JPH04354856A - Ferritic heat resistant steel excellent in touchness and creep strength and its production - Google Patents

Ferritic heat resistant steel excellent in touchness and creep strength and its production

Info

Publication number
JPH04354856A
JPH04354856A JP13008691A JP13008691A JPH04354856A JP H04354856 A JPH04354856 A JP H04354856A JP 13008691 A JP13008691 A JP 13008691A JP 13008691 A JP13008691 A JP 13008691A JP H04354856 A JPH04354856 A JP H04354856A
Authority
JP
Japan
Prior art keywords
steel
toughness
strength
resistant steel
heat resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13008691A
Other languages
Japanese (ja)
Inventor
Masahiro Ogami
正浩 大神
Hiroyuki Mimura
裕幸 三村
Hisashi Naoi
久 直井
Kouyou Riyuu
劉 興陽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13008691A priority Critical patent/JPH04354856A/en
Publication of JPH04354856A publication Critical patent/JPH04354856A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To manufacture a heat resistant steel excellent in toughness and creep strength by preparing a ferritic heat resistant steel having a specified compsn. in which the content of Al and N is controlled. CONSTITUTION:A ferritic heat resistant steel contg., by weight, 0.01 to 0.30% C, 0.01 to 0.80% Si, 0.10 to 1.50% Mn,8.00 to 13.00% Cr, 0.20 to 3.00% W, 0.005 to 1.00% Mo, 0.05 to 0.50% V, 0.02 to 0.15% Nb, 0.0003 to 0.008% B, 0.03 to 0.11% N and 0.001 to 0.10% Al, in which the content of P is limited to <=0.030%, S to <=0.010% and O to <=0.015%, moreover, satisfying the relationship of N (mass%)>14/27XAl (mass%)+0.025 and the balance Fe with inevitable impurities is prepd. Furthermore, the cooling of this steel after hot working or the cooling in normalizing or hardening is executed from the austenitic area to 500 deg.C of the martensitic area at the cooling rate of >=5 deg.C/min.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、フェライト系耐熱鋼に
関するものであり、さらに詳しくは靱性を改良した高温
におけるクリープ特性の優れたフェライト系Cr含有ボ
イラ鋼管用鋼に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferritic heat-resistant steel, and more particularly to a ferritic Cr-containing boiler steel pipe steel with improved toughness and excellent creep properties at high temperatures.

【0002】0002

【従来の技術】近年火力発電ボイラにおいては大型化と
高温、高圧化が定着してきたが、550℃を超すとその
材料を選択するにあたり、耐酸化性、高温強度の点から
フェライト系の2 1/4Cr−1Mo鋼から18−8
ステンレス鋼のごときオーステナイト系の高級鋼へと飛
躍して使用されているのが現状である。しかし、低合金
鋼、ステンレス鋼、超合金と材料が高級になるに従い、
コストが上昇し、ボイラ建造費が高価につく。
[Prior Art] In recent years, thermal power generation boilers have become larger in size, at higher temperatures, and at higher pressures. However, when the temperature exceeds 550°C, it is important to choose ferrite-based materials from the viewpoint of oxidation resistance and high-temperature strength. /4Cr-1Mo steel to 18-8
Currently, the use of high-grade austenitic steels such as stainless steel is rapidly increasing. However, as materials become more high-grade, such as low-alloy steel, stainless steel, and superalloys,
The cost increases and the boiler construction cost becomes expensive.

【0003】そこで2 1/4Cr−1Mo鋼とオーオ
ーステナイト系ステンレス鋼の中間を埋めるための鋼材
の研究が過去数十年間行われているが、Cr量が中間の
9Cr、12Cr等のボイラ鋼管は強度を高めるとその
溶接性が悪化し、ボイラの施工上、作業能率を著しく低
下させるために実用化されにくいのが実情である。この
ような事情に鑑み既に溶接性を向上させてなおかつクリ
ープ破断強度も従来材を大幅に上回る新しい鋼種が開発
され提案が行われている。
Therefore, research on steel materials to fill the gap between 2 1/4Cr-1Mo steel and austenitic stainless steel has been conducted for the past several decades, but boiler steel pipes with intermediate Cr content, such as 9Cr and 12Cr, In reality, increasing the strength deteriorates weldability and significantly reduces work efficiency in boiler construction, making it difficult to put it into practical use. In view of these circumstances, new steel types have already been developed and proposed that have improved weldability and creep rupture strength that is significantly higher than conventional materials.

