JP7398559B2 - Steel plate for pressure vessels with excellent heat treatment resistance after high temperature welding and method for manufacturing the same - Google Patents

Steel plate for pressure vessels with excellent heat treatment resistance after high temperature welding and method for manufacturing the same Download PDF

Info

Publication number
JP7398559B2
JP7398559B2 JP2022523578A JP2022523578A JP7398559B2 JP 7398559 B2 JP7398559 B2 JP 7398559B2 JP 2022523578 A JP2022523578 A JP 2022523578A JP 2022523578 A JP2022523578 A JP 2022523578A JP 7398559 B2 JP7398559 B2 JP 7398559B2
Authority
JP
Japan
Prior art keywords
heat treatment
temperature
steel
hot
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022523578A
Other languages
Japanese (ja)
Other versions
JP2022553704A (en
Inventor
ホン,スン‐テク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2022553704A publication Critical patent/JP2022553704A/en
Application granted granted Critical
Publication of JP7398559B2 publication Critical patent/JP7398559B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/22Martempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/613Gases; Liquefied or solidified normally gaseous material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/14Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes wear-resistant or pressure-resistant pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、高温溶接後熱処理抵抗性に優れた圧力容器用鋼板及びその製造方法に係り、より詳しくは、発電所及び化学プラントのボイラー、圧力容器等に使用される鋼材に関するものであって、高温溶接後熱処理抵抗性に優れた圧力容器用鋼材及びその製造方法に関する。 The present invention relates to a steel plate for pressure vessels that has excellent resistance to heat treatment after high-temperature welding, and a method for manufacturing the same, and more specifically relates to steel materials used in boilers, pressure vessels, etc. of power plants and chemical plants, The present invention relates to a steel material for pressure vessels that has excellent resistance to heat treatment after high-temperature welding, and a method for manufacturing the same.

近年、発電所及び化学プラントのボイラー、圧力容器等の350~600℃程度の環境の中、高温圧力容器用素材に対する需要が増加し続けている。
また、設備の高度化、長寿命化及び鋼材の厚物化に伴う高温での焼戻し(tempering)熱処理等に対する抵抗性が高い鋼材への供給が求められている。
In recent years, demand for materials for high-temperature pressure vessels has continued to increase in environments of about 350 to 600°C, such as boilers and pressure vessels in power plants and chemical plants.
Additionally, as equipment becomes more sophisticated, lifespan increases, and steel becomes thicker, there is a need to supply steel that is highly resistant to tempering heat treatment at high temperatures.

一方、鋼材の厚物化以外にも鋼材を溶接する場合に、溶接後に構造物の変形を防止し、形状及び寸法を安定させるための目的として、溶接時に発生した応力を除去するために溶接後熱処理(Post Weld Heat Treatment、PWHT)が行われている。溶接後熱処理工程は長時間にわたって行われ、この工程が行われた鋼板は、その組織粒子の粗大化により鋼板の引張強度が低下するという問題がある。
すなわち、長時間のPWHT後には、基地組織(Matrix)及び結晶粒界の軟化、結晶粒成長、炭化物の粗大化等によって強度及び靭性が同時に低下する現象を招く。
On the other hand, in addition to thickening steel materials, when welding steel materials, post-weld heat treatment is used to prevent the deformation of the structure after welding and to stabilize the shape and dimensions, and to remove the stress generated during welding. (Post Weld Heat Treatment, PWHT) is being performed. The post-weld heat treatment process is carried out for a long time, and the steel plate subjected to this process has a problem in that the tensile strength of the steel plate decreases due to coarsening of the microstructure particles.
That is, after a long period of PWHT, strength and toughness simultaneously decrease due to softening of matrix and grain boundaries, grain growth, coarsening of carbides, etc.

このような問題点を解決するために、次のような技術が提案されている。
特許文献1によると、C、Si、Mn、Cr、Mo、Ni、Cuなどを適量含有する厚物鋼板材に対して焼戻し熱処理パターンを適用、すなわち、高温熱処理(高温焼戻し)後に低温熱処理(低温焼戻し)を施すことによって、高温焼戻し時の転位密度を減少させて強度の減少に対して、低温焼戻しにより発生する析出強化効果を活用する方法を提案している。しかし、このような方法を適用しても長時間のPWHTによる抵抗性が大きく劣化するという問題がある。
したがって、長時間のPWHT後にも物性の劣化を最小化でき、中・高温環境において好適に使用できる鋼材の開発が求められる。
In order to solve these problems, the following techniques have been proposed.
According to Patent Document 1, a tempering heat treatment pattern is applied to a thick steel plate material containing appropriate amounts of C, Si, Mn, Cr, Mo, Ni, Cu, etc., that is, a tempering heat treatment pattern is applied after high temperature heat treatment (high temperature tempering). We are proposing a method that utilizes the precipitation strengthening effect generated by low-temperature tempering to counteract the decrease in strength by reducing the dislocation density during high-temperature tempering. However, even if such a method is applied, there is a problem that the resistance due to long-term PWHT deteriorates significantly.
Therefore, there is a need to develop a steel material that can minimize the deterioration of physical properties even after long-term PWHT and can be used suitably in medium and high temperature environments.

韓国公開特許第2012-0073448号公報Korean Published Patent No. 2012-0073448

本発明の目的とするところは、高温における長時間の溶接後熱処理(PWHT)の適用にもかかわらず、強度及び靭性の劣化が最小化できる高温溶接後熱処理抵抗性に優れた圧力容器用鋼板及びその製造方法を提供することにある。
本発明の課題は、上述した内容に限定されない。本発明の課題は、本明細書の内容全体から理解することができ、本発明が属する技術分野において通常の知識を有する者であれば、本発明の付加的な課題を理解する上で何らの困難もない。
The object of the present invention is to provide a steel plate for pressure vessels with excellent resistance to high-temperature post-weld heat treatment, which can minimize deterioration of strength and toughness despite the application of long-term post-weld heat treatment (PWHT) at high temperatures. The object of the present invention is to provide a manufacturing method thereof.
The object of the present invention is not limited to the above-mentioned content. The problems to be solved by the present invention can be understood from the entire contents of this specification, and a person having ordinary knowledge in the technical field to which the present invention pertains will not need to understand the additional problems to be solved by the present invention. There are no difficulties.

