JP2021507099A - Steel plate for pressure vessels with excellent tensile strength and low temperature impact toughness and its manufacturing method - Google Patents

Steel plate for pressure vessels with excellent tensile strength and low temperature impact toughness and its manufacturing method Download PDF

Info

Publication number
JP2021507099A
JP2021507099A JP2020532603A JP2020532603A JP2021507099A JP 2021507099 A JP2021507099 A JP 2021507099A JP 2020532603 A JP2020532603 A JP 2020532603A JP 2020532603 A JP2020532603 A JP 2020532603A JP 2021507099 A JP2021507099 A JP 2021507099A
Authority
JP
Japan
Prior art keywords
steel sheet
tensile strength
pressure vessel
less
impact toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020532603A
Other languages
Japanese (ja)
Other versions
JP7161536B2 (en
Inventor
ホン,スン−テク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2021507099A publication Critical patent/JP2021507099A/en
Application granted granted Critical
Publication of JP7161536B2 publication Critical patent/JP7161536B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/122Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

引張強度及び低温衝撃靭性に優れた圧力容器用鋼板及びその製造方法を提供する。重量%で、C:0.12〜0.20%、Si:0.30〜0.40%、Mn:1.50〜1.70%、Mo:0.03〜0.10%、Cu:0.05〜0.30%、V:0.03〜0.10%、Ni:0.03〜0.25%、Cr:0.03〜0.25%、Al:0.005〜0.06%、Ca:0.0005〜0.0030%、P:0.025%以下、S:0.025%以下を含み、Ti:0.003〜0.015%、Nb:0.005〜0.025%、及びTa:0.002〜0.050%からなる群より選択された2種以上を含み、残部はFe及びその他の不可避不純物からなり、フェライト、焼戻しベイナイト、パーライト、及びジジェネレーテッドパーライトのうち1種又は2種を含む混合組織からなり、焼戻しベイナイトの分率は5〜50面積%である。【選択図】なしProvided are a steel sheet for a pressure vessel having excellent tensile strength and low temperature impact toughness, and a method for manufacturing the same. By weight%, C: 0.12 to 0.20%, Si: 0.30 to 0.40%, Mn: 1.50 to 1.70%, Mo: 0.03 to 0.10%, Cu: 0.05 to 0.30%, V: 0.03 to 0.10%, Ni: 0.03 to 0.25%, Cr: 0.03 to 0.25%, Al: 0.005 to 0. 06%, Ca: 0.0005 to 0.0030%, P: 0.025% or less, S: 0.025% or less, Ti: 0.003 to 0.015%, Nb: 0.005 to 0 Includes two or more selected from the group consisting of .025% and Ta: 0.002 to 0.050%, the balance consisting of Fe and other unavoidable impurities, ferrite, tempered bainite, pearlite, and digenerated. It consists of a mixed structure containing one or two of pearlite, and the tempered bainite fraction is 5 to 50 area%. [Selection diagram] None

Description

本発明は、引張強度及び低温衝撃靭性に優れた圧力容器用鋼板及びその製造方法に係り、より詳しくは、CO貯蔵タンク及び圧力容器などの素材として好ましく適用することができる引張強度及び低温衝撃靭性に優れた圧力容器用鋼板及びその製造方法に関する。 The present invention relates to a steel sheet for a pressure vessel having excellent tensile strength and low temperature impact toughness and a method for producing the same, and more specifically, the tensile strength and low temperature impact which can be preferably applied as a material for a CO 2 storage tank and a pressure vessel. The present invention relates to a steel plate for a pressure vessel having excellent toughness and a method for manufacturing the same.

最近、地球環境政策に伴う温室効果ガスの主犯である炭素ガスを貯蔵及び運搬するCO2貯蔵タンク及び圧力容器に対する需要が増大しつつある。かかる鋼材に対する高強度化及び低温靭性の確保が重要な課題となっている。 Recently, the demand for CO2 storage tanks and pressure vessels that store and transport carbon gas, which is the main cause of greenhouse gases associated with global environmental policy, is increasing. It is an important issue to increase the strength of such steel materials and to secure low temperature toughness.

上記のような鋼材の高強度化及び低温靭性の確保に加えて、鋼材を溶接した場合、溶接後の構造物の変形を防止し、且つ形状及び寸法を安定させるための目的として、溶接時に発生した応力を除去すべく、溶接後熱処理(PWHT、Post Weld Heat Treatment)を行うようになる。但し、長時間のPWHT工程を行った鋼板には、その組織の粗大化により鋼板の引張強度が低下するという問題がある。 In addition to increasing the strength of steel materials and ensuring low-temperature toughness as described above, when steel materials are welded, they occur during welding for the purpose of preventing deformation of the structure after welding and stabilizing the shape and dimensions. Post-weld heat treatment (PWHT, Post Weld Heat Treatment) is performed in order to remove the stress. However, the steel sheet that has been subjected to the PWHT process for a long time has a problem that the tensile strength of the steel sheet is lowered due to the coarsening of the structure.

すなわち、長時間のPWHT後には、基地組織(Matrix)及び結晶粒界の軟化、結晶粒成長、炭化物の粗大化などにより、強度及び靭性がともに低下する現象をもたらすようになる。 That is, after a long period of PWHT, the strength and toughness both decrease due to softening of the matrix structure and grain boundaries, grain growth, and coarsening of carbides.

従来、非特許文献1のASTM A612鋼のように、重量%で、C:0.25%以下、Si:0.15〜0.50%、Mn:1.00〜1.50%、Mo及びV:0.08%以下、Cu:0.3%以下、Ni:0.25%以下、Cr:0.25%以下、P:0.025%以下、S:0.025%以下で構成された鋼板材を活用して、As rolled又は焼きならし或いは焼きならし+SR(Stress Relief)熱処理パターンを適用して製造した。このように製造された鋼を用いるとき、構造物製作のために必須の溶接を行うようになる。ここで、溶接後の構造物の変形を防止し、且つ形状及び寸法を安定させるために、溶接時に発生した応力を除去すべく、溶接後熱処理(PWHT、Post Weld Heat Treatment)を行うようになる。しかし、長時間のPWHT工程を行った鋼板には、その組織の粗大化により鋼板の引張強度及び低温衝撃靭性が大きく低下するという問題がある。 Conventionally, like the ASTM A612 steel of Non-Patent Document 1, in terms of weight%, C: 0.25% or less, Si: 0.15 to 0.50%, Mn: 1.00 to 1.50%, Mo and V: 0.08% or less, Cu: 0.3% or less, Ni: 0.25% or less, Cr: 0.25% or less, P: 0.025% or less, S: 0.025% or less. It was manufactured by applying As lolled or normalizing or normalizing + SR (Stress Relief) heat treatment pattern by utilizing the steel sheet material. When the steel produced in this way is used, welding that is indispensable for manufacturing a structure comes to be performed. Here, in order to prevent deformation of the structure after welding and to stabilize the shape and dimensions, post-welding heat treatment (PWHT, Post Weld Heat Treatment) is performed in order to remove the stress generated during welding. .. However, the steel sheet that has been subjected to the PWHT process for a long time has a problem that the tensile strength and the low temperature impact toughness of the steel sheet are significantly lowered due to the coarsening of the structure.

