JPH09291308A - Production of high chrome ferritic heat resistant steel - Google Patents

Production of high chrome ferritic heat resistant steel

Info

Publication number
JPH09291308A
JPH09291308A JP10488796A JP10488796A JPH09291308A JP H09291308 A JPH09291308 A JP H09291308A JP 10488796 A JP10488796 A JP 10488796A JP 10488796 A JP10488796 A JP 10488796A JP H09291308 A JPH09291308 A JP H09291308A
Authority
JP
Japan
Prior art keywords
steel
toughness
strength
less
resistant steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10488796A
Other languages
Japanese (ja)
Other versions
JP3368413B2 (en
Inventor
Masahiro Ogami
正浩 大神
Hiroshi Hasegawa
泰士 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10488796A priority Critical patent/JP3368413B2/en
Publication of JPH09291308A publication Critical patent/JPH09291308A/en
Application granted granted Critical
Publication of JP3368413B2 publication Critical patent/JP3368413B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a high Cr ferritic heat resistant steel excellent in toughness by controlling the component ratio of a metallic structure. SOLUTION: This ferritic heat resistant steel is produced by applying hot working and further specific heat treatment to a steel having a composition which consists of, by weight, 0.01-0.15% C, 0.01-0.80% Si, 0.05-1.50% Mn, 8.00-13.00% Cr, 0.05-1.50% Mo, 0.05-4.00% W, 0.05-0.50% V, 0.02-0.15% Nb, 0.002-0.050% Al, 0.010-0.110% N, <=0.030% P, <=0.010%, S, <=0.015% O, 0.001-0.030% B, further one or more kinds among 0.01-3.00% Ni, 0.01-5.00% Co, and 0.01-5.00% Cu, and the balance Fe with inevitable impurities and in which Cr, Ni, Co, and Cu within the above compositional ranges satisfy a relational inequality, Cr-2Ni-2Co-Cu<=9 and further a relational inequality of Ni/59+ Co/59+N/(Nb+V)>=Mo/96+W/184 within the above compositional ranges is satisfied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高Crフェライト
系耐熱鋼に関するものであり、さらに詳しくは高温にお
けるクリ−プ破断特性および靭性の優れたフェライト系
Cr含有ボイラ鋼管用鋼の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high Cr ferritic heat-resistant steel, and more particularly to a method for producing a ferritic Cr-containing boiler steel pipe steel excellent in creep rupture characteristics and toughness at high temperatures. Is.

【0002】[0002]

【従来の技術】近年、火力発電においては熱効率を向上
させる観点から蒸気条件の高温高圧化が進められ、現行
の超臨界圧条件から中間スッテプを経て超々臨界圧条件
に引き上げる計画が推進されている。このような発電条
件の動向に伴い、ボイラ管等の材料選択において、耐酸
化性と高温強度の観点から現在使用されている2.25
Cr−1Mo鋼では適用が難かしい。一方、オーステナ
イト系耐熱鋼の適用が考えられるが、コストアップ等の
問題がある。したがって、この二者の間に位置する高強
度高靭性のフェライト系耐熱鋼の開発が望まれている。
2. Description of the Related Art In recent years, in thermal power generation, steam conditions have been promoted to high temperature and high pressure from the viewpoint of improving thermal efficiency, and a plan to increase the current supercritical pressure condition to an ultra-supercritical pressure condition through an intermediate step has been promoted. . With such trends in power generation conditions, 2.25 which is currently used from the viewpoint of oxidation resistance and high temperature strength in selecting materials for boiler tubes and the like.
It is difficult to apply Cr-1Mo steel. On the other hand, application of austenitic heat-resistant steel can be considered, but there is a problem such as an increase in cost. Therefore, development of a high-strength, high-toughness ferritic heat-resistant steel located between the two is desired.

【0003】このような事情に鑑みクリ−プ破断強度が
従来材を大幅に上回る新しい鋼種が開発され提案が行な
われている。これまで9Cr−1Mo鋼および9Cr−
2Mo鋼などの高Crフェライト系耐熱鋼が提案されて
いるが、これらは何れも上記の超々臨界圧蒸気条件では
クリープ破断強度の点から適用が難しい。
In view of such circumstances, a new steel type having a creep rupture strength much higher than that of conventional materials has been developed and proposed. So far, 9Cr-1Mo steel and 9Cr-
High-Cr ferritic heat-resistant steels such as 2Mo steel have been proposed, but all of them are difficult to apply from the viewpoint of creep rupture strength under the above super-supercritical pressure steam conditions.

【0004】これらの要求特性を向上させた鋼が開発さ
れ、(Mo+W)とNb量の関係を定めクリ−プ特性と
靭性の向上を図り、また、クリ−プ強度の向上に最適範
囲のW、Nb添加が有効なことが知られている。しかし
ながら、焼ならし、焼戻し処理に代表される従来の熱処
理方法においては、十分な特性を引き出すことができて
いなかった。
Steels having improved required characteristics have been developed, and the relationship between (Mo + W) and the amount of Nb has been established to improve the creep characteristics and toughness. Further, the optimum range of W for improving the creep strength is W. , Nb addition is known to be effective. However, the conventional heat treatment methods represented by the normalizing and tempering treatments have not been able to bring out sufficient characteristics.