本発明の高温溶接後熱処理抵抗性に優れた圧力容器用鋼材は、重量%で、炭素(C):0.10~0.16%、シリコン(Si):0.20~0.35%、マンガン(Mn):0.4~0.6%、クロム(Cr):6.5~7.5%、モリブデン(Mo):0.7~0.9%、アルミニウム(Al):0.005~0.05%、リン(P):0.015%以下、硫黄(S):0.020%以下、ニオブ(Nb):0.002~0.025%、バナジウム(V):0.25~0.35%、残部Fe及びその他の不可避不純物からなり、微細組織として、焼戻しマルテンサイトと焼戻しベイナイトの混合組織を含むことを特徴とする。 The steel material for pressure vessels of the present invention having excellent resistance to heat treatment after high temperature welding has, in weight percent, carbon (C): 0.10 to 0.16%, silicon (Si): 0.20 to 0.35%, Manganese (Mn): 0.4 to 0.6%, Chromium (Cr): 6.5 to 7.5%, Molybdenum (Mo): 0.7 to 0.9%, Aluminum (Al): 0.005 ~0.05%, Phosphorus (P): 0.015% or less, Sulfur (S): 0.020% or less, Niobium (Nb): 0.002-0.025%, Vanadium (V): 0.25 ~0.35%, the balance being Fe and other unavoidable impurities, and is characterized by containing a mixed structure of tempered martensite and tempered bainite as a fine structure.

本発明の高温溶接後熱処理抵抗性に優れた圧力容器用鋼材の製造方法は、上記の合金成分系を有する鋼スラブを準備する段階と、上記鋼スラブを1050~1250℃の温度範囲で加熱する段階と、上記加熱された鋼スラブを800~1000℃の温度範囲で熱間圧延して熱延鋼板を製造する段階と、上記熱延鋼板を1000~1050℃の温度範囲で{(1.3×t)+(10~30)}分(ここで、tは鋼材厚さ(mm)を意味する)間保持する熱処理段階と、上記熱処理された熱延鋼板を1~30℃/sの冷却速度で冷却する段階と、上記冷却された熱延鋼板を800~825℃の温度範囲で{(1.6×t)+(10~30)}分間保持する焼戻し熱処理段階と、を含むことを特徴とする。 The method of manufacturing a steel material for pressure vessels with excellent resistance to heat treatment after high-temperature welding according to the present invention includes the steps of preparing a steel slab having the above-mentioned alloy composition system, and heating the steel slab in a temperature range of 1050 to 1250°C. a step of hot rolling the heated steel slab in a temperature range of 800 to 1000°C to produce a hot rolled steel plate; and a step of hot rolling the heated steel slab in a temperature range of 1000 to 1050°C { ×t)+(10~30)} minutes (here, t means the steel material thickness (mm)), and the heat-treated hot-rolled steel plate is cooled at 1~30°C/s. and a tempering heat treatment step of holding the cooled hot rolled steel sheet in a temperature range of 800 to 825° C. for {(1.6×t)+(10 to 30)} minutes. Features.

本発明によると、高温熱処理、特に長時間の高温PWHT後にも強度及び靭性が劣化しない圧力容器用鋼材を提供することができる。特に、本発明の圧力容器用鋼材は、中・高温用の圧力容器用素材として好適に適用できる効果がある。 According to the present invention, it is possible to provide a steel material for a pressure vessel whose strength and toughness do not deteriorate even after high-temperature heat treatment, particularly after long-term high-temperature PWHT. In particular, the steel material for pressure vessels of the present invention has the advantage that it can be suitably applied as a material for pressure vessels for medium and high temperatures.

本発明者は、発電所、プラント産業等の環境において、構造用鋼として使用されている圧力容器用鋼材を製造する際に、溶接により発生する残留応力を最小化するために行う溶接後熱処理(PWHT)を長時間行った後にも強度及び靭性の劣化に対する抵抗性を大きく向上させる方案について鋭意研究を重ね、本発明を完成するに至った。
特に、本発明は、合金組成のうち特定元素の含量を最適化することにより、高温での焼戻し熱処理と長時間のPWHTを行っても、強度及び靭性劣化に対する抵抗性に優れた鋼材を提供することに技術的特徴がある。
以下、本発明について詳細に説明する。
The present inventor has discovered that post-weld heat treatment is performed to minimize the residual stress generated by welding when manufacturing pressure vessel steel materials used as structural steel in environments such as power plants and plant industries. The present invention has been completed through extensive research into ways to greatly improve resistance to deterioration of strength and toughness even after long periods of PWHT.
In particular, the present invention provides a steel material with excellent resistance to strength and toughness deterioration even when subjected to high-temperature tempering heat treatment and long-time PWHT by optimizing the content of specific elements in the alloy composition. There are particularly technical features.
The present invention will be explained in detail below.

本発明の高温溶接後熱処理抵抗性に優れた圧力容器用鋼材は、重量%で、炭素(C):0.10~0.16%、シリコン(Si):0.20~0.35%、マンガン(Mn):0.4~0.6%、クロム(Cr):6.5~7.5%、モリブデン(Mo):0.7~0.9%、アルミニウム(Al):0.005~0.05%、リン(P):0.015%以下、硫黄(S):0.020%以下、ニオブ(Nb):0.002~0.025%、バナジウム(V):0.25~0.35%を含む。
以下では、本発明で提供する圧力容器用鋼材の合金組成を上記のように制限する理由について詳細に説明する。なお、本発明において特に断りのない限り、各元素の含量は重量を基準とし、組織の割合は面積を基準とする。
The steel material for pressure vessels having excellent resistance to heat treatment after high temperature welding of the present invention has, in weight percent, carbon (C): 0.10 to 0.16%, silicon (Si): 0.20 to 0.35%, Manganese (Mn): 0.4-0.6%, chromium (Cr): 6.5-7.5%, molybdenum (Mo): 0.7-0.9%, aluminum (Al): 0.005 ~0.05%, Phosphorus (P): 0.015% or less, Sulfur (S): 0.020% or less, Niobium (Nb): 0.002-0.025%, Vanadium (V): 0.25 Contains ~0.35%.
Below, the reason why the alloy composition of the steel material for pressure vessels provided by the present invention is limited as described above will be explained in detail. In the present invention, unless otherwise specified, the content of each element is based on weight, and the ratio of structure is based on area.

