 60% at 570 K, 830 K.
Tensile tests and impact tests were performed on the steels aged for minutes. The steel was processed into a rod having a diameter of 20 mm, induction hardened, and the hardness of the quenched portion below the surface layer was measured.

【0045】表3,表4に示したように、本発明の鋼を
鍛造放冷した非調質状態の鋼は、引張り強さ(T.
S.)1000MPa以上の高強度と、0.71以上の
降伏比(Y.R.)および60J/cm2 以上の良好な
衝撃値(uE)を有している。
As shown in Tables 3 and 4, the steel of the present invention in a non-heat treated state in which the steel of the present invention was forged and allowed to cool was subjected to a tensile strength (T.
S. ) It has a high strength of 1000 MPa or more, a yield ratio (YR) of 0.71 or more, and a good impact value (uE) of 60 J / cm 2 or more.

【0046】また鍛造放冷後時効した鋼は、降伏比,衝
撃値が一層向上している。さらに、0.30%超の炭素
を含有する本発明鋼は、ビッカース硬さ648以上の十
分な高周波焼入れ硬さが得られている。
The steel aged after being allowed to cool for forging has further improved yield ratio and impact value. Furthermore, the steel of the present invention containing more than 0.30% of carbon has sufficient induction hardening hardness of Vickers hardness of 648 or more.

【0047】[0047]

【表1】 [Table 1]

【0048】[0048]

【表2】 [Table 2]

【0049】[0049]

【表3】 [Table 3]

【0050】[0050]

【表4】 [Table 4]

【0051】[0051]

【発明の効果】以上説明したように第1の本発明の熱間
鍛造用非調質鋼は、1000MPa以上の引張り強さと
高い降伏強さ、および高靱性を備えた高周波焼入れ可能
な熱間鍛造非調質鋼部品用の素材として最適である。
As described above, the first non-heat-treated steel for hot forging of the present invention has a tensile strength of not less than 1000 MPa, a high yield strength and a high toughness, and is capable of induction hardening. Ideal as a material for non-heat treated steel parts.

【0052】また第2の本発明の熱間鍛造非調質品の製
造方法により、1000MPa以上の引張り強さと高い
降伏強さ、および高靱性を有する高周波焼入れ可能な熱
間鍛造非調質品を製造することができる。
Further, according to the second method for producing a hot-forged non-heat-treated product of the present invention, a hot-forged non-heat-treated product having a tensile strength of 1000 MPa or more, a high yield strength and a high toughness and capable of induction hardening is obtained. Can be manufactured.