A612/A612M−12:Standard Specification for Pressure Vessel Plates、Carbon Steel、High Strength、for Moderate and Lower Temperature ServiceA612 / A612M-12: Standard Specialization for Pressure Vessel Plates, Carbon Steel, High Strength, for Moderate and Lower Temperature Service

本発明は、PWHT熱処理後にも、引張強度及び低温衝撃靭性に優れた圧力容器用鋼板及びその製造方法を提供することを目的とする。 An object of the present invention is to provide a steel sheet for a pressure vessel having excellent tensile strength and low-temperature impact toughness even after PWHT heat treatment, and a method for producing the same.

本発明の一実施形態は、重量%で、C:0.12〜0.20%、Si:0.30〜0.40%、Mn:1.50〜1.70%、Mo:0.03〜0.10%、Cu:0.05〜0.30%、V:0.03〜0.10%、Ni:0.03〜0.25%、Cr:0.03〜0.25%、Al:0.005〜0.06%、Ca:0.0005〜0.0030%、P:0.025%以下、S:0.025%以下を含み、追加的に、Ti:0.003〜0.015%、Nb:0.005〜0.025%、及びTa:0.002〜0.050%からなる群より選択された2種以上を含み、残部はFe及びその他の不可避不純物からなり、微細組織は、フェライト、焼戻しベイナイト、パーライト、及びジジェネレーテッドパーライトのうち1種又は2種を含む混合組織からなり、上記焼戻しベイナイトの分率は5〜50面積%である引張強度及び低温衝撃靭性に優れた圧力容器用鋼板を提供する。 One embodiment of the present invention is, in% weight, C: 0.12 to 0.20%, Si: 0.30 to 0.40%, Mn: 1.50 to 1.70%, Mo: 0.03. ~ 0.10%, Cu: 0.05 ~ 0.30%, V: 0.03 ~ 0.10%, Ni: 0.03 ~ 0.25%, Cr: 0.03 ~ 0.25%, Al: 0.005 to 0.06%, Ca: 0.0005 to 0.0030%, P: 0.025% or less, S: 0.025% or less, and additionally Ti: 0.003 to Contains two or more selected from the group consisting of 0.015%, Nb: 0.005 to 0.025%, and Ta: 0.002 to 0.050%, the balance consisting of Fe and other unavoidable impurities. The microstructure consists of a mixed structure containing one or two of ferrite, tempered bainite, pearlite, and digenerated pearlite, and the tempered bainite fraction is 5 to 50 area% tensile strength and low temperature impact. Provided is a steel plate for a pressure vessel having excellent toughness.

本発明の他の実施形態は、重量%で、C:0.12〜0.20%、Si:0.30〜0.40%、Mn:1.50〜1.70%、Mo:0.03〜0.10%、Cu:0.05〜0.30%、V:0.03〜0.10%、Ni:0.03〜0.25%、Cr:0.03〜0.25%、Al:0.005〜0.06%、Ca:0.0005〜0.0030%、P:0.025%以下、S:0.025%以下を含み、追加的に、Ti:0.003〜0.015%、Nb:0.005〜0.025%、及びTa:0.002〜0.050%からなる群より選択された2種以上を含み、残部はFe及びその他の不可避不純物からなる鋼スラブを950〜1200℃で再加熱する段階と、上記再加熱された鋼スラブをパス当たりの圧下率2.5〜30%で熱間圧延して熱延鋼板を得る段階と、上記熱延鋼板を820〜930℃で1.3×t+(10〜30分)(但し、tは鋼板の厚さ(mm)である)の間焼きならし熱処理する段階と、上記焼きならし熱処理された前記熱延鋼板を焼きならし温度範囲から450℃までの温度区間で(1/4)t(但し、tは鋼板の厚さ(mm)である)を基準に0.5〜30℃/sの冷却速度で冷却する段階と、上記冷却された熱延鋼板を550〜680℃で1.6×t+(10〜30分)(但し、tは鋼板の厚さ(mm)である)の間焼戻し熱処理する段階と、を含む引張強度及び低温衝撃靭性に優れた圧力容器用鋼板の製造方法を提供する。 In another embodiment of the present invention, in% by weight, C: 0.12 to 0.20%, Si: 0.30 to 0.40%, Mn: 1.50 to 1.70%, Mo: 0. 03 to 0.10%, Cu: 0.05 to 0.30%, V: 0.03 to 0.10%, Ni: 0.03 to 0.25%, Cr: 0.03 to 0.25% , Al: 0.005 to 0.06%, Ca: 0.0005 to 0.0030%, P: 0.025% or less, S: 0.025% or less, and additionally Ti: 0.003. Includes two or more selected from the group consisting of ~ 0.015%, Nb: 0.005 to 0.025%, and Ta: 0.002 to 0.050%, with the balance from Fe and other unavoidable impurities. The steel slab is reheated at 950 to 1200 ° C., the reheated steel slab is hot-rolled at a reduction rate of 2.5 to 30% per pass to obtain a hot-rolled steel sheet, and the heat The step of normalizing the rolled steel sheet at 820 to 930 ° C. at 1.3 × t + (10 to 30 minutes) (where t is the thickness (mm) of the steel sheet) and the above-mentioned normalizing heat treatment are performed. In the temperature interval from the normalizing temperature range to 450 ° C., the hot-rolled steel sheet is 0.5 to 30 ° C./based on (1/4) t (where t is the thickness (mm) of the steel sheet). The stage of cooling at the cooling rate of s and the above-mentioned cooled hot-rolled steel sheet at 550 to 680 ° C. for 1.6 × t + (10 to 30 minutes) (where t is the thickness (mm) of the steel sheet). Provided is a method for producing a steel sheet for a pressure vessel, which is excellent in tensile strength and low-temperature impact toughness, including a step of normalizing heat treatment.

本発明の実施によると、PWHT熱処理後にも引張強度及び低温衝撃靭性に優れた圧力容器用鋼板及びその製造方法を提供することができる。 According to the implementation of the present invention, it is possible to provide a steel sheet for a pressure vessel having excellent tensile strength and low-temperature impact toughness even after PWHT heat treatment, and a method for producing the same.

以下、本発明を詳細に説明する。先ず、本発明の合金組成について説明する。但し、下記説明する合金組成は、特別な記載がない限り重量%を意味する。 Hereinafter, the present invention will be described in detail. First, the alloy composition of the present invention will be described. However, the alloy composition described below means% by weight unless otherwise specified.

C:0.12〜0.20%
Cは、強度を向上させる元素であって、その含有量が0.12%未満の場合には、基地相自体の強度が低下し、0.20%を超えると、過度な強度の増大によって靭性及び溶接性が低下するという問題がある。
C: 0.12 to 0.20%
C is an element that improves strength, and when its content is less than 0.12%, the strength of the matrix phase itself decreases, and when it exceeds 0.20%, it becomes tough due to an excessive increase in strength. And there is a problem that the weldability is lowered.

Si:0.30〜0.40%
Siは、脱酸及び固溶強化に効果的な元素であり、衝撃遷移温度の上昇を伴う元素である。目標強度を達成するために0.30%以上添加される必要があるが、0.40%を超えて添加される場合には、溶接性が低下し、衝撃靭性が劣化する。
Si: 0.30 to 0.40%
Si is an element effective for deoxidizing and strengthening solid solution, and is an element accompanied by an increase in impact transition temperature. It is necessary to add 0.30% or more in order to achieve the target strength, but if it is added in excess of 0.40%, the weldability is lowered and the impact toughness is deteriorated.