炭素(C):0.10~0.16%
炭素(C)は鋼の強度を向上させる上で有利な元素である。Cの含量が0.10%未満であると、基地組織の自体強度が低下する。一方、その含量が0.16%を超えると、強度が過度に増加して靭性に劣るおそれがある。したがって、上記Cは0.10~0.16%含まれることがよい。
Carbon (C): 0.10-0.16%
Carbon (C) is an advantageous element for improving the strength of steel. If the C content is less than 0.10%, the strength of the matrix structure itself decreases. On the other hand, if the content exceeds 0.16%, the strength may increase excessively and the toughness may deteriorate. Therefore, the above C is preferably contained in an amount of 0.10 to 0.16%.

シリコン(Si):0.20~0.35%
シリコン(Si)は脱酸及び固溶強化に効果的な元素であって、衝撃遷移温度の上昇を伴う元素である。目標とする強度を達成するために、上記Siは0.20%以上含むことが好ましいが、その含量が0.35%を超えると、溶接性が低下し、衝撃靭性に劣るという問題がある。したがって、上記Siは0.20~0.35%含まれることがよい。
Silicon (Si): 0.20-0.35%
Silicon (Si) is an effective element for deoxidation and solid solution strengthening, and is an element that increases the shock transition temperature. In order to achieve the target strength, it is preferable that the Si content is 0.20% or more, but if the content exceeds 0.35%, there is a problem that weldability decreases and impact toughness is poor. Therefore, the Si content is preferably 0.20 to 0.35%.

マンガン(Mn):0.4~0.6%
マンガン(Mn)は、鋼中の硫黄(S)と結合して延伸された非金属介在物であるMnSを形成することにより、常温延伸び率及び低温靭性を阻害するため、その含量を0.6%以下に制限する。但し、その含量が0.4%未満の場合には、適正レベルの強度確保が困難となる。したがって、上記Mnは0.40~0.6%含まれることがよい。
Manganese (Mn): 0.4-0.6%
Manganese (Mn) inhibits room temperature elongation and low temperature toughness by combining with sulfur (S) in steel to form MnS, which is a nonmetallic inclusion that is stretched, so its content is reduced to 0. Limit to 6% or less. However, if the content is less than 0.4%, it becomes difficult to secure an appropriate level of strength. Therefore, the Mn content is preferably 0.40 to 0.6%.

クロム(Cr):6.5~7.5%
本発明においてクロム(Cr)は、高温での熱処理(焼戻し、PWHT)を可能とする効果に加えて強度増加効果を得るのに有利であり、このために6.5%以上添加することが好ましい。これにより本発明の鋼材は、高温熱処理に対する優れた抵抗性を確保することができる。但し、上記Crは高価な元素であって、その含量が7.5%を超えると、製造コストが大きく上昇する。したがって、上記Crは6.5~7.5%含まれることがよい。
Chromium (Cr): 6.5-7.5%
In the present invention, chromium (Cr) is advantageous in increasing strength in addition to enabling heat treatment at high temperatures (tempering, PWHT), and for this reason, it is preferable to add 6.5% or more. . Thereby, the steel material of the present invention can ensure excellent resistance to high-temperature heat treatment. However, the above-mentioned Cr is an expensive element, and if its content exceeds 7.5%, the manufacturing cost increases significantly. Therefore, the content of Cr is preferably 6.5 to 7.5%.

モリブデン(Mo):0.7~0.9%
モリブデン(Mo)は、上記Crと同様に、高温強度の増大に有効な元素であるだけでなく、硫化物による割れ発生を防止するのに有利である。上述の効果を十分に得るためには、Moを0.7%以上含むことが好ましいが、その含量が0.9%を超えると、製造コストの上昇を招くようになる。したがって、上記Moは0.7~0.9%含まれることがよい。
Molybdenum (Mo): 0.7-0.9%
Molybdenum (Mo), like the above-mentioned Cr, is not only an effective element for increasing high-temperature strength, but is also advantageous in preventing cracking caused by sulfides. In order to fully obtain the above-mentioned effects, it is preferable to contain Mo in an amount of 0.7% or more, but if the content exceeds 0.9%, the manufacturing cost will increase. Therefore, the Mo content is preferably 0.7 to 0.9%.

アルミニウム(Al):0.005~0.05%
アルミニウム(Al)は、上記Siと共に製鋼工程において強力な脱酸剤である。脱酸効果を十分に得るためには、上記Alを0.005%以上含むことが好ましいが、その含量が0.05%を超えると、脱酸効果は飽和するのに対し、製造コストが大きく上昇するという問題がある。したがって、上記Alは0.005~0.05%含まれることがよい。
Aluminum (Al): 0.005-0.05%
Aluminum (Al), together with the above-mentioned Si, is a strong deoxidizing agent in the steel manufacturing process. In order to obtain a sufficient deoxidizing effect, it is preferable to contain 0.005% or more of the above-mentioned Al, but if the content exceeds 0.05%, the deoxidizing effect is saturated, but the manufacturing cost increases. There is a problem with rising. Therefore, the above-mentioned Al is preferably contained in an amount of 0.005 to 0.05%.

リン(P):0.015%以下
リン(P)は鋼の低温靭性を阻害しつつ、焼戻脆化感受性を増大させる元素であって、可能な限りその含量を低く制御することが好ましい。但し、上記Pの含量を下げるための工程が複雑で、追加工程により生産コストが増加するおそれがある。これを考慮して、上記Pは0.015%以下に制限することがよく、本発明は上記Pを最大0.015%含有しても、意図する物性確保には無理がないことを明らかにしておく。
Phosphorus (P): 0.015% or less Phosphorus (P) is an element that inhibits the low-temperature toughness of steel and increases the susceptibility to temper embrittlement, and it is preferable to control its content as low as possible. However, the process for lowering the P content is complicated, and the additional process may increase production costs. Taking this into consideration, the above-mentioned P is preferably limited to 0.015% or less, and the present invention has clarified that even if the above-mentioned P is contained at a maximum of 0.015%, it is not unreasonable to ensure the intended physical properties. I'll keep it.