【0004】しかしながら、ボイラの使用部位によって
は肉厚材を必要とする箇所があり製造工程の中でもとり
わけ熱間加工後焼ならしにより製造するものはオーステ
ナイト域からの冷却速度が小さくなり、特に板厚中心部
では充分な強度、靱性を維持することが困難となる。そ
のため、強度、靱性に優れた鋼の開発が望まれていた。
However, depending on the part of the boiler used, there are parts that require thick wall materials, and in the manufacturing process, especially those manufactured by normalizing after hot working, the cooling rate from the austenite region is slow, especially for the plate. It becomes difficult to maintain sufficient strength and toughness in the thick central portion. Therefore, the development of steel with excellent strength and toughness has been desired.

【0005】これらの要求特性を向上させた鋼が開発さ
れ、(Mo+W)とNb量の関係を定めてクリープ特性
と靱性の向上を図ることが、特開昭61−69948号
公報、特開昭61−231139号公報、特開昭62−
297435号公報、特開昭62−297436号公報
において開示されている。また、クリープ強度の向上に
最適範囲のW、Nb添加が有効なことが特開昭63−8
9644号公報において開示されている。
[0005] Steels with improved these required properties have been developed, and the relationship between (Mo+W) and the amount of Nb has been determined to improve creep properties and toughness, as disclosed in Japanese Patent Laid-Open No. 61-69948 and Japanese Patent Laid-Open No. Publication No. 61-231139, JP-A-62-
It is disclosed in Japanese Patent Application Laid-open No. 297435 and Japanese Patent Application Laid-Open No. 62-297436. In addition, it has been shown in JP-A-63-8 that adding W and Nb in the optimum range is effective for improving creep strength.
It is disclosed in Japanese Patent No. 9644.

【0006】これらの鋼は従来の耐熱鋼にWを添加し、
固溶強化、析出強化によりクリープ強度を飛躍的に高め
た鋼であるが、時効後靱性についての配慮に欠けていた
。これに対し本発明者らは、これまで開発したフェライ
ト系耐熱鋼の靱性について再検討した結果、Alの添加
が靱性の改善に有効であることを見出した。Alを0.
05%以下添加した高Cr鋼が特公昭57−36341
号公報、固溶Alを0.001〜0.5%含有するフェ
ライト鋼が特開昭60−155649号公報に開示され
ているが、Nに関する制限および冷却速度の制限がない
ため本発明鋼のごとき高いクリープ強度を達成すること
は不可能である。
[0006] These steels are made by adding W to conventional heat-resistant steel,
Although this steel has dramatically increased creep strength through solid solution strengthening and precipitation strengthening, consideration was not given to post-aging toughness. On the other hand, the present inventors reexamined the toughness of the ferritic heat-resistant steels that had been developed and found that the addition of Al was effective in improving the toughness. Al was 0.
High Cr steel with less than 0.05% addition is designated as
A ferritic steel containing 0.001 to 0.5% of solid solution Al is disclosed in JP-A-60-155649, but since there is no restriction on N or cooling rate, the steel of the present invention It is not possible to achieve such high creep strength.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記のよう
な従来の欠点を改良し、靱性としてはシャルピー衝撃試
験における0℃の衝撃吸収エネルギーを向上させるとと
もに、500〜650℃でのクリープ破断強度を高める
ことを目的としたものである。
[Problems to be Solved by the Invention] The present invention improves the above-mentioned conventional drawbacks, improves toughness by improving impact absorption energy at 0°C in the Charpy impact test, and improving creep rupture at 500 to 650°C. The purpose is to increase strength.

【0008】[0008]