Mn:1.50〜1.70%
Mnは、鋼の強度及び低温靭性に重要な影響を与える合金元素である。Mnの含有量が低すぎる場合には、強度及び靭性が劣化する可能性があるため、1.50%以上添加することが好ましい。但し、その含有量が高すぎる場合には、溶接性が低下し、鋼の製造原価が上昇するおそれがあるため、その上限は1.70%に限定することが好ましい。
Mn: 1.50 to 1.70%
Mn is an alloying element that has an important effect on the strength and low temperature toughness of steel. If the Mn content is too low, the strength and toughness may deteriorate, so it is preferable to add 1.50% or more. However, if the content is too high, the weldability may decrease and the manufacturing cost of steel may increase. Therefore, the upper limit is preferably limited to 1.70%.

Mo:0.03〜0.10%
Moは、鋼の焼入性を向上させ、硫化物クラックを防止するだけでなく、焼入れ−焼戻し後の微細炭化物の析出による鋼の強度向上に有効な元素である。本発明では、かかる効果を得るために、0.03%以上添加することが好ましい。但し、その含有量が高すぎる場合には、鋼の製造原価が上昇するおそれがあるため、その上限は0.10%に限定することが好ましい。
Mo: 0.03 to 0.10%
Mo is an element that not only improves the hardenability of steel and prevents sulfide cracks, but also improves the strength of steel by precipitating fine carbides after quenching and tempering. In the present invention, it is preferable to add 0.03% or more in order to obtain such an effect. However, if the content is too high, the manufacturing cost of steel may increase, so the upper limit is preferably limited to 0.10%.

Cu:0.05〜0.30%
Cuは、強度の増大に効果的な元素であり、0.05%以上添加しなければ上記効果を得ることができない。但し、高価であるため、その上限は0.30%に限定することが好ましい。
Cu: 0.05 to 0.30%
Cu is an element that is effective in increasing the strength, and the above effect cannot be obtained unless 0.05% or more is added. However, since it is expensive, the upper limit is preferably limited to 0.30%.

V:0.03〜0.10%
Vは、微細な炭化物及び窒化物を容易に形成することができる元素であって、0.03%以上添加しなければ上記効果を得ることができない。但し、高価であるため、その上限は0.30%に限定することが好ましい。
V: 0.03 to 0.10%
V is an element capable of easily forming fine carbides and nitrides, and the above effect cannot be obtained unless 0.03% or more is added. However, since it is expensive, the upper limit is preferably limited to 0.30%.

Ni:0.03〜0.25%
Niは、低温靭性の向上に最も効果的な元素であり、その含有量が0.03%以上添加しなければ上記効果を得ることができない。但し、高価な元素であるため、製造コストの上昇をもたらすため、0.25%以下添加することが好ましい。
Ni: 0.03 to 0.25%
Ni is the most effective element for improving low temperature toughness, and the above effect cannot be obtained unless its content is 0.03% or more. However, since it is an expensive element and causes an increase in manufacturing cost, it is preferable to add 0.25% or less.

Cr:0.03〜0.25%
Crは、強度を増加させる元素である。本発明では、強度増加の効果のために0.03%以上添加する必要がある。但し、高価な元素であるため、0.25%を超えて添加する場合には、製造コストの上昇をもたらす。
Cr: 0.03 to 0.25%
Cr is an element that increases the strength. In the present invention, it is necessary to add 0.03% or more for the effect of increasing the strength. However, since it is an expensive element, if it is added in an amount exceeding 0.25%, the production cost will increase.

Al:0.005〜0.06%
Alは、Siとともに製鋼工程における強力な脱酸剤のうち1つである。その含有量が0.005%未満の場合には脱酸効果がわずかであり、0.06%を超えて添加される場合には、脱酸効果が飽和し、製造原価が上昇するという問題がある。
Al: 0.005 to 0.06%
Al, along with Si, is one of the powerful antacids in the steelmaking process. If the content is less than 0.005%, the deoxidizing effect is slight, and if it is added in excess of 0.06%, the deoxidizing effect is saturated and the manufacturing cost rises. is there.

Ca:0.0005〜0.0030%
Caは、CaSとして生成され、MnSの非金属介在物を抑制する役割を果たすため、5ppm以上添加する。しかし、その添加量が過多であると、鋼中に含有されたOと反応して非金属介在物であるCaOを生成して物性によくないため、その上限値を30ppmに限定する。
Ca: 0.0005 to 0.0030%
Ca is produced as CaS and plays a role of suppressing non-metallic inclusions of MnS, so 5 ppm or more is added. However, if the amount added is excessive, it reacts with O contained in the steel to form CaO, which is a non-metal inclusion, which is not good for the physical properties. Therefore, the upper limit is limited to 30 ppm.

P:0.025%以下
Pは、鋼中不可避に添加される不純物であって、低温靭性を低下させるとともに、焼戻し脆化感受性を増大させる元素である。したがって、その含有量をできるだけ低く制御することが好ましく、本発明では、Pの含有量を0.025%以下に管理する。
P: 0.025% or less P is an impurity unavoidably added in steel and is an element that lowers low temperature toughness and increases temper embrittlement susceptibility. Therefore, it is preferable to control the content as low as possible, and in the present invention, the content of P is controlled to 0.025% or less.

S:0.025%以下
Sも、鋼中不可避に含有される不純物であって、低温靭性を低下させ、MnS介在物を形成して鋼の靭性を阻害する元素である。したがって、その含有量をできるだけ低く制御することが好ましく、本発明では、Sの含有量を0.025%以下に管理する。
S: 0.025% or less S is also an impurity inevitably contained in steel, and is an element that lowers low temperature toughness and forms MnS inclusions to inhibit the toughness of steel. Therefore, it is preferable to control the content as low as possible, and in the present invention, the content of S is controlled to 0.025% or less.

本発明の鋼板は、上述した合金組成に加えて、追加的に、Ti:0.003〜0.015%、Nb:0.005〜0.025%、及びTa:0.002〜0.050%からなる群より選択された2種以上を含むことが好ましい。 In addition to the alloy composition described above, the steel sheet of the present invention additionally has Ti: 0.003 to 0.015%, Nb: 0.005 to 0.025%, and Ta: 0.002 to 0.050. It is preferable to include two or more kinds selected from the group consisting of%.

Ti:0.003〜0.015%
Tiは、微細炭化物又は窒化物を形成して基地組織の軟化を防止するのに効果的な元素である。本発明では、かかる効果を得るために、0.003%以上添加する必要があるが、高価な元素であるため、その上限を0.015%に限定することが好ましい。
Ti: 0.003 to 0.015%
Ti is an element effective in forming fine carbides or nitrides to prevent softening of the matrix structure. In the present invention, it is necessary to add 0.003% or more in order to obtain such an effect, but since it is an expensive element, it is preferable to limit the upper limit to 0.015%.