【0005】特公平6−74452号公報において、金
属間化合物の析出による強度・靱性の向上が開示されて
いる。しかし、長時間の熱処理により金属間化合物のみ
ならず炭化物も析出し粗大化するため大幅な強度の向上
は期待できず、靱性の低下も懸念されるとともに、コス
トアップにもつながる。
Japanese Patent Publication No. 6-74452 discloses improvement in strength and toughness by precipitation of intermetallic compounds. However, since heat treatment for a long time precipitates not only intermetallic compounds but also carbides and causes coarsening, a significant improvement in strength cannot be expected, and there is a concern that toughness may decrease and this may lead to cost increase.

【0006】また、特公平2−267217号公報に焼
入れまたは焼ならし後に低温で中間熱処理を行い残留オ
ーステナイトを完全に分解させて、焼もどしで炭窒化物
を分散させ高温強度を向上させる方法が開示されている
が、残留オーステナイトの完全分解のみでは高温強度の
向上は期待できない。
Further, Japanese Patent Publication No. 2-267217 discloses a method in which an intermediate heat treatment is carried out at a low temperature after quenching or normalizing to completely decompose residual austenite and to disperse carbonitrides by tempering to improve high temperature strength. Although disclosed, the improvement of high temperature strength cannot be expected only by complete decomposition of retained austenite.

【0007】また、特公平6−306550号公報に蒸
気タービン部材において熱処理により結晶粒界およびマ
ルテンサイトラス境界ならびにマルテンサイトラス内部
に2.5〜7%の析出物を析出させ高温強度を向上させ
る方法が開示されているが、粒界あるいは境界に析出す
る場合は大幅な高温強度の向上は期待できないとともに
靱性の低下が懸念される。
Further, Japanese Patent Publication No. 6-306550 discloses a method for improving the high temperature strength by precipitating 2.5 to 7% of precipitates on grain boundaries, martensite lath boundaries and inside martensite lath by heat treatment in a steam turbine member. Although disclosed, when it precipitates at grain boundaries or boundaries, it is not possible to expect a significant improvement in high-temperature strength, and there is concern that toughness may decrease.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記のよう
な従来の欠点を改良して、超々臨界圧ボイラなどで使用
できるよう金属組織の構成比を制御することにより、靭
性としてはシャルピー衝撃試験における0℃の衝撃吸収
エネルギーおよびクリープ破断強度を向上させた高Cr
フェライト系耐熱鋼を提供することを目的としている。
DISCLOSURE OF THE INVENTION The present invention improves the conventional drawbacks as described above and controls the composition ratio of the metal structure so that it can be used in an ultra-supercritical boiler, etc. High Cr with improved impact absorption energy at 0 ° C and creep rupture strength in the test
The purpose is to provide ferritic heat-resistant steel.

【0009】[0009]

【課題を解決するための手段】本発明は上述の目的を達
成するために、合金成分の最適化をはかり、MoとW量
の添加量を適正化すると同時に、Ni,CoおよびCu
の積極的な利用等により、δフェライトの生成を抑制
し、熱処理条件の適正化により金属組織の構成比を制御
し、高温強度と靭性のすぐれたフェライト系耐熱鋼を提
供するものである。
In order to achieve the above-mentioned object, the present invention optimizes the alloy components and optimizes the amounts of addition of Mo and W, and at the same time, Ni, Co and Cu.
The present invention provides a ferritic heat-resistant steel excellent in high-temperature strength and toughness by suppressing the formation of δ-ferrite by controlling the compositional ratio of the metal structure by optimizing heat treatment conditions.