【課題を解決するための手段】本発明は、以上の課題を
解決すべく、その要旨とするところは下記のとおりであ
る。 (1)  質量%で C:0.01〜0.30%、Si:0.01〜0.80
%、Mn:0.10〜1.50%、Cr:8.00〜1
3.00%、W:0.20〜3.00%、Mo:0.0
05〜1.00%、V:0.05〜0.50%、Nb:
0.02〜0.15%、B:0.0003〜0.008
%、N:0.03〜0.11%、Al:0.001〜0
.10%を含有し、P:0.030%以下、S:0.0
10%以下、O:0.015%以下に制限し、かつN(
mass%)>14/27×Al(mass%)+0.
025の関係を満足し、残部がFeおよび不可避的不純
物よりなることを特徴とする靱性ならびにクリープ強度
に優れたフェライト系耐熱鋼。
[Means for Solving the Problems] The present invention aims to solve the above problems, and the gist thereof is as follows. (1) C: 0.01-0.30%, Si: 0.01-0.80 in mass%
%, Mn: 0.10-1.50%, Cr: 8.00-1
3.00%, W: 0.20-3.00%, Mo: 0.0
05-1.00%, V: 0.05-0.50%, Nb:
0.02-0.15%, B: 0.0003-0.008
%, N: 0.03-0.11%, Al: 0.001-0
.. Contains 10%, P: 0.030% or less, S: 0.0
10% or less, O: 0.015% or less, and N(
mass%)>14/27×Al(mass%)+0.
A ferritic heat-resistant steel having excellent toughness and creep strength, the remainder being Fe and inevitable impurities.

【0009】(2)  前項1記載の鋼の熱間加工後の
冷却、あるいは焼ならしまたは焼入れの冷却は、オース
テナイト領域からマルテンサイト領域である500℃ま
で5℃/min 以上の冷却速度で行うことを特徴とす
る靱性ならびにクリープ強度に優れたフェライト系耐熱
鋼の製造方法。以下本発明を詳細に説明する。
(2) Cooling after hot working, or cooling during normalizing or quenching of the steel described in item 1 above is carried out at a cooling rate of 5° C./min or more from the austenite region to the martensite region of 500° C. A method for producing ferritic heat-resistant steel with excellent toughness and creep strength. The present invention will be explained in detail below.

【0010】0010

【作用】最初に本発明において各成分範囲および冷却速
度を前記のごとく限定した理由を以下に述べる。Cは強
度の保持に必要であり、0.01%未満では強度の確保
に不十分である。また溶接性の点から上限を0.30%
とした。即ち、後述するCr量との関係で、この鋼は非
常に焼入れ性がよく、溶接熱影響部が著しく硬化し、こ
れが溶接時低温割れの原因となる、従って溶接を完全に
行うためには、かなり高温の予熱を必要とし、ひいては
溶接作業性が著しく損なわれる。しかし、Cを0.30
%以下に保てば溶接熱影響部の最高硬さが低下し、溶接
割れの防止が容易に行われ得るので、上限を0.30%
とした。
[Operation] First, the reason why the range of each component and the cooling rate are limited as described above in the present invention will be described below. C is necessary for maintaining strength, and less than 0.01% is insufficient for maintaining strength. Also, from the viewpoint of weldability, the upper limit was set at 0.30%.
And so. In other words, in relation to the Cr content described below, this steel has very good hardenability, and the weld heat affected zone hardens significantly, which causes cold cracking during welding. Therefore, in order to complete welding, It requires preheating at a considerably high temperature, and as a result, welding workability is significantly impaired. However, C is 0.30
% or less, the maximum hardness of the weld heat affected zone will decrease and weld cracking can be easily prevented, so the upper limit is set at 0.30%.
And so.

【0011】Siは脱酸効果、強度確保および耐酸化性
付与のために添加されるが、靱性に悪影響を及ぼす元素
である。脱酸効果、強度確保、耐酸化性付与の点から下
限を0.01%とし、靱性の点から上限を0.80%と
した。Mnは脱酸のためのみでなく、強度保持上も必要
な成分である。上限を1.50%としたのは、これを超
すと靱性の点から好ましくないからであり、下限は脱酸
に必要な最小量として0.10%と定めた。
[0011]Si is added to have a deoxidizing effect, ensure strength, and provide oxidation resistance, but it is an element that adversely affects toughness. The lower limit was set to 0.01% from the viewpoint of deoxidizing effect, securing strength, and imparting oxidation resistance, and the upper limit was set to 0.80% from the viewpoint of toughness. Mn is a necessary component not only for deoxidizing but also for maintaining strength. The reason why the upper limit was set at 1.50% is that exceeding this is not preferable from the viewpoint of toughness, and the lower limit was set at 0.10% as the minimum amount necessary for deoxidation.