Nb:0.005〜0.025%
Nbは、微細炭化物又は窒化物を形成して基地組織の軟化を防止するのに効果的な元素である。本発明では、かかる効果を得るために、0.005%以上添加する必要があるが、高価な元素であるため、その上限を0.025%に限定することが好ましい。
Nb: 0.005 to 0.025%
Nb is an element effective in forming fine carbides or nitrides to prevent softening of the matrix structure. In the present invention, it is necessary to add 0.005% or more in order to obtain such an effect, but since it is an expensive element, it is preferable to limit the upper limit to 0.025%.

Ta:0.002〜0.050%
Taは、微細炭化物又は窒化物を形成して基地組織の軟化を防止するのに効果的な元素である。本発明では、かかる効果を得るために、0.002%以上添加する必要があるが、高価な元素であるため、その上限を0.050%に限定することが好ましい。
Ta: 0.002 to 0.050%
Ta is an element that is effective in forming fine carbides or nitrides to prevent softening of the matrix structure. In the present invention, it is necessary to add 0.002% or more in order to obtain such an effect, but since it is an expensive element, it is preferable to limit the upper limit to 0.050%.

本発明の残りの成分は鉄(Fe)である。但し、通常の製造過程では、原料又は周囲の環境から意図しない不純物が不可避に混入されることがあるため、これを排除することはできない。かかる不純物は、通常の製造過程における技術者であれば誰でも分かるものであるため、そのすべての内容を具体的に本明細書に記載しない。 The remaining component of the present invention is iron (Fe). However, in the normal manufacturing process, unintended impurities may be unavoidably mixed from the raw material or the surrounding environment, and this cannot be excluded. Since such impurities can be understood by any engineer in a normal manufacturing process, all the contents thereof are not specifically described in the present specification.

本発明の圧力容器用鋼板は、その微細組織が、フェライト、焼戻しベイナイト、パーライト、及びジジェネレーテッドパーライトのうち1種又は2種を含む混合組織からなり、このような微細組織を確保することでPWHT後にも優れた強度及び低温衝撃靭性を確保することができる。 The fine structure of the steel sheet for a pressure vessel of the present invention is composed of a mixed structure containing one or two of ferrite, tempered bainite, pearlite, and digenerated pearlite, and by ensuring such a fine structure. Excellent strength and low temperature impact toughness can be ensured even after PWHT.

このとき、上記焼戻しベイナイトの分率は5〜50面積%であることが好ましい。上記混合組織のうち焼戻しベイナイトを5面積%以上確保することにより、PWHT抵抗性を向上させることができる。但し、50面積%を超えると、強度が上昇しすぎるという問題があり得る。したがって、上記焼戻しベイナイトの分率は、5〜50面積%の範囲を有することがより好ましい。 At this time, the fraction of the tempered bainite is preferably 5 to 50 area%. PWHT resistance can be improved by securing 5 area% or more of tempered bainite in the mixed structure. However, if it exceeds 50 area%, there may be a problem that the strength increases too much. Therefore, the fraction of the tempered bainite is more preferably in the range of 5 to 50 area%.

また、本発明の鋼板は、結晶粒内部に平均サイズが5〜80nmであるMX[(M=Ti、Nb、Ta)、[X=N、C]]型析出物を体積分率で0.003〜0.15%含むことが好ましい。上記のような析出物の制御を介してPWHT抵抗性をより向上させることができる。上記析出物のサイズが5nm未満の場合には、目標とする強度を確保することが難しくなる可能性がある。これに対し、80nmを超えると、衝撃靭性が低下する欠点があるおそれがある。また、上記析出物の分率が0.003体積%未満の場合には、強度向上の効果が十分でない可能性があり、0.15体積%を超えると、衝撃靭性が低下する欠点があるおそれがある。 Further, the steel sheet of the present invention contains MX [(M = Ti, Nb, Ta), [X = N, C]] type precipitates having an average size of 5 to 80 nm inside the crystal grains at a volume fraction of 0. It preferably contains 003 to 0.15%. PWHT resistance can be further improved through the control of precipitates as described above. If the size of the precipitate is less than 5 nm, it may be difficult to secure the target strength. On the other hand, if it exceeds 80 nm, there is a possibility that the impact toughness is lowered. Further, when the fraction of the precipitate is less than 0.003% by volume, the effect of improving the strength may not be sufficient, and when it exceeds 0.15% by volume, there is a drawback that the impact toughness is lowered. There is.

一方、上記析出物のサイズとは、鋼板の厚さ方向の断面を観察して検出した粒子の円相当直径(equivalent circular diameter)を意味する。 On the other hand, the size of the precipitate means the equivalent circular diameter of the particles detected by observing the cross section of the steel sheet in the thickness direction.

上述した本発明の圧力容器用鋼板は様々な方法で製造することができ、その製造方法は特に制限されない。但し、好ましい一例として、次のような方法を適用することができる。 The steel sheet for a pressure vessel of the present invention described above can be manufactured by various methods, and the manufacturing method is not particularly limited. However, as a preferable example, the following method can be applied.

以下、本発明の圧力容器用鋼板の製造方法の一実施形態について説明する。 Hereinafter, an embodiment of the method for manufacturing a steel sheet for a pressure vessel of the present invention will be described.

先ず、上述した合金組成を有する鋼スラブを950〜1200℃で再加熱する。上記再加熱温度が950℃未満の場合には溶質原子の固溶が難しい。これに対し、1200℃を超えると、オーステナイト結晶粒サイズが過度に粗大となって鋼板の性質を阻害する可能性がある。 First, the steel slab having the above-mentioned alloy composition is reheated at 950 to 1200 ° C. When the reheating temperature is less than 950 ° C., it is difficult to dissolve the solute atom. On the other hand, if the temperature exceeds 1200 ° C., the austenite crystal grain size may become excessively coarse and impair the properties of the steel sheet.

上記再加熱された鋼スラブをパス当たりの圧下率2.5〜30%で熱間圧延して熱延鋼板を得る。上記パス当たりの圧下率が2.5%未満の場合には、圧下量が不足して内部欠陥が発生する可能性があり、30%を超えると、設備の圧下能力を超えるおそれがある。 The reheated steel slab is hot-rolled at a reduction rate of 2.5 to 30% per pass to obtain a hot-rolled steel sheet. If the reduction rate per pass is less than 2.5%, the reduction amount may be insufficient and internal defects may occur, and if it exceeds 30%, the reduction capacity of the equipment may be exceeded.

上記熱延鋼板を820〜930℃で1.3×t+(10〜30分)(但し、tは鋼板の厚さ(mm)である)の間焼きならし熱処理する。上記焼きならし熱処理温度が820℃未満の場合には固溶溶質元素の再固溶が難しくなって、強度の確保が難しくなる。これに対し、930℃を超えると、結晶粒の成長が起こり、低温靭性を阻害するようになる。また、上記維持時間が1.3×t+10分)未満の場合には、組織の均質化が十分でない可能性があり、1.3×t+30分を超えると、生産性を阻害するおそれがある。 The hot-rolled steel sheet is subjected to normalizing heat treatment at 820 to 930 ° C. for 1.3 × t + (10 to 30 minutes) (where t is the thickness (mm) of the steel sheet). When the normalizing heat treatment temperature is less than 820 ° C., it becomes difficult to re-solidify the solid solute element, and it becomes difficult to secure the strength. On the other hand, when the temperature exceeds 930 ° C., the growth of crystal grains occurs and the low temperature toughness is inhibited. Further, if the maintenance time is less than 1.3 × t + 10 minutes), the homogenization of the tissue may not be sufficient, and if it exceeds 1.3 × t + 30 minutes, productivity may be impaired.