【0010】すなわち、重量%で C :0.01〜0.15%、 Si:0.01〜0.80%、 Mn:0.05〜1.50%、 Cr:8.00〜13.00%、 Mo:0.05〜1.50%、 W :0.05〜4.00%、 V :0.05〜0.50%、 Nb:0.02〜0.15%、 Al:0.002〜0.050%、 N :0.010〜0.110% を含有し、P:0.030%以下、S:0.010%以
下、O:0.015%以下に制限し、さらに必要に応じ
てB:0.001〜0.030%を含有し、さらにN
i:0.01〜3.00%、 Co:0.01〜5.0
0%、Cu:0.01〜5.00%の1種以上を含み、
かつ上記成分範囲のCr,Ni,CoおよびCuが Cr−2Ni−2Co−Cu≦9 の関係式を満足し、さらに上記成分範囲の Ni/59+Co/59+N/(Nb+V)≧Mo/9
6+W/184 の関係式を満足し、残部がFeおよび不可避の不純物よ
りなる鋼を熱間加工後、[Ac3 点+50℃]以上に保
定し室温まで降温する焼きならしを行った後、Ac1
以上[Ac1 点+40℃]以下の温度範囲で中間熱処理
を行った後、650℃以上730以下の温度範囲で焼戻
しを行うことを特徴とするフェライト系耐熱鋼の製造方
法である。上記鋼において、Ac1 およびAc3 は下記
式によって計算できる。 Ac1 =723+16.9Cr+29.1Si+6.38W−15Mn −250C−250N−60Ni−20Co−15Cu Ac3 =910+50Si+45Mo+40W+120V+400Al −11Cr−30Mn−15Ni−20Cu−100C−5Co
That is, in% by weight, C: 0.01 to 0.15%, Si: 0.01 to 0.80%, Mn: 0.05 to 1.50%, Cr: 8.00 to 13.00. %, Mo: 0.05 to 1.50%, W: 0.05 to 4.00%, V: 0.05 to 0.50%, Nb: 0.02 to 0.15%, Al: 0. 002 to 0.050%, N: 0.010 to 0.110%, P: 0.030% or less, S: 0.010% or less, O: 0.015% or less, further necessary B: 0.001 to 0.030%, and N
i: 0.01 to 3.00%, Co: 0.01 to 5.0
0%, Cu: 0.01 to 5.00% containing one or more,
Further, Cr, Ni, Co and Cu in the above component range satisfy the relational expression of Cr-2Ni-2Co-Cu≤9, and further Ni / 59 + Co / 59 + N / (Nb + V) ≥Mo / 9 in the above component range.
After satisfying the relational expression of 6 + W / 184 and hot-working the steel with the balance being Fe and unavoidable impurities, after normalizing by keeping the temperature at [Ac 3 points + 50 ° C] or higher and lowering to room temperature, Ac A method for producing a ferritic heat-resistant steel characterized by performing intermediate heat treatment in a temperature range of 1 point or higher and [Ac 1 point + 40 ° C.] or lower, and then tempering it in a temperature range of 650 ° C. or higher and 730 or lower. In the above steel, Ac 1 and Ac 3 can be calculated by the following formula. Ac 1 = 723 + 16.9Cr + 29.1Si + 6.38W-15Mn -250C-250N-60Ni-20Co-15Cu Ac 3 = 910 + 50Si + 45Mo + 40W + 120V + 400Al -11Cr-30Mn-15Ni-20Cu-100C-5Co

【0011】[0011]

【発明の実施の形態】本発明は未焼戻しマルテンサイト
を導入することにより、靭性の優れた高クリープ破断強
度を有する高Crフェライト系耐熱鋼の製造方法を提供
するものである。本発明者らは火力発電ボイラのヘッダ
ー等に使用される高Crフェライト系耐熱鋼の熱処理特
性に着目し、焼ならしと焼戻しの間の中間熱処理の実施
により、中間熱処理後に未焼戻しマルテンサイトを一部
導入することにより、金属組織の構成比を変えてクリー
プ破断強度を向上させることが可能なことを見い出し
た。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention provides a method for producing a high Cr ferritic heat resistant steel having excellent toughness and high creep rupture strength by introducing untempered martensite. The present inventors have focused on the heat treatment characteristics of high Cr ferritic heat-resistant steel used for headers of thermal power generation boilers, etc., by performing intermediate heat treatment between normalizing and tempering, untempered martensite is removed after intermediate heat treatment. It was found that by introducing a part of them, it is possible to improve the creep rupture strength by changing the composition ratio of the metal structure.

【0012】さらに、本発明によればクリープ破断強度
ならびに靭性の改善のため、δフェライトが存在しない
マルテンサイト単相組織とするためにCr,Ni,Co
およびC量の適正バランスが規定される。本発明者らは
本発明成分範囲内のCr,Ni,CoおよびCuが、 Cr−2Ni−2Co−Cu≦9 を満足すればδフェライトの生成を抑制してクリープ強
度ならびに靭性を改善できることを見いだした。
Further, according to the present invention, in order to improve creep rupture strength and toughness, a martensite single phase structure free of δ-ferrite is used to form Cr, Ni, Co.
And an appropriate balance of C content is defined. The present inventors have found that if Cr, Ni, Co and Cu within the range of the components of the present invention satisfy Cr-2Ni-2Co-Cu ≦ 9, the formation of δ ferrite can be suppressed and the creep strength and toughness can be improved. It was

【0013】また、さらに Ni/59+Co/59+N/(Nb+V)≧Mo/9
6+W/184 の関係式を満足することにより、中間熱処理により、未
焼戻しマルテンサイトを導入できることを見いだした。
Further, Ni / 59 + Co / 59 + N / (Nb + V) ≧ Mo / 9
It was found that untempered martensite can be introduced by the intermediate heat treatment by satisfying the relational expression of 6 + W / 184.

【0014】本発明において熱処理の各条件を前記のご
とく限定した理由を以下に述べる。焼きならしによる元
素の固溶化の効果を十分に得るために、焼きならしの下
限温度を[Ac3 点+50℃]以上とした。また、マル
テンサイト変態を完全に終了させマルテンサイト単相組
織とするために冷却温度完了を室温とした。
The reason why each condition of the heat treatment is limited as described above in the present invention will be described below. In order to sufficiently obtain the effect of solid solution of the elements by normalizing, the lower limit temperature of normalizing is set to [Ac 3 point + 50 ° C.] or higher. The cooling temperature was completed at room temperature in order to complete the martensite transformation and obtain a martensite single-phase structure.