【0012】Crは耐酸化性に不可欠の元素であって、
耐熱鋼には必ず添加されており、M23C6 、M6 
C(但しMは金属元素を指す)のマトリックス中への微
細析出により高温強度を高めている。下限はその析出効
果が顕著に認められて、耐酸化性にも寄与する8.00
%とし、上限は溶接性および靱性の点から13.00%
とした。
Cr is an essential element for oxidation resistance,
It is always added to heat-resistant steel, M23C6, M6
High-temperature strength is increased by fine precipitation of C (M refers to a metal element) in the matrix. The lower limit is 8.00, where the precipitation effect is noticeable and also contributes to oxidation resistance.
%, and the upper limit is 13.00% from the viewpoint of weldability and toughness.
And so.

【0013】Wは固溶強化および炭化物として析出する
ことによる析出強化により高温強度を顕著に高める元素
であり、特に600℃を超えて長時間側の強化に有効で
ある。3.00%を超えて添加すると溶接性、耐酸化性
を損なうため上限を3.00%とした。また、Moとの
共存において効果を発揮させるため下限を0.20%と
した。
[0013] W is an element that significantly increases high-temperature strength through solid solution strengthening and precipitation strengthening by precipitating as carbides, and is particularly effective for long-term strengthening at temperatures exceeding 600°C. Adding more than 3.00% impairs weldability and oxidation resistance, so the upper limit was set at 3.00%. Further, in order to exhibit the effect in coexistence with Mo, the lower limit was set to 0.20%.

【0014】Moは固溶強化により、高温強度を顕著に
高める元素であるので通常耐熱鋼には添加されるが、多
量に添加された場合溶接性、耐酸化性を損なうので上限
を1.00%とした。また、Wとの共存においてクリー
プ強度の向上に効果を発揮させるために下限を0.00
5%とした。VはWと同様にマトリックスに固溶しても
、析出物として析出しても鋼の高温強度を著しく高める
元素である。特に析出の場合にはV4 C3 あるいは
VNとして他のM23C6 、M6 C、M2 Cの析
出核となり、析出物の微細分散に顕著な効果を示す。ク
リープ強度の向上に効果を発揮させるために下限を0.
05%とした。また、0.50%を超えると強度低下を
生ずるために上限を0.50%とした。
Mo is an element that significantly increases high-temperature strength through solid solution strengthening, so it is usually added to heat-resistant steel, but if added in large amounts, it impairs weldability and oxidation resistance, so the upper limit is set at 1.00. %. In addition, in order to exhibit the effect of improving creep strength in coexistence with W, the lower limit was set to 0.00.
It was set at 5%. Like W, V is an element that significantly increases the high-temperature strength of steel, whether dissolved in the matrix or precipitated as a precipitate. In particular, in the case of precipitation, V4 C3 or VN becomes a precipitation nucleus for other M23C6, M6 C, and M2 C, and has a remarkable effect on fine dispersion of precipitates. In order to be effective in improving creep strength, the lower limit is set to 0.
05%. Moreover, since strength decreases when the content exceeds 0.50%, the upper limit was set at 0.50%.

【0015】NbはNb(C,N)の析出によって高温
強度を高め、また初期の微細な分散析出が、後続するM
23C6 、M6 C、M2 C等の析出状態を微細に
コントロールするために長時間クリープ強度にも貢献す
る。Nbの効果を発揮させるため下限を0.02%とし
、また0.15%を超すと析出物の凝集粗大化を生じて
強度を低下させるため上限を0.15%とした。
[0015] Nb increases the high temperature strength by precipitation of Nb (C, N), and the initial fine dispersed precipitation increases the subsequent M
It also contributes to long-term creep strength by finely controlling the precipitation state of 23C6, M6C, M2C, etc. The lower limit was set to 0.02% in order to exhibit the effect of Nb, and the upper limit was set to 0.15% because if it exceeded 0.15%, agglomeration and coarsening of precipitates would occur and the strength would decrease.