上記焼きならし熱処理した熱延鋼板を焼きならし温度範囲から450℃までの温度区間で(1/4)t(但し、tは鋼板の厚さ(mm)である)を基準に、0.5〜30℃/sの冷却速度で冷却する。上記冷却速度が0.5℃/s未満の場合には、適正なベイナイト変態が難しくなって、強度の確保が難しくなる。これに対し、20℃/sを超えると、過度なベイナイト分率を有する微細組織が得られるため、過度な引張強度が得られる。また、低温靭性も低下するおそれがある。 In the temperature interval from the normalizing temperature range to 450 ° C., (1/4) t (where t is the thickness (mm) of the steel sheet) of the hot-rolled steel sheet that has undergone the normalizing heat treatment is defined as 0. Cool at a cooling rate of 5 to 30 ° C./s. When the cooling rate is less than 0.5 ° C./s, proper bainite transformation becomes difficult and it becomes difficult to secure the strength. On the other hand, when the temperature exceeds 20 ° C./s, a fine structure having an excessive bainite fraction is obtained, so that an excessive tensile strength can be obtained. In addition, the low temperature toughness may decrease.

上記冷却された熱延鋼板を550〜680℃で1.6×t+(10〜30分)(但し、tは鋼板の厚さ(mm)である)の間焼戻し熱処理する。上記焼戻し熱処理温度が550℃未満の場合には、微細析出物の析出が難しくなって、強度の確保が難しくなる。これに対し、680℃を超えると、析出物の成長が起こり、強度及び低温靭性を阻害する。また、上記焼戻し熱処理時における維持時間が1.6×t+10分未満の場合には、組織の均質化が十分でない可能性があり、1.6×t+30分を超えると、生産性を阻害するおそれがある。 The cooled hot-rolled steel sheet is tempered at 550 to 680 ° C. for 1.6 × t + (10 to 30 minutes) (where t is the thickness (mm) of the steel sheet). When the tempering heat treatment temperature is less than 550 ° C., it becomes difficult to precipitate fine precipitates, and it becomes difficult to secure the strength. On the other hand, above 680 ° C., precipitation growth occurs, which inhibits strength and low temperature toughness. Further, if the maintenance time during the tempering heat treatment is less than 1.6 × t + 10 minutes, the homogenization of the structure may not be sufficient, and if it exceeds 1.6 × t + 30 minutes, productivity may be impaired. There is.

一方、上記熱処理工程を介して製造された本発明の圧力容器用鋼板は、圧力容器の製作時に付加される溶接工程により、残留応力の除去などのためのPWHT処理が必要となる。一般に、長時間のPWHT熱処理後には強度及び靭性が劣化する。これに対し、本発明によって製造された鋼板は、通常のPWHT条件である580〜650℃の温度範囲で熱処理した後にも、強度及び靭性が大きく低下することなく溶接施工が可能であるという長所がある。一例として、本発明の圧力容器用鋼板は、580〜650℃の温度範囲で10時間の溶接後熱処理(Post Weld Heat Treatment、PWHT)にも引張強度が590MPa以上であり、−50℃におけるシャルピー衝撃エネルギー値が150J以上であることができる。 On the other hand, the steel sheet for a pressure vessel of the present invention manufactured through the above heat treatment step requires a PWHT treatment for removing residual stress or the like by a welding step added at the time of manufacturing the pressure vessel. Generally, the strength and toughness deteriorate after a long period of PWHT heat treatment. On the other hand, the steel sheet produced by the present invention has an advantage that it can be welded without a significant decrease in strength and toughness even after heat treatment in a temperature range of 580 to 650 ° C., which is a normal PWHT condition. is there. As an example, the steel sheet for a pressure vessel of the present invention has a tensile strength of 590 MPa or more even after 10 hours of post-welding heat treatment (Post Weld Heat Treatment, PWHT) in a temperature range of 580 to 650 ° C, and has a Charpy impact at −50 ° C. The energy value can be 150 J or more.

以下、実施例を挙げて本発明をより具体的に説明する。但し、下記実施例は、本発明を例示して、より詳細に説明するためのものにすぎず、本発明の権利範囲を限定するためのものではない点に留意する必要がある。本発明の権利範囲は、特許請求の範囲に記載された事項と、それから合理的に類推される事項によって決定されるものであるためである。 Hereinafter, the present invention will be described in more detail with reference to examples. However, it should be noted that the following examples are merely intended to illustrate and explain the present invention in more detail, and are not intended to limit the scope of rights of the present invention. This is because the scope of rights of the present invention is determined by the matters stated in the claims and the matters reasonably inferred from the matters.

(実施例)
下記表1に記載した合金組成を有する鋼スラブを1140℃で300分間再加熱し、パス当たりの圧下率10〜15%の条件で再結晶領域において熱間圧延して熱延鋼板を得た後、上記熱延鋼板を890℃で1.3×t+20分(但し、tは鋼板の厚さ(mm)である)の間焼きならし熱処理する。次に、上記焼きならし熱処理した熱延鋼板を上記焼きならし温度範囲から450℃までの温度区間で(1/4)t(但し、tは鋼板の厚さ(mm)である)を基準に下記表2の条件で冷却した後、650℃で1.6×t+20分(但し、tは鋼板の厚さ(mm)である)の間焼戻し熱処理して圧力容器用鋼板を製造した。
(Example)
After reheating the steel slab having the alloy composition shown in Table 1 below at 1140 ° C. for 300 minutes and hot rolling in the recrystallization region under the condition of a reduction rate of 10 to 15% per pass, a hot-rolled steel sheet is obtained. The hot-rolled steel sheet is subjected to normalizing heat treatment at 890 ° C. for 1.3 × t + 20 minutes (where t is the thickness (mm) of the steel sheet). Next, the hot-rolled steel sheet that has undergone the normalizing heat treatment is based on (1/4) t (where t is the thickness (mm) of the steel sheet) in the temperature interval from the normalizing temperature range to 450 ° C. After cooling under the conditions shown in Table 2 below, a steel sheet for a pressure vessel was manufactured by tempering heat treatment at 650 ° C. for 1.6 × t + 20 minutes (where t is the thickness (mm) of the steel sheet).

上記製造された鋼板に対して微細組織を観察し、PHWT熱処理を行った後、降伏強度、引張強度、伸び率、及び低温衝撃靭性を測定してその結果を下記表2に示した。参考として、下記表2における焼戻しベイナイト以外の残部微細組織は、フェライト及びパーライトである。また、析出物の分率とは、フェライト、パーライト、及び焼戻しベイナイトの混合組織の結晶粒内部に位置する平均サイズが5〜80nmであるMX[(M=Ti、Nb、Ta)、[X=N、C]]型析出物の体積分率を意味する。尚、低温衝撃靭性とは、−50℃でVノッチを有する試験片をシャルピー衝撃試験を行って得られたシャルピー衝撃エネルギー値である。 After observing the microstructure of the manufactured steel plate and performing PHWT heat treatment, the yield strength, tensile strength, elongation, and low temperature impact toughness were measured, and the results are shown in Table 2 below. For reference, the remaining microstructures other than tempered bainite in Table 2 below are ferrite and pearlite. The fraction of the precipitate is MX [(M = Ti, Nb, Ta), [X =) located inside the crystal grains of the mixed structure of ferrite, pearlite, and tempered bainite and having an average size of 5 to 80 nm. N, C]] means the volume fraction of type precipitates. The low temperature impact toughness is a Charpy impact energy value obtained by performing a Charpy impact test on a test piece having a V notch at −50 ° C.