【0015】焼ならし後の中間熱処理により未焼戻しマ
ルテンサイト組織を5%から20%導入すると同時に焼
戻しマルテンサイト中に析出物を析出させるために中間
熱処理の保定温度をAc1 点以上[Ac1 点+40℃]
以下の温度範囲とした。この温度範囲以下の場合、すべ
て焼もどしマルテンサイト組織となり、未焼戻しマルテ
ンサイト組織が導入されず、従来のクリープ破断特性お
よび靱性しか得られない。また、未焼戻しマルテンサイ
トの構成比の増加に伴いクリープ破断強度も向上する
が、この温度範囲以上の場合、未焼戻しマルテンサイト
の構成比が20%を超えて靱性の低下が生じるため、上
限温度を[Ac1 点+40℃]以下とした。
In the intermediate heat treatment after normalizing, 5% to 20% of untempered martensite structure is introduced, and at the same time the holding temperature of the intermediate heat treatment is set to Ac 1 point or more [Ac 1 in order to deposit precipitates in the tempered martensite. Point + 40 ° C]
The temperature range was as follows. When the temperature is below this temperature range, the tempered martensite structure is entirely formed, the untempered martensite structure is not introduced, and only the conventional creep rupture properties and toughness are obtained. In addition, although the creep rupture strength also improves with an increase in the composition ratio of untempered martensite, in the temperature range above this, the composition ratio of untempered martensite exceeds 20% and the toughness decreases, so the upper limit temperature Was set to [Ac 1 point + 40 ° C.] or less.

【0016】焼戻しの温度範囲は析出強化の効果を高め
る析出物および金属間化合物を微細にかつ多量に析出さ
せるために650℃以上730℃以下の温度範囲とし
た。
The temperature range for tempering is set to a temperature range of 650 ° C. or higher and 730 ° C. or lower in order to precipitate finely and in large quantities a precipitate and an intermetallic compound which enhance the effect of precipitation strengthening.

【0017】本発明において使用した鋼の各成分範囲を
前記のごとく限定した理由を以下に述べる。Cは主にM
C(Mは合金元素を指す、以下も同じ)およびM236
型の炭物として析出し、強度及び靭性に大きな影響を及
ぼす。0.01%未満では析出量が少なく、析出強化に
不十分であり、0.15%超では靭性が低下するとも
に、炭化物の凝集粗大化が促進され、高温長時間側のク
リープ破断強度を低下させるので、0.01〜0.15
%に限定する。
The reasons for limiting the range of each component of the steel used in the present invention as described above will be described below. C is mainly M
C (M is an alloying element, the same applies below) and M 23 C 6
It deposits as a type of charcoal and has a great effect on strength and toughness. If it is less than 0.01%, the amount of precipitation is small and it is insufficient for precipitation strengthening, and if it exceeds 0.15%, the toughness is reduced and the agglomeration and coarsening of carbides are promoted, and the creep rupture strength at high temperature and long time side is reduced. 0.01 to 0.15
%.

【0018】Siは脱酸効果,強度確保および耐酸化性
のために添加されるが、靭性に悪影響を及ぼす元素であ
る。したがって脱酸,強度,耐酸化性の点から下限を
0.01%とし、靭性の点から上限を0.80%とし
た。Mnは脱酸のためのみでなく強度の改善に必要な元
素であり、最低0.05%以上の添加が必要である。し
かし、過剰な添加は高温強度および靭性を低下させるた
め上限を1.50%とした。
Si is added for the purpose of deoxidizing effect, ensuring strength and oxidation resistance, but is an element which adversely affects toughness. Therefore, the lower limit is 0.01% from the viewpoint of deoxidation, strength, and oxidation resistance, and the upper limit is 0.80% from the viewpoint of toughness. Mn is an element required not only for deoxidation but also for improving strength, and it is necessary to add at least 0.05% or more. However, excessive addition lowers the high temperature strength and toughness, so the upper limit was made 1.50%.

【0019】Crは高温の耐酸化性を確保する上で必要
不可欠な元素であり、マトリックス中へM236 型炭化
物を析出させる効果を有し、高温強度を高めている。
8.0%未では高温での耐酸化性が不足となり、高温強
度も低下する。一方、13.0%以上ではδフェライト
の抑制が難しくなり、強度と靭性の低下が生じるので、
Cr量を8.0〜13.0%に限定する。
Cr is an essential element for ensuring high temperature oxidation resistance, has an effect of precipitating M 23 C 6 type carbide in the matrix, and enhances high temperature strength.
If it is less than 8.0%, the oxidation resistance at high temperature becomes insufficient and the high temperature strength also decreases. On the other hand, if the content is 13.0% or more, it becomes difficult to suppress δ ferrite, and the strength and toughness decrease.
The amount of Cr is limited to 8.0 to 13.0%.