【0016】Bは本来焼入れ性を著しく高める元素とし
てよく知られているが、Bの微量添加によりクリープ強
度が向上する。Bの効果を発揮させるため下限を0.0
003%とし、また熱間加工性、溶接性を損なわないよ
うに上限を0.008%とした。Nはマトリックスに固
溶するかあるいは窒化物、炭窒化物として析出し、クリ
ープ強度を高める元素である。しかし、後述のAlと窒
化物を形成するため、AlNとして使用されるNは14
/27×Alであり、またNbおよびV等の窒化物の形
成等のために必要なN量は0.025%であるから、添
加する必要なNをN>14/27×Al+0.025と
した。さらにクリープ強度の確保の点から下限を0.0
3%とし、また鋳造時ブローホールの発生を避け健全な
鋼塊を得るために上限を0.11%とした。
B is well known as an element that significantly improves hardenability, but creep strength is improved by adding a small amount of B. In order to achieve the effect of B, the lower limit is set to 0.0.
The upper limit was set at 0.003%, and the upper limit was set at 0.008% so as not to impair hot workability and weldability. N is an element that is dissolved in the matrix or precipitated as a nitride or carbonitride, and increases the creep strength. However, in order to form a nitride with Al, which will be described later, the N used as AlN is 14
/27×Al, and the amount of N necessary for forming nitrides such as Nb and V is 0.025%, so the necessary N to be added is N>14/27×Al+0.025. did. Furthermore, in order to ensure creep strength, the lower limit was set to 0.0.
The upper limit was set at 3%, and the upper limit was set at 0.11% in order to avoid blowholes during casting and obtain a sound steel ingot.

【0017】Alはこの発明の主要な成分であり、Nと
結びつきAlNとなり、焼ならし処理におけるオーステ
ナイト域加熱時に、このAlNがピン止め効果の役目を
果たし、結晶粒の粗大化を阻止し、微細な結晶粒を形成
する役目を担う。また、固溶窒素の固定によりBの焼入
れ性を高める効果があるが、一方では過剰な添加は粗大
窒化物を生成し、靱性を阻害するため0.001〜0.
10%とした。
[0017] Al is a main component of the present invention, and combines with N to form AlN. During heating in the austenite region during normalizing treatment, this AlN acts as a pinning effect and prevents coarsening of crystal grains. It plays the role of forming fine crystal grains. In addition, fixation of solid solution nitrogen has the effect of improving the hardenability of B, but on the other hand, excessive addition produces coarse nitrides and impairs toughness, so 0.001-0.
It was set at 10%.

【0018】Pは焼き戻し脆化および再熱割れ感受性に
悪影響を及ぼすため上限を0.030%とした。Sは靱
性劣化、異方性および再熱割れ感受性の増大の原因とな
るので上限を0.010%とした。Oは靱性に悪影響を
及ぼす酸化物の生成の原因となるので上限を0.015
%とした。
[0018] P has an adverse effect on temper embrittlement and reheat cracking susceptibility, so the upper limit was set at 0.030%. Since S causes deterioration of toughness, anisotropy, and an increase in reheat cracking susceptibility, the upper limit was set at 0.010%. O causes the formation of oxides that have an adverse effect on toughness, so the upper limit is set at 0.015.
%.

【0019】また、熱間加工後の冷却、あるいは焼きな
らしあるいは焼入れの冷却に際しての冷却速度の限定は
本発明の主要な構成要件であり、オーステナイト域から
500℃以下までの冷却中にAlNが粗大化し、靱性お
よびクリープ強度に悪影響を及ぼすのを防止するため冷
却速度を5℃/min 以上とした。以上が本発明鋼の
基本成分および冷却速度の限定理由である。
[0019] Furthermore, limiting the cooling rate during cooling after hot working, normalizing or quenching is a major component of the present invention, and AlN is The cooling rate was set at 5° C./min or higher to prevent coarsening and adverse effects on toughness and creep strength. The above are the reasons for limiting the basic components and cooling rate of the steel of the present invention.

【0020】尚、本発明は靱性の優れた高クリープ破断
強度を有する耐熱鋼を提供するものであるので、本発明
鋼には使用目的に応じて種々の製造方法、および熱処理
を施すことが可能であり、本発明の効果を何等妨げるも
のではない。本発明鋼は鋼管のみならず、厚板および薄
板の形で提供することも可能であり、熱間圧延まま、も
しくは必要とされる熱処理を施した板を用いて種々の耐
熱材料の形状で使用することが可能であって、本発明の
効果に何等影響を与えない。
[0020] Since the present invention provides a heat-resistant steel with excellent toughness and high creep rupture strength, the steel of the present invention can be subjected to various manufacturing methods and heat treatments depending on the purpose of use. This does not impede the effects of the present invention in any way. The steel of the invention can be provided not only in the form of steel tubes, but also in the form of thick plates and thin plates, and can be used in the form of various heat-resistant materials, either as hot-rolled or by using plates that have been subjected to the necessary heat treatment. It is possible to do so without affecting the effects of the present invention.