Figure 2021507099
Figure 2021507099

Figure 2021507099
Figure 2021507099

上記表1及び2に示すように、本発明の合金組成及び製造条件を満たす発明鋼1〜3の場合には、PWHT時間が10時間に達しても、引張強度及び低温衝撃靭性などの機械的物性に優れたレベルであることが分かる。 As shown in Tables 1 and 2 above, in the case of the invention steels 1 to 3 satisfying the alloy composition and production conditions of the present invention, even if the PWHT time reaches 10 hours, the mechanical strength and low temperature impact toughness are mechanical. It can be seen that the level is excellent in physical properties.

これに対し、本発明の合金組成を満たさない比較鋼1の場合には、本発明の製造条件を満たしても、発明鋼1〜3に比べて引張強度は約70MPa、低温衝撃靭性は約150J以上低いレベルであることが分かる。

On the other hand, in the case of the comparative steel 1 which does not satisfy the alloy composition of the present invention, even if the production conditions of the present invention are satisfied, the tensile strength is about 70 MPa and the low temperature impact toughness is about 150 J as compared with the invention steels 1 to 3. It can be seen that the level is lower than that.

V:0.03〜0.10%
Vは、微細な炭化物及び窒化物を容易に形成することができる元素であって、0.03%以上添加しなければ上記効果を得ることができない。但し、高価であるため、その上限は0.10%に限定することが好ましい。
V: 0.03 to 0.10%
V is an element capable of easily forming fine carbides and nitrides, and the above effect cannot be obtained unless 0.03% or more is added. However, since it is expensive, the upper limit is preferably limited to 0.10%.

上記焼きならし熱処理した熱延鋼板を焼きならし温度範囲から450℃までの温度区間で(1/4)t(但し、tは鋼板の厚さ(mm)である)を基準に、0.5〜30℃/sの冷却速度で冷却する。上記冷却速度が0.5℃/s未満の場合には、適正なベイナイト変態が難しくなって、強度の確保が難しくなる。これに対し、30℃/sを超えると、過度なベイナイト分率を有する微細組織が得られるため、過度な引張強度が得られる。また、低温靭性も低下するおそれがある。
In the temperature interval from the normalizing temperature range to 450 ° C., (1/4) t (where t is the thickness (mm) of the steel sheet) of the hot-rolled steel sheet that has undergone the normalizing heat treatment is defined as 0. Cool at a cooling rate of 5 to 30 ° C./s. When the cooling rate is less than 0.5 ° C./s, proper bainite transformation becomes difficult and it becomes difficult to secure the strength. On the other hand, when the temperature exceeds 30 ° C./s, a fine structure having an excessive bainite fraction is obtained, so that an excessive tensile strength can be obtained. In addition, the low temperature toughness may decrease.

上記製造された鋼板に対して微細組織を観察し、PWHT熱処理を行った後、降伏強度、引張強度、伸び率、及び低温衝撃靭性を測定してその結果を下記表2に示した。参考として、下記表2における焼戻しベイナイト以外の残部微細組織は、フェライト及びパーライトである。また、析出物の分率とは、フェライト、パーライト、及び焼戻しベイナイトの混合組織の結晶粒内部に位置する平均サイズが5〜80nmであるMX[(M=Ti、Nb、Ta)、[X=N、C]]型析出物の体積分率を意味する。尚、低温衝撃靭性とは、−50℃でVノッチを有する試験片をシャルピー衝撃試験を行って得られたシャルピー衝撃エネルギー値である。
After observing the microstructure of the manufactured steel plate and performing PWHT heat treatment, the yield strength, tensile strength, elongation, and low temperature impact toughness were measured, and the results are shown in Table 2 below. For reference, the remaining microstructures other than tempered bainite in Table 2 below are ferrite and pearlite. The fraction of the precipitate is MX [(M = Ti, Nb, Ta), [X =) located inside the crystal grains of the mixed structure of ferrite, pearlite, and tempered bainite and having an average size of 5 to 80 nm. N, C]] means the volume fraction of type precipitates. The low temperature impact toughness is a Charpy impact energy value obtained by performing a Charpy impact test on a test piece having a V notch at −50 ° C.

Claims (4)

重量%で、C:0.12〜0.20%、Si:0.30〜0.40%、Mn:1.50〜1.70%、Mo:0.03〜0.10%、Cu:0.05〜0.30%、V:0.03〜0.10%、Ni:0.03〜0.25%、Cr:0.03〜0.25%、Al:0.005〜0.06%、Ca:0.0005〜0.0030%、P:0.025%以下、S:0.025%以下を含み、追加的に、Ti:0.003〜0.015%、Nb:0.005〜0.025%、及びTa:0.002〜0.050%からなる群より選択された2種以上を含み、残部はFe及びその他の不可避不純物からなり、
微細組織は、フェライト、焼戻しベイナイト、パーライト、及びジジェネレーテッドパーライトのうち1種又は2種を含む混合組織からなり、
前記焼戻しベイナイトの分率は5〜50面積%であることを特徴とする引張強度及び低温衝撃靭性に優れた圧力容器用鋼板。
By weight%, C: 0.12 to 0.20%, Si: 0.30 to 0.40%, Mn: 1.50 to 1.70%, Mo: 0.03 to 0.10%, Cu: 0.05 to 0.30%, V: 0.03 to 0.10%, Ni: 0.03 to 0.25%, Cr: 0.03 to 0.25%, Al: 0.005 to 0. Includes 06%, Ca: 0.0005 to 0.0030%, P: 0.025% or less, S: 0.025% or less, and additionally Ti: 0.003 to 0.015%, Nb: 0 Contains two or more selected from the group consisting of .005 to 0.025% and Ta: 0.002 to 0.050%, the balance consisting of Fe and other unavoidable impurities
The microstructure consists of a mixed structure containing one or two of ferrite, tempered bainite, pearlite, and digenerated pearlite.
A steel sheet for a pressure vessel having excellent tensile strength and low-temperature impact toughness, wherein the tempered bainite has a fraction of 5 to 50 area%.
前記圧力容器用鋼板は、平均サイズが5〜80nmであるMX[(M=Ti、Nb、Ta)、[X=N、C]]型析出物を0.003〜0.15体積%含むことを特徴とする請求項1に記載の引張強度及び低温衝撃靭性に優れた圧力容器用鋼板。 The steel sheet for a pressure vessel contains 0.003 to 0.15% by volume of MX [(M = Ti, Nb, Ta), [X = N, C]] type precipitates having an average size of 5 to 80 nm. The steel sheet for a pressure vessel having excellent tensile strength and low-temperature impact toughness according to claim 1. 前記圧力容器用鋼板は、580〜650℃の温度範囲で10時間の溶接後熱処理(Post Weld Heat Treatment、PWHT)にも引張強度が590MPa以上であり、−50℃におけるシャルピー衝撃エネルギー値が150J以上であることを特徴とする請求項1に記載の引張強度及び低温衝撃靭性に優れた圧力容器用鋼板。 The pressure vessel steel plate has a tensile strength of 590 MPa or more and a Charpy impact energy value of 150 J or more at −50 ° C. even after 10 hours of post-welding heat treatment (Post Weld Heat Treatment, PWHT) in a temperature range of 580 to 650 ° C. The steel plate for a pressure vessel having excellent tensile strength and low-temperature impact toughness according to claim 1, wherein the steel plate is characterized by the above. 重量%で、C:0.12〜0.20%、Si:0.30〜0.40%、Mn:1.50〜1.70%、Mo:0.03〜0.10%、Cu:0.05〜0.30%、V:0.03〜0.10%、Ni:0.03〜0.25%、Cr:0.03〜0.25%、Al:0.005〜0.06%、Ca:0.0005〜0.0030%、P:0.025%以下、S:0.025%以下を含み、追加的に、Ti:0.003〜0.015%、Nb:0.005〜0.025%、及びTa:0.002〜0.050%からなる群より選択された2種以上を含み、残部はFe及びその他の不可避不純物からなる鋼スラブを950〜1200℃で再加熱する段階と、
前記再加熱された鋼スラブをパス当たりの圧下率2.5〜30%で熱間圧延して熱延鋼板を得る段階と、
前記熱延鋼板を820〜930℃で1.3×t+(10〜30分)(但し、tは鋼板の厚さ(mm)である)の間焼きならし熱処理する段階と、
前記焼きならし熱処理された前記熱延鋼板を焼きならし温度範囲から450℃までの温度区間で(1/4)t(但し、tは鋼板の厚さ(mm)である)を基準に0.5〜30℃/sの冷却速度で冷却する段階と、
前記冷却された熱延鋼板を550〜680℃で1.6×t+(10〜30分)(但し、tは鋼板の厚さ(mm)である)の間焼戻し熱処理する段階と、を含むことを特徴とする引張強度及び低温衝撃靭性に優れた圧力容器用鋼板の製造方法。