【0020】Moは固溶強化をもたらすと同時に、M23
6 を安定化させ、高温強度をさせる。0.05%未満
では効果が小さく、1.50%超ではδフェライトの生
成を促進すると同時に、M6 CとLaves相の析出お
よび凝集粗大化を促進させるので、0.05〜1.50
%とした。
Mo provides solid solution strengthening, and at the same time M 23
Stabilizes C 6 and provides high temperature strength. If it is less than 0.05%, the effect is small, and if it exceeds 1.50%, the formation of δ ferrite is promoted, and at the same time, the precipitation of M 6 C and the Laves phase and the coarsening of aggregation are promoted.
%.

【0021】Wは固溶強化とM236 の微細析出に寄与
すると同時に、炭化物の凝集粗大化を抑制し、高温長時
間側のクリープ破断強度を著しく向上させる。最低0.
05%以上が必要であるが、4.0%を越えると、δフ
ェライトと粗大なLaves相が生成しやすくなり、高
温強度と靭性を低下させるため、0.05〜4.0%と
した。
W contributes to solid solution strengthening and fine precipitation of M 23 C 6 , and at the same time suppresses agglomeration and coarsening of carbides and remarkably improves creep rupture strength at high temperature and long time. At least 0.
It is necessary to be 05% or more, but if it exceeds 4.0%, δ ferrite and a coarse Laves phase are likely to be formed and the high temperature strength and toughness are deteriorated, so the content was made 0.05 to 4.0%.

【0022】Vは析出強化元素として微細な炭窒化物を
析出し、高温強度を高める。0.05%未満では効果が
不十分であり、0.50%超ではV(C,N)の粗大化
を招くだけではなく、M236 として析出しうるC量を
減少させ、高温強度を低下させるので、0.05〜0.
50%に限定する。
V precipitates fine carbonitrides as a precipitation strengthening element and enhances high temperature strength. If it is less than 0.05%, the effect is insufficient, and if it exceeds 0.50%, not only V (C, N) is coarsened, but also the amount of C that can be precipitated as M 23 C 6 is decreased, and high temperature strength is increased. Of 0.05 to 0.
Limited to 50%.

【0023】Nbは炭窒化物として析出し、高温強度を
高めるとともに、組織微細化の作用により靭性を改善す
るため、最低0.02%が必要である。しかし0.15
%を超えて過剰添加すると、焼きならし温度ではマトリ
ックスに完全に固溶しきれず、十分な強化効果が得られ
ないので、0.02〜0.15%に限定する。
Nb is precipitated as a carbonitride to increase the high temperature strength and to improve the toughness due to the effect of the refinement of the structure, so Nb must be at least 0.02%. But 0.15
If it is excessively added in excess of%, it cannot be completely dissolved in the matrix at the normalizing temperature, and a sufficient strengthening effect cannot be obtained, so the content is limited to 0.02 to 0.15%.

【0024】Nは窒化物または炭窒化物を析出させ、高
温強度を高める重要な元素の一つである。0.01%以
上の添加により効果を発揮するが、0.11%を超える
と、窒化物の粗大化と靭性の低下をもたらすだけではな
く、製造上も困難となるため、0.01〜0.11%に
限定する。
N is one of the important elements for precipitating nitrides or carbonitrides and increasing the high temperature strength. The effect is exhibited by addition of 0.01% or more, but if it exceeds 0.11%, not only does it cause coarsening of the nitride and decrease in toughness, but also it becomes difficult in manufacturing, so 0.01 to 0 is added. Limited to 11%.

【0025】Alは脱酸材として使われるが、その量は
結晶粒径や機械的性質に大きな影響を及ぼす。0.00
2%未満では脱酸材として不十分で、0.05%超では
クリープ破断強が低下するので、0.002〜0.05
0%に限定する。
Al is used as a deoxidizer, and its amount has a great influence on the crystal grain size and mechanical properties. 0.00
If it is less than 2%, it is insufficient as a deoxidizing material, and if it exceeds 0.05%, the creep rupture strength decreases, so 0.002 to 0.05
Limited to 0%.

【0026】Pは焼き戻し脆化および再熱割れ感受性に
悪影響を及ぼすため上限を0.030%とした。Sは靭
性劣化,異方性および再熱割れ感受性の増大の原因とな
るので上限を0.010%とした。Oは靭性に悪影響を
及ぼす酸化物の生成の原因となるので上限を0.015
%とした。
Since P adversely affects temper embrittlement and reheat cracking susceptibility, the upper limit was made 0.030%. Since S causes deterioration in toughness, anisotropy and increase in reheat cracking susceptibility, the upper limit was made 0.010%. Since O causes the formation of oxides that adversely affect toughness, the upper limit is 0.015.
%.