【0021】以上の鋼管、板、各種形状の耐熱部材には
それぞれ目的、用途に応じて各種熱処理を施すことが可
能であって、また本発明の効果を十分に発揮する上で重
要である。通常は焼ならし+焼戻し工程を経て製品とす
る場合が多いが、これに加えて焼入れ、焼戻し、焼なら
し工程を単独で、あるいは併用して施すことが可能であ
り、また有用である。材料特性の十分な発現に必要な範
囲で、以上の工程はおのおのの工程を複数回繰り返して
適用することもまた可能であって、本発明の効果に何等
影響を与えるものではない。
[0021] The above steel pipes, plates, and heat-resistant members of various shapes can be subjected to various heat treatments depending on their purposes and uses, and this is important in fully demonstrating the effects of the present invention. Normally, products are often produced through a normalizing and tempering process, but in addition to this, it is possible and useful to perform quenching, tempering, and normalizing processes singly or in combination. It is also possible to repeat each of the above steps multiple times within the range necessary to fully express the material properties, and this does not affect the effects of the present invention in any way.

【0022】以上の工程を適宜選択して、本発明鋼の製
造プロセスに適用が可能である。
The above steps can be appropriately selected and applied to the manufacturing process of the steel of the present invention.

【0023】[0023]

【実施例】表1、2に示した組成を有する鋼を50kg
真空炉で溶解し、熱間にて板厚15mmに圧延し、5℃
/min 以上で冷却して板を製造した。各試験材とも
1050℃で1時間の保定、5℃/min 以上で冷却
する焼きならしを行った後、780℃で1時間の焼戻し
を行った。
[Example] 50 kg of steel having the composition shown in Tables 1 and 2
Melted in a vacuum furnace, hot rolled to a thickness of 15 mm, and heated at 5°C.
A plate was manufactured by cooling at a rate of at least 100 ml/min. Each test material was normalized by holding at 1050°C for 1 hour and cooling at 5°C/min or more, and then tempered at 780°C for 1 hour.

【0024】クリープ特性は圧延鋼板の圧延方向と平行
に板厚中心部より6mmφ×GL30mmのクリープ試
験片を切り出し、600℃で2万時間までのクリープ破
断試験を行い、600℃×10万時間の破断応力を直線
外挿し、評価を行った。また、シャルピー衝撃特性は圧
延鋼板を600℃で3000時間時効後、圧延方向と平
行に板厚中心部よりJIS4号2mmVノッチシャルピ
ー衝撃試験片を切り出し、0℃で試験を行い、評価を行
った。
[0024] Creep properties were determined by cutting out a creep test piece of 6 mmφ x 30 mm GL from the center of the plate thickness parallel to the rolling direction of a rolled steel plate, and conducting a creep rupture test at 600°C for up to 20,000 hours. The fracture stress was linearly extrapolated and evaluated. Further, the Charpy impact properties were evaluated by aging a rolled steel plate at 600°C for 3000 hours, cutting out a JIS No. 4 2mm V-notch Charpy impact test piece from the center of the thickness parallel to the rolling direction, and conducting the test at 0°C.

【0025】比較のために表3、4に示すように本発明
鋼に該当しない成分を有する鋼を同様の方法で溶製、製
造し、評価を行った。図1にAl添加の600℃×30
00時間時効後の0℃靱性に与える影響を示す。尚、図
中の靱性試験結果は0℃におけるシャルピー試験3点の
平均値である。Alが0.005%以上の場合に靱性の
向上が著しく認められ、0.10%を超えると靱性の低
下が認められる。また、N>14/27×Al+0.0
25の関係を満足せず、かつ冷却速度が5℃/min 
未満の鋼は靱性の低下が認められる。
For comparison, as shown in Tables 3 and 4, steels having components that do not correspond to the steel of the present invention were melted and produced in the same manner and evaluated. Figure 1 shows the 600℃×30 with Al addition.
The influence on 0°C toughness after 00 hours aging is shown. The toughness test results in the figure are the average values of three Charpy test points at 0°C. When Al is 0.005% or more, toughness is significantly improved, and when Al exceeds 0.10%, toughness is decreased. Also, N>14/27×Al+0.0
25 relationship is not satisfied, and the cooling rate is 5°C/min.
A decrease in toughness is observed in steels with less than

【0026】図2はAl添加の600℃×10万時間の
クリープ破断強度に与える影響を示す。Alの添加によ
ってもクリープ破断強度が低下することはなく、目標値
の160MPaを上回っている。また、N>14/27
×Al+0.025の関係を満足せず、かつ冷却速度が
5℃/min 未満の鋼はクリープ破断強度の低下が認
められる。
FIG. 2 shows the influence of Al addition on creep rupture strength at 600° C. for 100,000 hours. Even with the addition of Al, the creep rupture strength did not decrease and exceeded the target value of 160 MPa. Also, N>14/27
Steels that do not satisfy the relationship xAl+0.025 and whose cooling rate is less than 5° C./min have a decrease in creep rupture strength.