By weight%, C: 0.12 to 0.20%, Si: 0.30 to 0.40%, Mn: 1.50 to 1.70%, Mo: 0.03 to 0.10%, Cu: 0.05 to 0.30%, V: 0.03 to 0.10%, Ni: 0.03 to 0.25%, Cr: 0.03 to 0.25%, Al: 0.005 to 0. Includes 06%, Ca: 0.0005 to 0.0030%, P: 0.025% or less, S: 0.025% or less, and additionally Ti: 0.003 to 0.015%, Nb: 0 A steel slab containing two or more selected from the group consisting of .005 to 0.025% and Ta: 0.002 to 0.050%, with the balance consisting of Fe and other unavoidable impurities at 950-1200 ° C. The stage of reheating and
The step of hot-rolling the reheated steel slab at a reduction rate of 2.5 to 30% per pass to obtain a hot-rolled steel sheet, and
The step of normalizing and heat-treating the hot-rolled steel sheet at 820 to 930 ° C. at 1.3 × t + (10 to 30 minutes) (where t is the thickness (mm) of the steel sheet).
The hot-rolled steel sheet that has undergone the normalizing heat treatment is 0 in the temperature interval from the normalizing temperature range to 450 ° C. based on (1/4) t (where t is the thickness (mm) of the steel sheet). .The stage of cooling at a cooling rate of 5 to 30 ° C / s and
Includes a step of tempering the cooled hot-rolled steel sheet at 550 to 680 ° C. for 1.6 × t + (10 to 30 minutes) (where t is the thickness (mm) of the steel sheet). A method for producing a steel sheet for a pressure vessel, which is characterized by excellent tensile strength and low temperature impact toughness.

JP2020532603A 2017-12-15 2018-12-06 Steel plate for pressure vessel excellent in tensile strength and low-temperature impact toughness and method for producing the same Active JP7161536B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2017-0173648 2017-12-15
KR1020170173648A KR101998991B1 (en) 2017-12-15 2017-12-15 Steel plate for pressure vessel having excellent tensile strength and low temperature impact toughness and method of manufacturing the same
PCT/KR2018/015424 WO2019117536A1 (en) 2017-12-15 2018-12-06 Steel sheet for pressure vessel having excellent tensile strength and low-temperature impact resistance and method for producing same

Publications (2)

Publication Number Publication Date
JP2021507099A true JP2021507099A (en) 2021-02-22
JP7161536B2 JP7161536B2 (en) 2022-10-26

Family

ID=66820593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020532603A Active JP7161536B2 (en) 2017-12-15 2018-12-06 Steel plate for pressure vessel excellent in tensile strength and low-temperature impact toughness and method for producing the same

Country Status (4)

Country Link
JP (1) JP7161536B2 (en)
KR (1) KR101998991B1 (en)
CN (1) CN111465711B (en)
WO (1) WO2019117536A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7398559B2 (en) 2019-10-22 2023-12-14 ポスコホールディングス インコーポレーティッド Steel plate for pressure vessels with excellent heat treatment resistance after high temperature welding and method for manufacturing the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102200225B1 (en) * 2019-09-03 2021-01-07 주식회사 포스코 Steel Plate For Pressure Vessel With Excellent Lateral Expansion And Manufacturing Method Thereof
KR102349426B1 (en) * 2020-05-18 2022-01-11 현대제철 주식회사 Steel having excellent low-temperature fracture toughness and method of manufacturing the same
CN112522610B (en) * 2020-11-18 2022-03-25 北京交通大学 V-Ti composite bainite non-quenched and tempered steel structure and manufacturing method thereof
CN112831724A (en) * 2021-01-04 2021-05-25 南京钢铁股份有限公司 S420 high-strength low-temperature structural steel and normalizing rolling preparation method thereof
CN113444969B (en) * 2021-06-17 2022-11-18 南京钢铁股份有限公司 Steel plate for low-temperature service condition of American standard container and production method thereof
CN114032368B (en) * 2021-11-26 2023-05-30 成都先进金属材料产业技术研究院股份有限公司 Heat treatment method of ferrite stainless steel 00Cr18Mo2
CN114351050B (en) * 2022-01-07 2022-10-18 鞍钢股份有限公司 Flexible production method of steel for pressure container
CN114807766A (en) * 2022-05-05 2022-07-29 重庆钢铁股份有限公司 Microalloy steel plate for low-temperature pressure vessel and production method thereof
CN115354219B (en) * 2022-07-06 2023-09-15 江阴兴澄特种钢铁有限公司 SA516Gr70 steel plate with excellent high-temperature strength at 200-400 ℃ and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110060449A (en) * 2009-11-30 2011-06-08 주식회사 포스코 Pressure vessel steel plate with excellent low temperature toughness and hydrogen induced cracking resistance and manufacturing method thereof
WO2011099408A1 (en) * 2010-02-15 2011-08-18 新日本製鐵株式会社 Production method for thick steel plate
CN102912228A (en) * 2012-10-23 2013-02-06 鞍钢股份有限公司 Economic-type pipe fitting steel with high strength and low yield ratio and production method thereof
WO2017111416A1 (en) * 2015-12-23 2017-06-29 주식회사 포스코 Steel material having excellent hydrogen induced cracking (hic) resistance for pressure vessel and manufacturing method therefor