【0053】さらに第3の本発明の熱間鍛造非調質品
は、引張り強さが1000MPa以上でまた高靱性を有
するため、自動車用,あるいは産業機械用の部品として
使用する時、小型に設計することができ、また高周波焼
入れ可能であるため、部品の一層の高強度化が可能で、
車両の軽量化,燃費低減,および低コスト化に貢献でき
る。
Further, since the hot forged non-refined product of the third invention has a tensile strength of 1000 MPa or more and has high toughness, it is designed to be compact when used as a part for automobiles or industrial machines. And induction hardening enables the parts to be even stronger.
This contributes to vehicle weight reduction, fuel consumption reduction, and cost reduction.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小野 秋男 東京都千代田区大手町2−6−3 新日 本製鐵株式会社内 (72)発明者 南條 活己 東京都港区芝五丁目33番8号 三菱自動 車工業株式会社内 (72)発明者 桜田 徹 東京都港区芝五丁目33番8号 三菱自動 車工業株式会社内 (56)参考文献 特開 平6−287677(JP,A) 特開 平6−287679(JP,A) 特開 平3−260010(JP,A) 特開 平6−88162(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 C21D 8/00 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Akio Ono 2-6-3 Otemachi, Chiyoda-ku, Tokyo Inside Nippon Steel Corporation (72) Inventor Akemi Nanjo 5-33 Shiba 5-chome, Minato-ku, Tokyo No. 8 Inside Mitsubishi Motors Corporation (72) Inventor Toru Sakurada 5-33-8 Shiba, Minato-ku, Tokyo Inside Mitsubishi Motors Corporation (56) References JP-A-6-287677 (JP, A) JP-A-6-287679 (JP, A) JP-A-3-260010 (JP, A) JP-A-6-88162 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 38/00-38/60 C21D 8/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、 C :0.30超 〜0.60%, Si:0.20 〜0.52%, Mn:1.60超 〜3.00%, Cr:0.05 〜2.00%, Ti:0.005 〜0.050%, Al:0.005 〜0.050%, N :0.0098〜0.0146%, さらに、V:0.01〜0.30%,Nb:0.01〜
0.30%の1種または2種を含み、残部がFeおよび
不可避不純物よりなり、かつ下記数1で表わされる炭素
当量Ceq.が0.82%以上であり、熱間鍛造し放冷
後の金属組織が体積の80%以上がベイナイト組織であ
る強靱性を有する熱間鍛造用非調質鋼。 【数1】 Ceq.(%)=C(%)+0.10(%Si)+0.18(%Mn) +0.21(%Cr)+0.328(%V+%Nb)
1. In weight%, C: more than 0.30 to 0.60%, Si: 0.20 to 0.52 %, Mn: more than 1.60 to 3.00%, Cr: 0.05 to 2.00%, Ti: 0.005 to 0.050%, Al: 0.005 to 0.050%, N: 0.0098 to 0.0146 %, and V: 0.01 to 0.30 % , Nb: 0.01 to
0.30% of one or two kinds, the balance being Fe and unavoidable impurities, and the carbon equivalent Ceq. Ri Der but more than 0.82%, hot forging was allowed to cool
A non-heat treated steel for hot forging having a toughness in which the subsequent metal structure has a bainite structure at least 80% of the volume . ## EQU00001 ## Ceq. (%) = C (%) + 0.10 (% Si) +0.18 (% Mn) +0.21 (% Cr) +0.328 (% V +% Nb)
【請求項2】 重量%で、 C :0.30超 〜0.60%, Si:0.20 〜0.52%, Mn:1.60超 〜3.00%, Cr:0.05 〜2.00%, Ti:0.005 〜0.050%, Al:0.005 〜0.050%, N :0.0098〜0.0146%, さらに、V:0.01〜0.30%,Nb:0.01〜
0.30%の1種または2種を含み、残部がFeおよび
不可避不純物よりなり、かつ下記数2で表わされる炭素
当量Ceq.が0.82%以上である熱間鍛造用非調質
鋼を、金属組織の体積の80%以上がベイナイト組織と
なるように1270K以上の温度で加工,放冷するこ
と、または1270K以上の温度で加工,放冷後550
Kから900Kで時効することを特徴とする高周波焼入
れが可能な熱間鍛造非調質品の製造方法。 【数2】 Ceq.(%)=C(%)+0.10(%Si)+0.18(%Mn) +0.21(%Cr)+0.328(%V+%Nb)
2. In% by weight, C: more than 0.30 to 0.60%, Si: 0.20 to 0.52 %, Mn: more than 1.60 to 3.00%, Cr: 0.05 to 2.00%, Ti: 0.005 to 0.050%, Al: 0.005 to 0.050%, N: 0.0098 to 0.0146 %, and V: 0.01 to 0.30 % , Nb: 0.01 to
0.30% of one or two kinds, the balance being Fe and unavoidable impurities, and a carbon equivalent Ceq. Hot forging microalloyed steel, more than 80% of the volume of the metal structure and bainite is but 0.82% or more
So as processed at temperatures above 1270K, cool to it, or processed at temperatures above 1270K, cool after 550
A method for producing a hot-forged non-refined product, which is capable of induction hardening, characterized by aging from K to 900K. ## EQU00002 ## Ceq. (%) = C (%) + 0.10 (% Si) +0.18 (% Mn) +0.21 (% Cr) +0.328 (% V +% Nb)
【請求項3】 重量%で、 C :0.30超 〜0.60%, Si:0.20 〜0.52%, Mn:1.60超 〜3.00%, Cr:0.05 〜2.00%, Ti:0.005 〜0.050%, Al:0.005 〜0.050%, N :0.0098〜0.0146%, さらに、V:0.01〜0.30%,Nb:0.01〜
0.30%の1種または2種を含み、残部がFeおよび
不可避不純物よりなり、かつ下記数3で表わされる炭素
当量Ceq.が0.82%以上である成分を有し、組織
の体積の80%以上がベイナイト組織であり、かつ引張
り強さが1000MPa以上である高周波焼入れが可能
な強靱性を有する熱間鍛造非調質品。 【数3】 Ceq.(%)=C(%)+0.10(%Si)+0.18(%Mn) +0.21(%Cr)+0.328(%V+%Nb)
3. In% by weight, C: more than 0.30 to 0.60%, Si: 0.20 to 0.52 %, Mn: more than 1.60 to 3.00%, Cr: 0.05 to 2.00%, Ti: 0.005 to 0.050%, Al: 0.005 to 0.050%, N: 0.0098 to 0.0146 %, and V: 0.01 to 0.30 % , Nb: 0.01 to
0.30% of one or two kinds, the balance being Fe and unavoidable impurities, and the carbon equivalent Ceq. Hot forged non-heat-treated having a toughness capable of induction hardening having a component of 0.82% or more, a bainite structure of 80% or more of the structure volume, and a tensile strength of 1000 MPa or more. Goods. ## EQU00003 ## Ceq. (%) = C (%) + 0.10 (% Si) +0.18 (% Mn) +0.21 (% Cr) +0.328 (% V +% Nb)
JP14692895A 1995-05-23 1995-05-23 Method of manufacturing non-heat treated steel for hot forging, hot forged non-heat treated product, and hot forged non-heat treated product Expired - Lifetime JP3196006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14692895A JP3196006B2 (en) 1995-05-23 1995-05-23 Method of manufacturing non-heat treated steel for hot forging, hot forged non-heat treated product, and hot forged non-heat treated product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14692895A JP3196006B2 (en) 1995-05-23 1995-05-23 Method of manufacturing non-heat treated steel for hot forging, hot forged non-heat treated product, and hot forged non-heat treated product