硫黄(S):0.020%以下
硫黄(S)も鋼の低温靭性を減少させる元素であって、鋼中にMnS介在物を形成することにより鋼の靭性を阻害するため、可能な限りその含量を低く制御することが好ましい。但し、このようなSの含量を下げるための工程が厳しく、追加工程により生産コストが増加するおそれがある。これを考慮して、上記Sは0.020%以下に制限することがよく、本発明は上記Sを最大0.020%含有しても、意図する物性確保には無理がないことを明らかにしておく。
Sulfur (S): 0.020% or less Sulfur (S) is also an element that reduces the low-temperature toughness of steel, and inhibits the toughness of steel by forming MnS inclusions in steel, so it should be avoided as much as possible. It is preferable to control the content low. However, the steps to reduce the S content are difficult, and the additional steps may increase production costs. Taking this into consideration, the above-mentioned S should be limited to 0.020% or less, and the present invention has clarified that even if the above-mentioned S is contained at a maximum of 0.020%, it is not unreasonable to secure the intended physical properties. I'll keep it.

ニオブ(Nb):0.002~0.025%
ニオブ(Nb)は、鋼中に微細な炭化物または窒化物を形成して基地組織の軟化を防止するのに効果的な元素である。このような効果を十分に得るためにはNbを0.002%以上含有することが好ましいが、高価な元素であって、その含量が0.025%を超えると、製造コストが大きく上昇するおそれがある。
したがって、上記Nbは0.002~0.025%含まれることがよい。
Niobium (Nb): 0.002-0.025%
Niobium (Nb) is an element effective in forming fine carbides or nitrides in steel to prevent softening of the base structure. In order to fully obtain such effects, it is preferable to contain 0.002% or more of Nb, but it is an expensive element, and if the content exceeds 0.025%, manufacturing costs may increase significantly. There is.
Therefore, the Nb content is preferably 0.002 to 0.025%.

バナジウム(V):0.25~0.35%
バナジウム(V)は上記Nbと同様に、鋼中に微細な炭化物または窒化物を容易に形成する元素である。このような効果を十分に得るためには、上記Vを0.25%以上含有することが好ましいが、これも高価な元素であるため、これを考慮して、その含量を0.35%以下に制限することがよい。したがって、上記Vは0.25~0.35%含まれることがよい。
Vanadium (V): 0.25-0.35%
Vanadium (V), like the above-mentioned Nb, is an element that easily forms fine carbides or nitrides in steel. In order to fully obtain such effects, it is preferable to contain 0.25% or more of the above-mentioned V, but since this is also an expensive element, taking this into consideration, the content should be reduced to 0.35% or less. It is better to limit Therefore, the above-mentioned V is preferably contained in an amount of 0.25 to 0.35%.

本発明の残りの成分は鉄(Fe)である。但し、通常の製造過程では、原料または周囲環境から意図しない不純物が不可避に混入することがあり、これを排除することはできない。これらの不純物は、通常の製造過程における技術者であれば、誰でも分かるものであるため、本明細書ではその全ての内容について特に言及しない。 The remaining component of the present invention is iron (Fe). However, in normal manufacturing processes, unintended impurities may inevitably be mixed in from raw materials or the surrounding environment, and this cannot be eliminated. These impurities are known to anyone skilled in the art of normal manufacturing processes, and therefore, all details thereof will not be specifically mentioned in this specification.

上記の合金成分系を有する本発明の鋼材は、微細組織として、焼戻しマルテンサイトと焼戻しベイナイトの混合組織を含むことができ、上記鋼材の厚さにかかわらず全厚さにわたって上記の混合組織を含むことができる。
上記混合組織のうち、上記焼戻しマルテンサイト相は面積分率40%以上であることが好ましい。万一、上記焼戻しマルテンサイト相の分率が40%未満であると、目標とする強度を十分に確保することができない。したがって、上記焼戻しマルテンサイト相を40~90%の面積分率で含む。
The steel material of the present invention having the above alloy component system can include a mixed structure of tempered martensite and tempered bainite as a microstructure, and includes the above mixed structure throughout the entire thickness regardless of the thickness of the steel material. be able to.
In the mixed structure, the tempered martensitic phase preferably has an area fraction of 40% or more. If the fraction of the above-mentioned tempered martensitic phase is less than 40%, the target strength cannot be sufficiently ensured. Therefore, the tempered martensitic phase is contained in an area fraction of 40 to 90%.

以下では、本発明の高温溶接後熱処理抵抗性に優れた圧力容器用鋼材を製造する方法について詳細に説明する。
本発明による圧力容器用鋼材は、本発明で提案する合金成分系を満たす鋼スラブを[加熱-熱間圧延-熱処理-冷却-焼戻し熱処理]の工程を経て製造することができ、以下に各工程について詳細に説明する。
Below, the method of manufacturing the steel material for pressure vessels having excellent resistance to heat treatment after high-temperature welding according to the present invention will be described in detail.
The steel material for pressure vessels according to the present invention can be manufactured through the steps of [heating - hot rolling - heat treatment - cooling - tempering heat treatment] to produce a steel slab that satisfies the alloy composition system proposed by the present invention. will be explained in detail.

[鋼スラブ加熱]
上記の合金成分系を満たす鋼スラブを準備した後、これを1050~1250℃の温度範囲で加熱する。上記加熱温度が1050℃未満であると、溶質原子が固溶しにくい。一方、その温度が1250℃を超えると、オーステナイト結晶粒のサイズが過度に粗大となり、鋼の物性を阻害するという問題がある。
[Steel slab heating]
After preparing a steel slab that satisfies the above alloy composition system, it is heated in a temperature range of 1050 to 1250°C. When the heating temperature is less than 1050°C, solute atoms are difficult to form a solid solution. On the other hand, if the temperature exceeds 1250°C, the size of austenite crystal grains becomes excessively coarse, which poses a problem of impairing the physical properties of the steel.