【0027】表3、4に示す比較例のA鋼、B鋼および
C鋼はAlが無添加であるため、クリープ強度は160
MPaを確保できているが、時効後靱性は低くなってい
る例、D鋼、E鋼およびF鋼はAlの添加量が多すぎた
ためにAlNの粗大化が生じ時効後靱性が劣化した例、
G鋼、H鋼およびI鋼は、N>14/27×Al+0.
025の関係を満足せず、かつ冷却速度が遅いためにA
lNの粗大化が生じ時効後靱性が劣化した例である。
Steels A, B and C of the comparative examples shown in Tables 3 and 4 have no addition of Al, so their creep strength is 160.
An example where the MPa is secured, but the toughness after aging is low; an example where D steel, E steel, and F steel have coarsening of AlN due to the addition of too much Al, and the toughness after aging deteriorates;
G steel, H steel and I steel have N>14/27×Al+0.
A because it does not satisfy the relationship 025 and the cooling rate is slow.
This is an example of coarsening of lN and deterioration of toughness after aging.

【0028】[0028]

【表1】[Table 1]

【0029】[0029]

【表2】[Table 2]

【0030】[0030]

【表3】[Table 3]

【0031】[0031]

【表4】[Table 4]

【0032】[0032]

【発明の効果】以上の如く本発明鋼は従来のフェライト
系耐熱鋼に比べ、装置の高温化、高圧化に対応できる高
温強度の増大を達成した鋼であり、靱性等実用上の特性
も優れており、産業界に貢献するところが極めて大きい
[Effects of the Invention] As described above, the steel of the present invention is a steel that achieves increased high-temperature strength that can cope with higher temperatures and pressures in equipment than conventional ferritic heat-resistant steels, and also has excellent practical properties such as toughness. The contribution to industry is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】Al添加の600℃×3000時間時効後靱性
に与える影響を示す図である。
FIG. 1 is a diagram showing the influence of Al addition on toughness after aging at 600°C for 3000 hours.

【図2】Al添加の600℃×10万時間クリープ破断
強度に与える影響を示す図である。
FIG. 2 is a diagram showing the influence of Al addition on creep rupture strength at 600° C. for 100,000 hours.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  質量%でC:0.01〜0.30%、
Si:0.01〜0.80%、Mn:0.10〜1.5
0%、Cr:8.00〜13.00%、W:0.20〜
3.00%、Mo:0.005〜1.00%、V:0.
05〜0.50%、Nb:0.02〜0.15%、B:
0.0003〜0.008%、N:0.03〜0.11
%、Al:0.001〜0.10%を含有し、P:0.
030%以下、S:0.010%以下、O:0.015
%以下に制限し、かつN(mass%)>14/27×
Al(mass%)+0.025の関係を満足し、残部
がFeおよび不可避的不純物よりなることを特徴とする
靱性ならびにクリープ強度に優れたフェライト系耐熱鋼
Claim 1: C: 0.01 to 0.30% in mass %,
Si: 0.01-0.80%, Mn: 0.10-1.5
0%, Cr: 8.00-13.00%, W: 0.20-
3.00%, Mo: 0.005-1.00%, V: 0.
05-0.50%, Nb: 0.02-0.15%, B:
0.0003-0.008%, N: 0.03-0.11
%, Al: 0.001 to 0.10%, P: 0.
030% or less, S: 0.010% or less, O: 0.015
% or less, and N (mass%)>14/27×
A ferritic heat-resistant steel having excellent toughness and creep strength, which satisfies the relationship of Al (mass%) + 0.025, with the remainder consisting of Fe and unavoidable impurities.
【請求項2】  請求項1記載の鋼の熱間加工後の冷却
、あるいは焼ならしまたは焼入れの冷却は、オーステナ
イト領域からマルテンサイト領域である500℃まで5
℃/min 以上の冷却速度で行うことを特徴とする靱
性ならびにクリープ強度に優れたフェライト系耐熱鋼の
製造方法。
2. Cooling after hot working or cooling during normalizing or quenching of the steel according to claim 1 is carried out at 500° C. from the austenitic region to the martensitic region.
A method for producing a heat-resistant ferritic steel having excellent toughness and creep strength, characterized in that the method is carried out at a cooling rate of ℃/min or more.
JP13008691A 1991-05-31 1991-05-31 Ferritic heat resistant steel excellent in touchness and creep strength and its production Pending JPH04354856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13008691A JPH04354856A (en) 1991-05-31 1991-05-31 Ferritic heat resistant steel excellent in touchness and creep strength and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13008691A JPH04354856A (en) 1991-05-31 1991-05-31 Ferritic heat resistant steel excellent in touchness and creep strength and its production