Publications (2)

Publication Number Publication Date
JPH08319536A JPH08319536A (en) 1996-12-03
JP3196006B2 true JP3196006B2 (en) 2001-08-06

Family

ID=15418751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14692895A Expired - Lifetime JP3196006B2 (en) 1995-05-23 1995-05-23 Method of manufacturing non-heat treated steel for hot forging, hot forged non-heat treated product, and hot forged non-heat treated product

Country Status (1)

Country Link
JP (1) JP3196006B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2024106398A1 (en) * 2022-11-18 2024-05-23

Also Published As

Publication number Publication date
JPH08319536A (en) 1996-12-03

Similar Documents

Publication Publication Date Title
JP3139876B2 (en) Method of manufacturing non-heat treated steel for hot forging and non-heat treated hot forged product, and non-heat treated hot forged product
JPH0892690A (en) Carburized parts excellent in fatigue resistance and its production
JP3327635B2 (en) Non-tempered steel for hot forging excellent in fatigue strength and method for producing non-heat-treated hot forged product using the steel
JPH08277437A (en) Production of high strength and high toughness non-heat treated steel for hot forging and forged product thereof
JP3100492B2 (en) Manufacturing method of high fatigue strength hot forgings
JPH0772323B2 (en) Non-heat treated steel bar for hot forging
KR100940038B1 (en) Non quenched and tempered steel for hot forging with excellent impact toughness and a method for manufacturing the same and the chassis parts for automobile using the same
JP3774697B2 (en) Steel material for high strength induction hardening and method for manufacturing the same
KR100470671B1 (en) A method for manufacturing non-hteat-treated steel with excellent cold formability
JP2768062B2 (en) Manufacturing method of high strength tough steel
JP2007513259A (en) Steel wire for cold heading having excellent low temperature impact characteristics and method for producing the same
JP3196006B2 (en) Method of manufacturing non-heat treated steel for hot forging, hot forged non-heat treated product, and hot forged non-heat treated product
CN116724131A (en) High-strength wire rod for cold heading having excellent heat treatment characteristics and hydrogen-induced delayed fracture resistance, heat-treated component, and method for producing same
JPH07188858A (en) Steel for cold forging
JP3149741B2 (en) Non-heat treated steel excellent in fatigue resistance and its manufacturing method
JP2950702B2 (en) Non-heat treated steel for high strength hot forging
JP3042574B2 (en) Hot forged product having high fatigue strength and method of manufacturing the same
JPH0813028A (en) Production of precipitation hardening steel material having high tensile strength and high toughness
JPH10265891A (en) Ferrite/pearlite type non-heat treated steel
JP2000160285A (en) High-strength and high-toughness non-heat treated steel
JP3059318B2 (en) Manufacturing method of high fatigue strength hot forgings
JPH0470385B2 (en)
JP3584726B2 (en) High strength non-heat treated steel
JP3169464B2 (en) Heat treatment method for mechanical structural parts with high fatigue strength
JP3762543B2 (en) Manufacturing method of non-tempered steel for hot forging and non-tempered hot forged product and hot forged non-tempered product

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010502

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080608

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090608

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090608

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 12

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term