[熱間圧延]
上記によって加熱された鋼スラブを熱間圧延して熱延鋼板として製造する。上記熱間圧延は、800~1000℃の温度範囲でパス当たり圧下率2.5~30%で行うことが好ましい。
上記熱間圧延時の温度が800℃未満であると、圧延負荷が大きくなるという問題がある。一方、その温度が1000℃を超えると、結晶粒が粗大になるという問題がある。また、上記熱間圧延時に、パス当たり圧下率が2.5%未満であると、圧延生産性が低下して製造コストが上昇するという問題がある。一方、パス当たり圧下率が30%を超えると、圧延機に過剰な負荷を発生させて設備に致命的な悪影響を及ぼすおそれがある。
上記熱間圧延を完了して得られた熱延鋼板は、空冷により常温まで冷却を行うことができ、その後に後続工程を行うことができる。
[Hot rolling]
The steel slab heated as described above is hot-rolled to produce a hot-rolled steel plate. The hot rolling is preferably carried out at a temperature range of 800 to 1000° C. and a reduction rate of 2.5 to 30% per pass.
If the temperature during the hot rolling is less than 800°C, there is a problem that the rolling load increases. On the other hand, if the temperature exceeds 1000° C., there is a problem that crystal grains become coarse. Further, when the rolling reduction per pass during the hot rolling is less than 2.5%, there is a problem that rolling productivity decreases and manufacturing cost increases. On the other hand, if the rolling reduction per pass exceeds 30%, excessive load may be generated on the rolling mill, which may have a fatal adverse effect on the equipment.
The hot-rolled steel sheet obtained by completing the above-mentioned hot rolling can be cooled to room temperature by air cooling, and then the subsequent process can be performed.

[熱処理]
上記のとおり製造された熱延鋼板を特定の温度範囲に加熱して熱処理を行う。具体的に、上記熱延鋼板を1000~1050℃の温度範囲で{(1.3×t)+(10~30)}分(ここで、tは鋼材厚さ(mm)を意味する)間保持する熱処理を行うことが好ましい。
上記熱処理時に温度が1000℃未満であると、固溶溶質元素の再固溶が難しくなって目標とする強度を確保しにくくなる。一方、その温度が1050℃を超えると結晶粒の成長が起こり、低温靭性を阻害するという問題がある。
上記の温度範囲における熱処理時に、保持時間が{(1.3×t)+10}分未満であると、組織が均質化しにくい。一方、その時間が{(1.3×t)+30}分を超えると、生産性を阻害するため好ましくない。
[Heat treatment]
The hot-rolled steel sheet manufactured as described above is heated to a specific temperature range to perform heat treatment. Specifically, the above hot rolled steel plate was heated in a temperature range of 1000 to 1050°C for {(1.3×t)+(10 to 30)} minutes (where t means steel thickness (mm)). It is preferable to perform a heat treatment for holding.
If the temperature during the heat treatment is less than 1000° C., it becomes difficult to re-dissolve the solid solute elements, making it difficult to secure the target strength. On the other hand, if the temperature exceeds 1050° C., there is a problem in that crystal grains grow and impair low-temperature toughness.
During heat treatment in the above temperature range, if the holding time is less than {(1.3×t)+10} minutes, it is difficult to homogenize the structure. On the other hand, if the time exceeds {(1.3×t)+30} minutes, this is not preferable because productivity will be hindered.

[冷却]
上記のように熱処理された熱延鋼板を1~30℃/sの冷却速度で冷却する。このとき冷却は常温まで行うことができる。ここで、上記冷却速度は、熱延鋼板の厚さ中心部(例えば、1/2t(t:厚さ(mm)地点))を基準とする。
上記冷却時に冷却速度が1℃/s未満であると、冷却中に粗大なフェライト結晶粒が生成するおそれがある。一方、その速度が30℃/sを超えると、過度な冷却設備により経済性が低下するという問題がある。
[cooling]
The hot-rolled steel sheet heat-treated as described above is cooled at a cooling rate of 1 to 30° C./s. At this time, cooling can be performed to room temperature. Here, the cooling rate is based on the center of the thickness of the hot rolled steel plate (for example, 1/2t (t: thickness (mm) point)).
If the cooling rate is less than 1° C./s during the above cooling, coarse ferrite crystal grains may be generated during cooling. On the other hand, if the speed exceeds 30° C./s, there is a problem that economical efficiency decreases due to excessive cooling equipment.

[焼戻し熱処理]
上記によって冷却された熱延鋼板を焼戻し処理する。具体的に800~825℃の温度範囲で{(1.6×t)+(10~30)}分間保持する焼戻し熱処理工程を行うことができる。
上記焼戻し熱処理時に温度が800℃未満であると、微細な析出物の析出が難しくなり、目標とする強度の確保が困難である。一方、その温度が825℃を超えると、析出物の成長が起こり強度及び低温靭性の低下を招くという問題がある。
上述した温度範囲における焼戻し熱処理時に、保持時間が{(1.6×t)+10}分未満であると、組織が均質化しにくい。一方、その時間が{(1.6×t)+30}分を超えると、生産性を阻害するため好ましくない。
[Tempering heat treatment]
The hot-rolled steel sheet cooled as described above is subjected to a tempering treatment. Specifically, a tempering heat treatment step can be performed in which the temperature range is 800 to 825° C. for {(1.6×t)+(10 to 30)} minutes.
If the temperature during the above-mentioned tempering heat treatment is less than 800°C, precipitation of fine precipitates becomes difficult, making it difficult to secure the target strength. On the other hand, if the temperature exceeds 825° C., there is a problem in that precipitates grow, leading to a decrease in strength and low-temperature toughness.
During the tempering heat treatment in the above-mentioned temperature range, if the holding time is less than {(1.6×t)+10} minutes, it is difficult to homogenize the structure. On the other hand, if the time exceeds {(1.6×t)+30} minutes, this is not preferable because productivity will be hindered.

上記工程を経て製造された本発明の圧力容器用鋼材は、圧力容器の作製時に付加される溶接工程による残留応力を除去する目的で、溶接後熱処理(PWHT)工程が必要である。
一般的に、長時間のPWHT熱処理後には、強度及び靭性の劣化が発生するが、本発明により製造された鋼材は、通常のPWHT温度に比べて高温である760~780℃の温度範囲で最大50時間の熱処理を行っても、強度及び靭性の大きな低下なしに溶接施工が可能であるという利点がある。特に、本発明の鋼材は、高温における最大50時間のPWHT後にも600MPa以上の引張強度及び-30℃でのシャルピー衝撃エネルギー値が100J以上と優れた強度及び靭性を有するという効果がある。
The steel material for a pressure vessel of the present invention manufactured through the above process requires a post-weld heat treatment (PWHT) process for the purpose of removing residual stress due to the welding process added when manufacturing the pressure vessel.
Generally, deterioration of strength and toughness occurs after long-term PWHT heat treatment, but the steel produced by the present invention has a maximum temperature in the temperature range of 760 to 780 °C, which is higher than the normal PWHT temperature. It has the advantage that even after 50 hours of heat treatment, welding work is possible without significant deterioration in strength and toughness. In particular, the steel material of the present invention has excellent strength and toughness, with a tensile strength of 600 MPa or more and a Charpy impact energy value of 100 J or more at -30° C. even after PWHT for up to 50 hours at high temperatures.