【0027】Niはオーステナイト生成元素であり、δ
フェライトの生成を抑制する効果を有し、靭性の改善に
も有効であり、最低0.01%が必要である。しかし、
3.00%超では析出物の凝集粗大化をまねき、長時間
側のクリープ破断強度が低下するため上限を3.00%
とした。
Ni is an austenite forming element, and δ
It has an effect of suppressing the formation of ferrite and is also effective in improving the toughness, and 0.01% is the minimum. But,
If it exceeds 3.00%, the coarsening of precipitates will occur, and the creep rupture strength on the long-term side will decrease, so the upper limit is 3.00%.
And

【0028】Coの積極的な利用は本発明の大きな特徴
の一つである。Coはオーステナイト生成元素であり、
δフェライトの生成を抑制すると同時に、析出物を安定
化させ、高温強度を高める。0.01%未満では効果が
小さく、また5.00%超ではコストが高く、脆化も起
こりやすくなるので、0.01〜5.00%に限定す
る。
The positive use of Co is one of the major features of the present invention. Co is an austenite forming element,
At the same time as suppressing the formation of δ ferrite, it stabilizes the precipitates and enhances the high temperature strength. If it is less than 0.01%, the effect is small, and if it exceeds 5.00%, the cost is high and embrittlement easily occurs, so the content is limited to 0.01 to 5.00%.

【0029】Cuはオーステナイト生成元素であり、δ
フェライトの生成を抑制する。0.01%未満では効果
が小さく、また5.00%超では脆化も起こりやすくな
るので、0.01〜5.00%に限定する。
Cu is an austenite forming element, and δ
Suppress the formation of ferrite. If it is less than 0.01%, the effect is small, and if it exceeds 5.00%, embrittlement easily occurs, so the content is limited to 0.01 to 5.00%.

【0030】本発明法による鋼は鋼管のみならず、厚板
および薄板の形で提供することも可能であり、熱処理を
施した板を用いて種々の耐熱材料の形状で使用すること
が可能である。また、この発明鋼の熱間加工の例として
圧延が挙げられるが、発明の効果は鍛造等でも変わら
ず、熱間加工の手法にはよらない。
The steel according to the method of the present invention can be provided not only as a steel pipe but also in the form of a thick plate and a thin plate, and can be used in the form of various heat-resistant materials by using a heat-treated plate. is there. Rolling is an example of hot working of the steel of the present invention, but the effect of the present invention does not change in forging or the like, and does not depend on the hot working method.

【0031】[0031]

【実施例】表1に供試鋼の化学成分を示す。これらの鋼
を真空炉で溶解し、熱間圧延にて板厚15mmの板を製造
し、図1,図2および表2に示す条件で熱処理を行っ
た。尚、図1は本発明熱処理方法を、図2は従来熱処理
方法を示す図面である。
EXAMPLES Table 1 shows the chemical components of the test steel. These steels were melted in a vacuum furnace, and a plate having a plate thickness of 15 mm was manufactured by hot rolling, and heat treatment was performed under the conditions shown in FIGS. 1, 2 and Table 2. 1 is a drawing showing the heat treatment method of the present invention, and FIG. 2 is a drawing showing the conventional heat treatment method.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】それぞれの熱処理を行った板材の板厚中心
部より試験片を採取し、クリープ破断試験および衝撃試
験を実施した。図3は600℃×1 万時間までのデータ
で直線外挿して求めた600℃×10万時間クリ−プ破
断推定強度に与える熱処理条件の影響を示す。本発明方
法で鋼を製造するとクリ−プ破断強度が低下することは
なく、目標値の150MPaを上回っている。
A test piece was taken from the center of the thickness of each heat-treated plate material, and a creep rupture test and an impact test were carried out. Figure 3 shows the effect of heat treatment conditions on the estimated creep rupture strength at 600 ° C for 100,000 hours obtained by linear extrapolation using data up to 600 ° C for 10,000 hours. When steel is produced by the method of the present invention, the creep rupture strength does not decrease and exceeds the target value of 150 MPa.

【0035】[0035]

【発明の効果】以上のごとく、本発明法による鋼は従来
のフェライト系耐熱鋼に比べ、装置の高温化,高圧化に
対応できる高温強度の増大を達成した鋼であり、靭性等
実用上の特性も優れており、超々臨界圧火力発電、原子
力発電など多くの分野への適用ができ、産業界に貢献す
るところが極めて大きい。
As described above, the steel produced by the method of the present invention is a steel that achieves an increase in high-temperature strength that can cope with higher temperatures and higher pressures of equipment, as compared with conventional ferritic heat-resistant steels, and has practical toughness. It has excellent characteristics, can be applied to many fields such as ultra-supercritical thermal power generation, nuclear power generation, etc., and has a great contribution to the industrial world.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の熱処理方法を示す図表である。FIG. 1 is a chart showing a heat treatment method of the present invention.

【図2】従来の熱処理方法を示す図表である。FIG. 2 is a chart showing a conventional heat treatment method.