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5028760B2 (en) 2004-07-07 2012-09-19 Jfeスチール株式会社 Method for producing high-tensile steel plate and high-tensile steel plate
JP4751137B2 (en) 2005-08-26 2011-08-17 新日本製鐵株式会社 Steel plate manufacturing method that can be easily bent by linear heating
KR100833069B1 (en) * 2006-12-13 2008-05-27 주식회사 포스코 Steel plate for pressure vessel with ts 500mpa grade and excellent hic resistance and haz toughness and manufacturing method thereof
CN101358319B (en) * 2008-09-02 2010-12-01 首钢总公司 Low carbonaceous steel plate for 610MPa grade high strength pressure vessels and production method thereof
CN102021488B (en) * 2010-11-30 2013-05-08 攀钢集团钢铁钒钛股份有限公司 Steel for nuclear-island seamless steel tube and production method thereof
CN102181800B (en) * 2011-04-13 2012-07-04 安徽天大石油管材股份有限公司 Fire-resistant seamless steel pipe for building and machining method thereof
KR101359109B1 (en) * 2011-12-28 2014-02-06 주식회사 포스코 Pressure vessel steel with excellent sulfide stress cracking resistance and low temperature toughness and manufacturing method thereof
CN104726787A (en) * 2013-12-23 2015-06-24 鞍钢股份有限公司 Favorable-low-temperature-toughness high-strength pressure vessel thick plate and production method thereof
KR101568523B1 (en) * 2013-12-24 2015-11-11 주식회사 포스코 Pressure vessel steel plate having excellent resistance of temper embrittlement and manufacturing method of the same
JP6108116B2 (en) 2014-03-26 2017-04-05 Jfeスチール株式会社 Steel plates for marine, marine structures and hydraulic iron pipes with excellent brittle crack propagation stopping properties and methods for producing the same
KR20160063532A (en) * 2014-11-26 2016-06-07 주식회사 포스코 Steel Plate For Pressure Vessel With Excellent PWHT Resistance And Manufacturing Method Thereof
KR20160072927A (en) * 2014-12-15 2016-06-24 주식회사 포스코 High-strength steel sheet having superior cryogenic temperature toughness and low yield ratio property and manufacturing method thereof
KR101696051B1 (en) * 2014-12-24 2017-01-13 주식회사 포스코 Steel sheet having excellent resistance and excellent low temperature toughness to hydrogen induced cracking, and method of manufacturing the same
KR101657828B1 (en) * 2014-12-24 2016-10-04 주식회사 포스코 Steel plate for pressure vessel having excellent strength and toughness after post weld heat treatment and method for manufacturing the same
KR101778398B1 (en) * 2015-12-17 2017-09-14 주식회사 포스코 Pressure vessel steel plate having excellent property after post weld heat treatment and method for manufacturing the same
KR101758497B1 (en) * 2015-12-22 2017-07-27 주식회사 포스코 Steel Plate For Pressure Vessel With Excellent PWHT Resistance And Manufacturing Method Thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110060449A (en) * 2009-11-30 2011-06-08 주식회사 포스코 Pressure vessel steel plate with excellent low temperature toughness and hydrogen induced cracking resistance and manufacturing method thereof
WO2011099408A1 (en) * 2010-02-15 2011-08-18 新日本製鐵株式会社 Production method for thick steel plate
CN102912228A (en) * 2012-10-23 2013-02-06 鞍钢股份有限公司 Economic-type pipe fitting steel with high strength and low yield ratio and production method thereof
WO2017111416A1 (en) * 2015-12-23 2017-06-29 주식회사 포스코 Steel material having excellent hydrogen induced cracking (hic) resistance for pressure vessel and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7398559B2 (en) 2019-10-22 2023-12-14 ポスコホールディングス インコーポレーティッド Steel plate for pressure vessels with excellent heat treatment resistance after high temperature welding and method for manufacturing the same

Also Published As

Publication number Publication date
JP7161536B2 (en) 2022-10-26
KR20190072362A (en) 2019-06-25
CN111465711B (en) 2021-12-24
WO2019117536A1 (en) 2019-06-20
CN111465711A (en) 2020-07-28
KR101998991B1 (en) 2019-07-10

Similar Documents

Publication Publication Date Title
JP7161536B2 (en) Steel plate for pressure vessel excellent in tensile strength and low-temperature impact toughness and method for producing the same
KR101657828B1 (en) Steel plate for pressure vessel having excellent strength and toughness after post weld heat treatment and method for manufacturing the same
JP6691217B2 (en) Low yield ratio high strength steel material excellent in stress corrosion cracking resistance and low temperature toughness and method of manufacturing the same
JP5657026B2 (en) High-strength steel sheet with excellent post-weld heat treatment resistance and manufacturing method thereof
TW201437388A (en) High-strength hot-rolled steel sheet having maximum tensile strength of 980 mpa or above, and having excellent and baking hardenability and low-temperature toughness
JP6688391B2 (en) Steel sheet for pressure vessel having excellent heat treatment resistance after welding and method for producing the same
JP2021509446A (en) Steel materials for pressure vessels and their manufacturing methods
JP6880194B2 (en) High-temperature tempering heat treatment and post-welding heat treatment Steel materials for pressure vessels with excellent resistance and their manufacturing methods
KR20140108431A (en) Steel sheet and manufacturing method of the same
CN112912527B (en) Steel sheet for pressure vessel having excellent low-temperature toughness and excellent ductility, and method for producing same
KR20150101734A (en) Steel for pressure vessel and method of manufacturing the steel
KR20160063532A (en) Steel Plate For Pressure Vessel With Excellent PWHT Resistance And Manufacturing Method Thereof
KR20140056760A (en) Steel for pressure vessel and method of manufacturing the same
JP7096337B2 (en) High-strength steel plate and its manufacturing method
KR20150124810A (en) High strength steel sheet and method of manufacturing the same
KR20140118313A (en) Hot-rolled steel and method of manufacturing the same
JP7277584B2 (en) Medium- and high-temperature steel sheet with excellent high-temperature strength and its manufacturing method
JP7265008B2 (en) Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method
KR101639902B1 (en) Steel having excellent low temperature toughness and hydrogen induced cracking resistance and manufacturing method thereof
JPWO2021117382A1 (en) Steel plate and its manufacturing method
KR101435320B1 (en) Method of manufacturing steel
KR101443441B1 (en) High strength cold rolled steel sheet and method for manufacturing of the same
JP5151510B2 (en) Manufacturing method of high strength steel with excellent low temperature toughness and crack propagation stop properties
US20190382865A1 (en) Heavy-wall steel plate having 450mpa-grade tensile strength and excellent resistance to hydrogen induced cracking and method for manufacturing same
KR20150014733A (en) Extremely thick steel sheet and method of manufacturing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200720

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221014

R150 Certificate of patent or registration of utility model

Ref document number: 7161536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350