以下では、実施例を通じて本発明をより具体的に説明する。但し、下記の実施例は、本発明をより詳細に説明するために例示するものであり、本発明の権利範囲を限定するためのものではないことに留意する必要がある。本発明の権利範囲は、特許請求の範囲に記載された事項及びこれにより合理的に類推される事項によって決定される。 Hereinafter, the present invention will be explained in more detail through Examples. However, it should be noted that the following examples are exemplified to explain the present invention in more detail, and are not intended to limit the scope of the present invention. The scope of rights in the present invention is determined by the matters stated in the claims and matters reasonably inferred therefrom.

下記表1に示す合金組成を有する鋼スラブを準備した後、上記鋼スラブを1150℃で300分間加熱し、パス当たり圧下率5~20%で800~1000℃で熱間圧延を行って熱延鋼板を製造した。その後、上記熱延鋼板を常温まで空冷を行い、再び1050℃に加熱・保持する熱処理を行った。このとき、熱処理は熱延鋼板の厚さに応じて150~280分間保持した。その後、熱延鋼板の厚さ中心部を基準にして冷却速度2.5~15℃/sで常温まで水冷却を行い、下記表2に示す条件で焼戻し熱処理及びPWHT熱処理を行った。 After preparing a steel slab having the alloy composition shown in Table 1 below, the steel slab is heated at 1,150°C for 300 minutes, and hot rolled at 800-1,000°C with a rolling reduction of 5-20% per pass. Manufactured steel plates. Thereafter, the hot-rolled steel sheet was air-cooled to room temperature, and then heat-treated by heating and holding it at 1050° C. again. At this time, the heat treatment was maintained for 150 to 280 minutes depending on the thickness of the hot rolled steel sheet. Thereafter, water cooling was performed to room temperature at a cooling rate of 2.5 to 15° C./s based on the center of the thickness of the hot rolled steel sheet, and tempering heat treatment and PWHT heat treatment were performed under the conditions shown in Table 2 below.

上記の全ての工程を経た熱延鋼板に対して引張試験を行い、降伏強度(YS)、引張強度(TS)及び伸び率(El)を測定した。また、シャルピー衝撃試験を行い、衝撃エネルギー値を導出した。上記引張試験はASTM規格A20及びA370&E8に基づいて行い、衝撃試験は-30℃でVノッチを有する試片に対してシャルピー衝撃試験を行った。各結果を下記表3に示した。 A tensile test was conducted on the hot rolled steel sheet that had gone through all of the above steps, and the yield strength (YS), tensile strength (TS), and elongation rate (El) were measured. In addition, a Charpy impact test was conducted to derive the impact energy value. The above tensile test was conducted based on ASTM standards A20 and A370&E8, and the impact test was conducted at -30° C. using a Charpy impact test on a specimen having a V-notch. The results are shown in Table 3 below.

Figure 0007398559000001
Figure 0007398559000001

Figure 0007398559000002
Figure 0007398559000002

Figure 0007398559000003
Figure 0007398559000003

上記表1~表3に示すように、本発明で提案する合金組成及び製造条件を共に満たす発明例1~9は、溶接後熱処理(PWHT)時間が最大50時間に達しても600MPa以上の引張強度及び-30℃でのシャルピー衝撃エネルギー値(CVN@-30℃(J))を100J以上確保することができる。
これに対し、合金組成が本発明から外れている比較例1~3は、長時間のPWHT後の発明例に比べて強度が約150MPa程度、低温靭性が約200J程度低下したことが確認できる。
As shown in Tables 1 to 3 above, invention examples 1 to 9 that satisfy both the alloy composition and manufacturing conditions proposed by the present invention have a tensile strength of 600 MPa or more even after the post-weld heat treatment (PWHT) time reaches a maximum of 50 hours. Strength and Charpy impact energy value at -30°C (CVN@-30°C (J)) of 100 J or more can be ensured.
On the other hand, it can be confirmed that Comparative Examples 1 to 3, in which the alloy composition deviates from the present invention, have a strength of about 150 MPa and a low-temperature toughness of about 200 J compared to the invention examples after long-term PWHT.

上記のとおり、本発明による合金成分系及び製造条件によって得られる鋼材は、高温焼戻し熱処理だけでなく、長時間の高温溶接後熱処理(PWHT)を行っても、それに対する抵抗性に優れるため、中・高温用の圧力容器用鋼材として好適であるという効果がある。
As mentioned above, the steel material obtained using the alloy composition system and manufacturing conditions according to the present invention has excellent resistance not only to high-temperature tempering heat treatment but also to long-term high-temperature post-weld heat treatment (PWHT).・It has the effect of being suitable as a steel material for high-temperature pressure vessels.

Claims (6)