Publications (1)

Publication Number Publication Date
JPH04354856A true JPH04354856A (en) 1992-12-09

Family

ID=15025642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13008691A Pending JPH04354856A (en) 1991-05-31 1991-05-31 Ferritic heat resistant steel excellent in touchness and creep strength and its production

Country Status (1)

Country Link
JP (1) JPH04354856A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0957181A1 (en) * 1998-02-27 1999-11-17 Stahlwerk Ergste Westig GmbH Alloy steel for sliding surfaces
US6712913B2 (en) 2001-05-09 2004-03-30 Sumitomo Metal Industries, Ltd. Ferritic heat-resisting steel
WO2017180647A1 (en) * 2016-04-11 2017-10-19 Terrapower, Llc High temperature, radiation-resistant, ferritic-martensitic steels

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0957181A1 (en) * 1998-02-27 1999-11-17 Stahlwerk Ergste Westig GmbH Alloy steel for sliding surfaces
US6712913B2 (en) 2001-05-09 2004-03-30 Sumitomo Metal Industries, Ltd. Ferritic heat-resisting steel
WO2017180647A1 (en) * 2016-04-11 2017-10-19 Terrapower, Llc High temperature, radiation-resistant, ferritic-martensitic steels

Similar Documents

Publication Publication Date Title
CN102453843B (en) Ferrite heat resistant steel
JPH04371552A (en) High strength ferritic heat resisting steel
JPH11502259A (en) Ferritic heat-resistant steel excellent in high-temperature strength and method for producing the same
JPS61238917A (en) Manufacture of low alloy tempered high tensile seamless steel pipe
JP7232910B2 (en) Chromium-molybdenum steel sheet with excellent creep strength and its manufacturing method
JPS6267113A (en) Production of heat resisting steel having excellent creep rupture resistance characteristic
JPH02310340A (en) Ferritic heat-resistant steel having excellent toughness and creep strength
JPH04354856A (en) Ferritic heat resistant steel excellent in touchness and creep strength and its production
JP2958816B2 (en) Heat treatment method for heat resistant ferritic steel with excellent toughness and creep strength
JP3313440B2 (en) High corrosion resistance high strength clad steel and method for producing the same
JPH0387332A (en) High strength-low alloy-heat resistant steel
JPH08337813A (en) Production of high chromium ferritic steel excellent in creep characteristic of welded joint
JP7398559B2 (en) Steel plate for pressure vessels with excellent heat treatment resistance after high temperature welding and method for manufacturing the same
JPH01172516A (en) Manufacture of acicular ferritic stainless steel having excellent stress corrosive cracking resistance
JPS61186453A (en) High strength and high toughness quenched and tempered low-carbon steel plate for boiler or pressure vessel having superior resistance to weld crack, erosion and creep
JPH05311344A (en) Ferritic heat resistant steel excellent in high temperature strength and toughness
JP2659814B2 (en) Manufacturing method of high strength low alloy heat resistant steel
JPH09291308A (en) Production of high chrome ferritic heat resistant steel
JPH0297619A (en) Method for forming low-alloy steel for high-temperature service
JPH101737A (en) Low alloy heat resistant steel, excellent in high temperature strength and toughness, and its production
JPH05311346A (en) Ferritic heat resistant steel having high creep strength
JPH046213A (en) Heat treatment of ferritic heat resisting steel having excellent toughness and creep strength
JPH0397832A (en) High-strength high chromium steel excellent in oxidation resistance and weldability
JPH02141528A (en) Manufacture of tempered-type high tensile steel plate excellent in toughness
JPH1143719A (en) Heat treatment for ferritic heat resistant steel excellent in high temperature strength and toughness