【図3】本発明法による鋼と従来鋼とのクリープ破断強
度を比較して示す図表である。
FIG. 3 is a table showing a comparison of creep rupture strength between steel according to the method of the present invention and conventional steel.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%で C :0.01〜0.15%、 Si:0.01〜0.80%、 Mn:0.05〜1.50%、 Cr:8.00〜13.00%、 Mo:0.05〜1.50%、 W :0.05〜4.00%、 V :0.05〜0.50%、 Nb:0.02〜0.15%、 Al:0.002〜0.050%、 N :0.010〜0.110% を含有し、 P :0.030%以下、 S :0.010%以下、 O :0.015%以下 に制限し、さらに Ni:0.01〜3.00%、 Co:0.01〜5.00%、 Cu:0.01〜5.00% の1種以上を含み、残部がFeおよび不可避の不純物よ
りなり、かつ上記成分範囲のCr,Ni,CoおよびC
uが、 Cr−2Ni−2Co−Cu≦9 の関係式を満足し、さらに上記成分範囲の Ni/59+Co/59+N/(Nb+V)≧Mo/9
6+W/184 の関係式を満足し、残部がFeおよび不可避の不純物よ
りなる鋼を熱間加工後、[Ac3 点+50℃]以上に保
定し室温まで降温する焼きならしを行った後、Ac1
以上[Ac1 点+40℃]以下の温度範囲で中間熱処理
を行った後、650℃以上730以下の温度範囲で焼戻
しを行うことを特徴とするフェライト系耐熱鋼の製造方
法。
1. By weight%, C: 0.01 to 0.15%, Si: 0.01 to 0.80%, Mn: 0.05 to 1.50%, Cr: 8.00 to 13.00. %, Mo: 0.05 to 1.50%, W: 0.05 to 4.00%, V: 0.05 to 0.50%, Nb: 0.02 to 0.15%, Al: 0. 002 to 0.050%, N: 0.010 to 0.110%, P: 0.030% or less, S: 0.010% or less, O: 0.015% or less, and further Ni : 0.01 to 3.00%, Co: 0.01 to 5.00%, Cu: 0.01 to 5.00%, with the balance being Fe and inevitable impurities, and Cr, Ni, Co and C in the composition range
u satisfies the relational expression of Cr-2Ni-2Co-Cu ≦ 9, and further, Ni / 59 + Co / 59 + N / (Nb + V) ≧ Mo / 9 in the above component range.
After satisfying the relational expression of 6 + W / 184 and hot-working steel with the balance being Fe and unavoidable impurities, after normalizing by keeping the temperature above [Ac 3 points + 50 ° C] and lowering to room temperature, Ac A method for producing a ferritic heat-resistant steel, which comprises performing intermediate heat treatment in a temperature range of 1 point or higher and [Ac 1 point + 40 ° C.] or lower, and then tempering it in a temperature range of 650 ° C. or higher and 730 or lower.
【請求項2】重量%で C :0.01〜0.15%、 Si:0.01〜0.80%、 Mn:0.05〜1.50%、 Cr:8.00〜13.00%、 Mo:0.05〜1.50%、 W :0.05〜4.00%、 V :0.05〜0.50%、 Nb:0.02〜0.15%、 Al:0.002〜0.050%、 N :0.010〜0.110% を含有し、 P:0.030%以下、 S:0.010%以下、 O:0.015%以下 に制限し、さらに B:0.001〜0.030% を含有し、さらに Ni:0.01〜3.00%、 Co:0.01〜5.00%、 Cu:0.01〜5.00% の1種以上をも含み、残部がFeおよび不可避の不純物
よりなり、かつ上記成分範囲のCr,Ni,Coおよび
Cuが、 Cr−2Ni−2Co−Cu≦9 の関係式を満足し、さらに上記成分範囲の Ni/59+Co/59+N/(Nb+V)≧Mo/9
6+W/184 の関係式を満足し、残部がFeおよび不可避の不純物よ
りなる鋼を熱間加工後、[Ac3 点+50℃]以上に保
定し室温まで降温する焼きならしを行った後、Ac1
以上[Ac1 点+40℃]以下の温度範囲で中間熱処理
を行った後、650℃以上730以下の温度範囲で焼戻
しを行うことを特徴とするフェライト系耐熱鋼の製造方
法。
2. C: 0.01 to 0.15% by weight, Si: 0.01 to 0.80%, Mn: 0.05 to 1.50%, Cr: 8.00 to 13.00. %, Mo: 0.05 to 1.50%, W: 0.05 to 4.00%, V: 0.05 to 0.50%, Nb: 0.02 to 0.15%, Al: 0. 002 to 0.050%, N: 0.010 to 0.110%, P: 0.030% or less, S: 0.010% or less, O: 0.015% or less, and further B : 0.001 to 0.030%, Ni: 0.01 to 3.00%, Co: 0.01 to 5.00%, Cu: 0.01 to 5.00% Including Cr, the balance consisting of Fe and unavoidable impurities, and Cr, Ni, Co and Cu in the above component range are Cr-2Ni-2Co-C. Satisfy ≦ 9 relationship, further the component range of the Ni / 59 + Co / 59 + N / (Nb + V) ≧ Mo / 9
After satisfying the relational expression of 6 + W / 184 and hot-working steel with the balance being Fe and unavoidable impurities, after normalizing by keeping the temperature above [Ac 3 points + 50 ° C] and lowering to room temperature, Ac A method for producing a ferritic heat-resistant steel, which comprises performing intermediate heat treatment in a temperature range of 1 point or higher and [Ac 1 point + 40 ° C.] or lower, and then tempering it in a temperature range of 650 ° C. or higher and 730 or lower.
JP10488796A 1996-04-25 1996-04-25 Manufacturing method of high Cr ferritic heat resistant steel Expired - Fee Related JP3368413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10488796A JP3368413B2 (en) 1996-04-25 1996-04-25 Manufacturing method of high Cr ferritic heat resistant steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10488796A JP3368413B2 (en) 1996-04-25 1996-04-25 Manufacturing method of high Cr ferritic heat resistant steel