重量%で、炭素(C):0.10~0.16%、シリコン(Si):0.20~0.35%、マンガン(Mn):0.4~0.6%、クロム(Cr):6.5~7.5%、モリブデン(Mo):0.7~0.9%、アルミニウム(Al):0.005~0.05%、リン(P):0.015%以下、硫黄(S):0.020%以下、ニオブ(Nb):0.002~0.025%、バナジウム(V):0.25~0.35%、残部Fe及びその他の不可避不純物からなり、
微細組織として、焼戻しマルテンサイトと焼戻しベイナイトの混合組織を含むことを特徴とする高温溶接後熱処理抵抗性に優れた圧力容器用鋼材。
In weight%, carbon (C): 0.10 to 0.16%, silicon (Si): 0.20 to 0.35%, manganese (Mn): 0.4 to 0.6%, chromium (Cr) : 6.5 to 7.5%, Molybdenum (Mo): 0.7 to 0.9%, Aluminum (Al): 0.005 to 0.05%, Phosphorus (P): 0.015% or less, Sulfur (S): 0.020% or less, niobium (Nb): 0.002 to 0.025%, vanadium (V): 0.25 to 0.35%, the balance consisting of Fe and other inevitable impurities,
A steel material for pressure vessels with excellent resistance to heat treatment after high-temperature welding, characterized by containing a mixed structure of tempered martensite and tempered bainite as a microstructure.
前記焼戻しマルテンサイトは、面積分率40%以上であることを特徴とする請求項1に記載の高温溶接後熱処理抵抗性に優れた圧力容器用鋼材。 The steel material for a pressure vessel having excellent resistance to heat treatment after high-temperature welding according to claim 1, wherein the tempered martensite has an area fraction of 40% or more. 前記鋼材は、600MPa以上の引張強度、-30℃でのシャルピー衝撃エネルギー値が100J以上であることを特徴とする請求項1に記載の高温溶接後熱処理抵抗性に優れた圧力容器用鋼材。 The steel material for pressure vessels having excellent resistance to heat treatment after high-temperature welding according to claim 1 , wherein the steel material has a tensile strength of 600 MPa or more and a Charpy impact energy value of 100 J or more at -30°C. 重量%で、炭素(C):0.10~0.16%、シリコン(Si):0.20~0.35%、マンガン(Mn):0.4~0.6%、クロム(Cr):6.5~7.5%、モリブデン(Mo):0.7~0.9%、アルミニウム(Al):0.005~0.05%、リン(P):0.015%以下、硫黄(S):0.020%以下、ニオブ(Nb):0.002~0.025%、バナジウム(V):0.25~0.35%、残部Fe及びその他の不可避不純物からなる鋼スラブを準備する段階と、
前記鋼スラブを1050~1250℃の温度範囲で加熱する段階と、
前記加熱された鋼スラブを800~1000℃の温度範囲で熱間圧延して熱延鋼板を製造する段階と、
前記熱延鋼板を1000~1050℃の温度範囲で{(1.3×t)+(10~30)}分(ここで、tは鋼材厚さ(mm)を意味する)間保持する熱処理段階と、
前記熱処理された熱延鋼板を1~30℃/sの冷却速度で常温まで冷却する段階と、
前記冷却された熱延鋼板を800~825℃の温度範囲で{(1.6×t)+(10~30)}分間保持する焼戻し熱処理段階と、
前記焼戻し熱処理後に、最大50時間760~780℃の温度範囲で溶接後熱処理する段階と、を含むことを特徴とする請求項1に記載の高温溶接後熱処理抵抗性に優れた圧力容器用鋼材の製造方法。
In weight%, carbon (C): 0.10 to 0.16%, silicon (Si): 0.20 to 0.35%, manganese (Mn): 0.4 to 0.6%, chromium (Cr) : 6.5 to 7.5%, Molybdenum (Mo): 0.7 to 0.9%, Aluminum (Al): 0.005 to 0.05%, Phosphorus (P): 0.015% or less, Sulfur A steel slab consisting of (S): 0.020% or less, niobium (Nb): 0.002 to 0.025%, vanadium (V): 0.25 to 0.35%, and the balance Fe and other unavoidable impurities. The preparation stage and
heating the steel slab to a temperature range of 1050-1250°C;
hot rolling the heated steel slab at a temperature range of 800 to 1000°C to produce a hot rolled steel plate;
A heat treatment step of holding the hot-rolled steel sheet in a temperature range of 1000 to 1050°C for {(1.3×t)+(10 to 30)} minutes (here, t means steel thickness (mm)) and,
cooling the heat-treated hot-rolled steel sheet to room temperature at a cooling rate of 1 to 30°C/s;
a tempering heat treatment step of holding the cooled hot-rolled steel sheet in a temperature range of 800 to 825 ° C. for {(1.6 × t) + (10 to 30)} minutes;
The steel material for pressure vessels having excellent resistance to high-temperature post-weld heat treatment according to claim 1 , further comprising the step of post-weld heat treatment at a temperature range of 760 to 780° C. for up to 50 hours after the tempering heat treatment. Production method.
前記熱間圧延は、パス当たり圧下率2.5~30%で行うものであることを特徴とする請求項4に記載の高温溶接後熱処理抵抗性に優れた圧力容器用鋼材の製造方法。 5. The method for producing a pressure vessel steel material having excellent resistance to heat treatment after high-temperature welding according to claim 4, wherein the hot rolling is performed at a reduction rate of 2.5 to 30% per pass. 前記熱間圧延後に、前記熱延鋼板を常温まで空冷する段階をさらに含むものであることを特徴とする請求項4に記載の高温溶接後熱処理抵抗性に優れた圧力容器用鋼材の製造方法。 5. The method of manufacturing a pressure vessel steel material having excellent resistance to heat treatment after high-temperature welding according to claim 4, further comprising the step of air-cooling the hot-rolled steel sheet to room temperature after the hot rolling.
JP2022523578A 2019-10-22 2020-10-20 Steel plate for pressure vessels with excellent heat treatment resistance after high temperature welding and method for manufacturing the same Active JP7398559B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020190131598A KR102280641B1 (en) 2019-10-22 2019-10-22 Steel plate for pressure vessel having excellent resistance for high-temperature post weld heat treatment, and method for manufacturing thereof
KR10-2019-0131598 2019-10-22
PCT/KR2020/014343 WO2021080291A1 (en) 2019-10-22 2020-10-20 Steel plate for pressure vessel having excellent resistance to high-temperature post-welding heat treatment, and method for manufacturing same

Publications (2)

Publication Number Publication Date
JP2022553704A JP2022553704A (en) 2022-12-26
JP7398559B2 true JP7398559B2 (en) 2023-12-14

Family

ID=75619473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022523578A Active JP7398559B2 (en) 2019-10-22 2020-10-20 Steel plate for pressure vessels with excellent heat treatment resistance after high temperature welding and method for manufacturing the same

Country Status (6)

Country Link
US (1) US20240102137A1 (en)
EP (1) EP4050118A4 (en)
JP (1) JP7398559B2 (en)
KR (1) KR102280641B1 (en)
CN (1) CN114585760B (en)
WO (1) WO2021080291A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020509193A (en) 2016-12-20 2020-03-26 ポスコPosco Steel for pressure vessel excellent in resistance to high temperature tempering heat treatment and post-weld heat treatment and method for producing the same
JP2021507099A (en) 2017-12-15 2021-02-22 ポスコPosco Steel plate for pressure vessels with excellent tensile strength and low temperature impact toughness and its manufacturing method

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3539338A (en) * 1966-06-28 1970-11-10 Nippon Kokan Kk High-temperature alloy steel containing cr and mo
JPS60184665A (en) * 1984-02-29 1985-09-20 Kobe Steel Ltd Low-alloy steel for pressure vessel
JPS61130457A (en) * 1984-11-28 1986-06-18 Kobe Steel Ltd Cr-mo steel for pressure vessel
JP2680350B2 (en) * 1988-06-20 1997-11-19 新日本製鐵株式会社 Method for producing Cr-Mo steel sheet having excellent toughness
JP3015923B2 (en) * 1991-06-04 2000-03-06 新日本製鐵株式会社 Manufacturing method for tough steel
JP2005179720A (en) * 2003-12-18 2005-07-07 Nippon Steel Corp Steel sheet for welded structure having excellent corrosion resistance and mechanical property in natural gas-fired boiler exhaust gas atmosphere, and welded joint
JP4696570B2 (en) * 2005-01-26 2011-06-08 Jfeスチール株式会社 Manufacturing method of high-tensile steel material with excellent hydrogen embrittlement resistance
US8357252B2 (en) * 2007-01-31 2013-01-22 Jfe Steel Corporation High tensile strength steel having favorable delayed fracture resistance and method for manufacturing the same
JP5277648B2 (en) * 2007-01-31 2013-08-28 Jfeスチール株式会社 High strength steel sheet with excellent delayed fracture resistance and method for producing the same
CN101613840B (en) * 2008-06-23 2011-03-30 宝山钢铁股份有限公司 Super-thick steel plate with obdurability matching and excellent high-temperature performance and manufacturing method thereof
KR101094310B1 (en) * 2008-09-18 2011-12-19 한국기계연구원 Weldable ultra-high strength steel with excellent low-temperature toughness, and manufacturing method thereof
KR101322067B1 (en) * 2009-12-28 2013-10-25 주식회사 포스코 High strength steel sheet having excellent property after post weld heat treatment and method for manufacturing the same
CN102277540B (en) * 2010-06-10 2013-11-20 宝山钢铁股份有限公司 igh temperature PWHT softening and production method thereof
KR101253899B1 (en) 2010-12-27 2013-04-16 주식회사 포스코 Thick steel plate having high strength and excellent low-temperature toughness and manufacturing method thereof
KR101568523B1 (en) * 2013-12-24 2015-11-11 주식회사 포스코 Pressure vessel steel plate having excellent resistance of temper embrittlement and manufacturing method of the same
CN104109801B (en) * 2014-07-30 2016-04-27 宝山钢铁股份有限公司 High tenacity, anti-PWHT soften brittle steel plate and manufacture method thereof
KR101657828B1 (en) * 2014-12-24 2016-10-04 주식회사 포스코 Steel plate for pressure vessel having excellent strength and toughness after post weld heat treatment and method for manufacturing the same
KR101778398B1 (en) * 2015-12-17 2017-09-14 주식회사 포스코 Pressure vessel steel plate having excellent property after post weld heat treatment and method for manufacturing the same
KR101758497B1 (en) * 2015-12-22 2017-07-27 주식회사 포스코 Steel Plate For Pressure Vessel With Excellent PWHT Resistance And Manufacturing Method Thereof
KR101978074B1 (en) * 2017-12-22 2019-05-13 현대제철 주식회사 High strength steel and method of manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020509193A (en) 2016-12-20 2020-03-26 ポスコPosco Steel for pressure vessel excellent in resistance to high temperature tempering heat treatment and post-weld heat treatment and method for producing the same
JP2021507099A (en) 2017-12-15 2021-02-22 ポスコPosco Steel plate for pressure vessels with excellent tensile strength and low temperature impact toughness and its manufacturing method

Also Published As

Publication number Publication date
EP4050118A1 (en) 2022-08-31
JP2022553704A (en) 2022-12-26
CN114585760B (en) 2023-07-28
WO2021080291A1 (en) 2021-04-29
KR20210047698A (en) 2021-04-30
EP4050118A4 (en) 2024-04-03
CN114585760A (en) 2022-06-03
US20240102137A1 (en) 2024-03-28
KR102280641B1 (en) 2021-07-22

Similar Documents

Publication Publication Date Title
US10604817B2 (en) High-strength steel plate for pressure vessel having excellent toughness after post weld heat treatment and manufacturing method thereof
JP6688391B2 (en) Steel sheet for pressure vessel having excellent heat treatment resistance after welding and method for producing the same
JP7161536B2 (en) Steel plate for pressure vessel excellent in tensile strength and low-temperature impact toughness and method for producing the same
JP5657026B2 (en) High-strength steel sheet with excellent post-weld heat treatment resistance and manufacturing method thereof
CN108431272B (en) Steel sheet for low-temperature pressure vessel having excellent resistance to PWHT and method for producing same
JP5659758B2 (en) TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability
JP6880194B2 (en) High-temperature tempering heat treatment and post-welding heat treatment Steel materials for pressure vessels with excellent resistance and their manufacturing methods
KR20140108431A (en) Steel sheet and manufacturing method of the same
JP7183410B2 (en) Steel plate for pressure vessel with excellent cryogenic toughness and ductility and its manufacturing method
KR20140056760A (en) Steel for pressure vessel and method of manufacturing the same
KR101271968B1 (en) Steel sheet for high temperature applications having excellent property after post weld heat treatment and method for manufacturing the same
KR102142782B1 (en) Chromium-molybdenum steel sheet having excellent creep strength and method of manufacturing the same
KR20210000844A (en) Pressure vessel steel sheet excellent in pwhthresistance and menufacturing mwthod thereof
US20200347478A1 (en) High strength steel plate and manufacturing method therefor
JP7398559B2 (en) Steel plate for pressure vessels with excellent heat treatment resistance after high temperature welding and method for manufacturing the same
KR20160014998A (en) Steel sheet and method of manufacturing the same
JP7277584B2 (en) Medium- and high-temperature steel sheet with excellent high-temperature strength and its manufacturing method
KR101455458B1 (en) Steel plate and method for manufacturing of the same
KR101400662B1 (en) Steel for pressure vessel and method of manufacturing the same
KR101467030B1 (en) Method for manufacturing high strength steel plate
JP7111718B2 (en) Steel plate for pressure vessel with excellent PWHT resistance and method for producing the same
JP2023553169A (en) Steel plate for pressure vessels with excellent high-temperature PWHT resistance and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231204

R150 Certificate of patent or registration of utility model

Ref document number: 7398559

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150