Publications (2)

Publication Number Publication Date
JPH09291308A true JPH09291308A (en) 1997-11-11
JP3368413B2 JP3368413B2 (en) 2003-01-20

Family

ID=14392695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10488796A Expired - Fee Related JP3368413B2 (en) 1996-04-25 1996-04-25 Manufacturing method of high Cr ferritic heat resistant steel

Country Status (1)

Country Link
JP (1) JP3368413B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1160347A1 (en) * 2000-05-31 2001-12-05 Kawasaki Steel Corporation Fe-Cr alloy having excellent initial rust resistance, workability and weldability
EP1770182A1 (en) * 2005-09-29 2007-04-04 Hitachi, Ltd. High-strenght heat resisting cast steel, method of producing the steel, and applications of the steel
WO2014207656A1 (en) 2013-06-25 2014-12-31 Tenaris Connections Ltd. High-chromium heat-resistant steel
CN108998638A (en) * 2018-09-13 2018-12-14 天津重型装备工程研究有限公司 A kind of heat treatment method of 620 DEG C or more supercritical turbine casting

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1160347A1 (en) * 2000-05-31 2001-12-05 Kawasaki Steel Corporation Fe-Cr alloy having excellent initial rust resistance, workability and weldability
US6419878B2 (en) 2000-05-31 2002-07-16 Kawasaki Steel Corporation Fe-Cr alloy having excellent initial rust resistance, workability and weldability
EP1770182A1 (en) * 2005-09-29 2007-04-04 Hitachi, Ltd. High-strenght heat resisting cast steel, method of producing the steel, and applications of the steel
JP2007092123A (en) * 2005-09-29 2007-04-12 Hitachi Ltd High-strength heat-resistant cast steel, manufacturing method therefor and application with the use of it
WO2014207656A1 (en) 2013-06-25 2014-12-31 Tenaris Connections Ltd. High-chromium heat-resistant steel
CN108998638A (en) * 2018-09-13 2018-12-14 天津重型装备工程研究有限公司 A kind of heat treatment method of 620 DEG C or more supercritical turbine casting

Also Published As

Publication number Publication date
JP3368413B2 (en) 2003-01-20

Similar Documents

Publication Publication Date Title
US6174385B1 (en) Ferritic heat resistant steels
CN102453843B (en) Ferrite heat resistant steel
JPH0621323B2 (en) High strength and high chrome steel with excellent corrosion resistance and oxidation resistance
JPH0830251B2 (en) High temperature strength ferritic heat resistant steel
JP2023526739A (en) High-strength high-temperature corrosion-resistant martensitic stainless steel and method for producing the same
JP3982069B2 (en) High Cr ferritic heat resistant steel
JP3508667B2 (en) High Cr ferritic heat resistant steel excellent in high temperature strength and method for producing the same
JP2528767B2 (en) Ferritic heat resistant steel with excellent high temperature strength and toughness
JP3492969B2 (en) Rotor shaft for steam turbine
JPH04147948A (en) Rotary shaft for high temperature steam turbine
JP3368413B2 (en) Manufacturing method of high Cr ferritic heat resistant steel
JP2689198B2 (en) Martensitic heat resistant steel with excellent creep strength
JPH05263196A (en) Ferritic heat resistant steel excellent in high temperature strength and toughness
JP3848463B2 (en) High strength austenitic heat resistant steel with excellent weldability and method for producing the same
JP3819848B2 (en) Heat resistant steel and manufacturing method thereof
JPH05311344A (en) Ferritic heat resistant steel excellent in high temperature strength and toughness
JPH0885850A (en) High chromium ferritic heat resistant steel
JP3301284B2 (en) High Cr ferritic heat resistant steel
JPH05311346A (en) Ferritic heat resistant steel having high creep strength
JP3775371B2 (en) Low alloy steel
JP2002241903A (en) HIGH Cr FERRITIC HEAT RESISTANT STEEL
JP3869908B2 (en) High chromium ferritic heat resistant steel with excellent high temperature creep strength
JP3787212B2 (en) High Cr ferritic heat resistant steel
JPH07110970B2 (en) Method for producing acicular ferritic stainless steel with excellent resistance to stress corrosion cracking
JPH05311343A (en) Ferritic heat resistant steel having high creep strength

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071115

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121115

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121115

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131115

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131115

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131115

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees