JP3687249B2 - 2.25Cr steel softening heat treatment method - Google Patents

2.25Cr steel softening heat treatment method Download PDF

Info

Publication number
JP3687249B2
JP3687249B2 JP01531797A JP1531797A JP3687249B2 JP 3687249 B2 JP3687249 B2 JP 3687249B2 JP 01531797 A JP01531797 A JP 01531797A JP 1531797 A JP1531797 A JP 1531797A JP 3687249 B2 JP3687249 B2 JP 3687249B2
Authority
JP
Japan
Prior art keywords
heat treatment
temperature
steel
isothermal
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01531797A
Other languages
Japanese (ja)
Other versions
JPH10212520A (en
Inventor
俊彦 福井
雄介 南
嘉一 石沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP01531797A priority Critical patent/JP3687249B2/en
Publication of JPH10212520A publication Critical patent/JPH10212520A/en
Application granted granted Critical
Publication of JP3687249B2 publication Critical patent/JP3687249B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、石油化学プラント、火力発電プラント等に用いられる、CrMo鋼の軟化熱処理方法に関する。
【0002】
【従来の技術】
石油化学プラントや火力発電プラントには、種々の成分のCrMo鋼が広く使用されている。また、それらの形状は、継目無鋼管、溶接鋼管、鋼板、あるいは形鋼等の多岐にわたっている。
【0003】
それらの内で、例えば鋼管を各種の配管や反応管、熱交換器用鋼管として用いる場合には、プラントに組み込む前に、曲げ加工や押し拡げ加工、縮径加工等の種々の加工がなされることが多い。従ってこれらの用途に使用される場合は、鋼管には優れた成形加工性を備えていることが要求される。他の形状の鋼材についても、冷間加工を施されることは多く、同様に優れた加工性が要求される。
【0004】
CrMo鋼において、十分な加工性を持った鋼材を得るという観点からの熱処理方法としては、
1)高温(Ac3変態点以上)の温度範囲に加熱後に徐冷。
【0005】
2)高温(Ac3変態点以上)の温度範囲に加熱後にAc1変態点以下の温度範囲で等温変態処理。
3)焼ならし焼戻し処理。
を採用することが一般的である。ただし、これらの方法によって、十分に軟化した鋼材を得るためには、長時間の焼鈍や焼戻し処理が必要であり、熱処理コストの上昇をもたらしている。
【0006】
従来の等温変態処理は、一度Ac3変態点以上の温度に加熱し、鋼の組織をオ−ステナイト単相にするとともに、炭化物を完全に固溶させ、引続きAc1変態点以下の温度で等温保持する過程で、炭化物を析出させることにより、マトリクスがオ−ステナイト相からマルテンサイト相への変態ではなく、フェライト相への変態をおこさせ、鋼を軟化させる熱処理方法である。この場合、等温変態処理における保持時間が不十分な場合は、未変態のオ−ステナイト相がその後の冷却過程でマルテンサイト相に変態し、硬度の上昇や、靭性の劣化をもたらす。従って、通常この等温熱処理の保持時間は2時間以上を必要とする。
【0007】
また、これらの熱処理方法は、Ac3変態点以上の高温に加熱することを原則としており、この高温加熱時に鋼材の表面には多量の酸化スケ−ルが生成する。そのため、熱処理後のスケ−ルの除去が不可避であり、製造コストを上昇させ、また歩留まりを減少させる原因となっている。
【0008】
酸化による歩留まりの減少を防ぐ解決策として、例えば特開昭57-110617 号公報には、Cr:0.74〜10.10 %、Mo:0.40〜1.15%を含有しかつC:0.17%以下としたCrMo鋼を、熱間圧延後にAc1変態点〜Ac3変態点の温度範囲に加熱して、その温度域から10℃/min以下の冷却速度で徐冷する方法が開示されている。この技術を用いる場合は、2時間以上の長時間の徐冷が必要である。これはマルテンサイト変態開始温度以上で規定の冷却速度の冷却を終了すると、微細なセメンタイト相が析出して強度が高くなってしまうため、変態開始温度以下まで徐冷しなければならないからである。
【0009】
いずれにしろ上記の技術は、いずれも、
1)熱処理に要する時間が短く能率的。
2)熱処理時のスケ−ルの発生量が少なく、従って熱処理後の脱スケ−ルの工程が不要。(スケ−ル厚さが100 μm 以下)
3)冷間加工が十分可能な程度の低い硬度。(HRB85以下)
と言った要求を同時に満足するものではない点が問題である。
【0010】
【発明が解決しようとする課題】
本発明は、低温・短時間で熱処理を行うことにより熱処理のコストが低く、また酸化スケ−ルの除去が不要で、冷間加工が十分可能な、2.25Cr鋼の軟化熱処理方法を提供することを目的とするものである。
【0011】
【課題を解決するための手段】
本発明者らは上記課題を解決するために、各種の熱処理方法を検討し、重量%にて、C:0.20%以下、Cr:1.9 〜2.6 %を含有し、さらにMo:1.5 %以下とW:2.0 %以下のうち1種または2種を含有する2.25CrMo鋼を、熱間圧延後、Ac1変態点以上、Ac3変態点以下の温度に5 分以上保持した後、0.2 ℃/sec以上の冷却速度で700 〜760 ℃の温度範囲まで冷却し、以下の(1)、(2)に示す時間等温保持し、
(1)等温保持温度が720 ℃以上760 ℃以下の場合
120 ≧保持時間(分)≧30
(2) 等温保持温度が700 ℃以上720 ℃未満の場合
120 ≧保持時間(分)≧(3/2)×(740−T)
T:保持温度(℃)
その後冷却する軟化熱処理方法を見出だすことにより本発明を完成した。
【0012】
【発明の実施の形態】
以下、本発明について具体的に説明する。
従来の技術で述べた等温変態処理に対して、本発明はまず、Ac1変態点以上、Ac3変態点以下の温度に鋼を加熱する(以下、この熱処理を第1の熱処理と記す。)ものであり、この温度範囲に加熱することにより、マトリクスはフェライトとオ−ステナイトの2相組織となり、また鋼中の炭化物の一部は固溶、残りは未固溶の状態が得られる。
【0013】
この状態から、冷却してAc1変態点以下の温度で一定時間、等温保持(以後この熱処理を第2の熱処理と記す。)を行うと、第1の熱処理の間に炭化物がすでに一部析出しているため、炭化物析出はそれを析出核として急速に進行する。すなわち従来の等温熱処理に比較して大きく異なる点は、炭化物がすでに一部存在しているため、核発生の時間が不要であり、炭化物成長のための時間も短くなる点にある。
【0014】
またマトリクスについても、既にフェライト相が存在しているために、残っているオ−ステナイト相がフェライト相に変態する時間だけで十分である。
以上の理由により、本発明で提示する熱処理方法は、従来の等温熱処理と比較して、第2の熱処理における等温保持の時間を大幅に短縮することが可能となる。さらに、第1の熱処理における加熱温度が、従来の方法に比較して低温であるため、スケ−ルの発生量も激減し、多くの場合に、スケ−ルの除去が不要なレベルにまで低減させることが可能である。
【0015】
なお一般的には、表面に生成するスケ−ルの厚さが100 μm を越える場合は、脱スケ−ル処理が必要となる。また、鋼を加工する上で、冷間加工に耐え得る硬度は、HRB85程度である。
【0016】
第1の熱処理は部分的にではあるが、オ−ステナイト化させる工程であり、また一部の炭化物を固溶させる工程でもある。これらの変化は、熱処理の温度がAc1変態点より高くなるほど顕著になる。オ−ステナイト相の量や、炭化物の固溶度を考慮すると、上記の温度範囲の内でより好ましい温度範囲は、(Ac1変態点+20℃)〜(Ac3変態−20℃)である。
【0017】
また第1の熱処理の保持時間は、部分的なオ−ステナイト化の速度や、炭化物の固溶速度を考慮すると、5 分以上である必要がある。なお、この第1の熱処理から第2の熱処理までの冷却速度は、それが著しく遅い場合は、熱処理に要する時間が増加しコストアップを招くため、下限を0.2 ℃/secとする。
【0018】
次に第2の熱処理の等温保持温度及び保持時間の限定理由を述べる。第2の熱処理の等温保持温度及び保持時間は図1においてA点(760,30)、B点(720,30)C点(700,60)、D点(700,120 )、E点(760,120 )で囲まれた範囲とする。等温保持温度が760 ℃を越える場合は、炭化物の析出に長時間を必要とし好ましくない。また、700 ℃未満の場合も炭化物の析出に長時間を要し、また炭化物の析出形態も変化して、微細析出物が増加する傾向が顕著となり、硬度が高くなるため好ましくない。したがって、第2の熱処理の等温保持時間の上限を760 ℃、下限を700 ℃とした。
【0019】
保持時間は、それが短い場合は炭化物の析出が不十分となり、未析出の炭化物が冷却過程で微細な炭化物として析出し、鋼の硬度を上昇させる。保持時間の下限は図1に示す様に、保持温度が720 〜760 ℃の場合は30分である。なお、保持時間が120 分を越える場合は、特性のさらなる向上はほとんど認められなくなるのに対して、スケ−ル量の増加、費用の増加といった問題が顕著となるため、上限を120 分とする。
【0020】
等温保持温度が700 ℃以上720 ℃未満の温度範囲にある場合は、元素の移動速度が遅く、炭化物の析出に時間を要するため、低温になるほど必要とされる保持時間の下限は長くなる。保持時間の下限を式を用いて表すと、
等温保持温度が700 ℃以上720 ℃未満の場合
保持時間(分)=(3/2)×(740−T)
T:保持温度(℃)
となる。なお、等温保持温度が720 〜760 ℃の場合の下限時間は、等温保持温度の関数とならず30分である。またこの式より、等温保持温度が700 ℃の場合に必要とする保持時間の下限を求めると、60分である事がわかる。
【0021】
次に、本発明が対象とする鋼の各成分範囲の限定理由を以下に述べる。
C;Cは強度を確保する合金元素として、またオ−ステナイト形成元素として重要であるが、0.2 %を越えて含有させると、靭性の劣化や、溶接性の劣化が顕著になるため、上限を0.2 %とする。
【0022】
Cr;Crは鋼に耐水蒸気酸化性、及び耐高温腐食性を付与する上で有効な元素であり、その効果は1.9 %以上含有させることにより顕著となる。一方、2.6 %を越えて合金化すると、溶接性及び靭性を劣化させる。従って、Crの含有量は1.9 〜2.6 %とする。
【0023】
Mo、W;Mo、Wはともに代表的な固溶強化元素であり、またそれらの炭化物は析出強化作用も有している。このMo及びWを1種または2種合金化することにより、高温強度は大きく増加する。ただし、1.5 %を越えるMo、2.0 %を越えるWを含有させると、溶接性が劣化するため、上限をMo:1.5 %、W:2.0 %とする。
【0024】
その他の元素は、通常のCrMo鋼と同程度含有させてよい。Mnは脱酸及び熱間加工性の改善、強度増加に効果があり、靭性等に悪影響が現れない2.0 %が含有量の目安である。脱酸作用や耐酸化性作用を有する、Si及びAlは、それぞれ1.0 %、0.3 %以下の範囲で添加しても、本発明の本質は影響を受けない。鋼の強度を増加させる元素であるNb、V、Tiも、靭性等に対する悪影響が顕著とならないNb:0.1 %以下、V:0.3 %以下、Ti:0.1 %以下の範囲で含有させても良い。また、0.5 %以下のCu、0.5 %以下のNi、0.05%以下のN、0.003 %以下のB、0.001 %以下のCa、0.001 %以下のMgの含有も本発明の本質に影響を与えない。不可避的不純物のS、Pも通常のCrMo鋼と同程度の、おのおの、0.03%、0.03%程度までは含有しても、本発明の本質は影響を受けない。
【0025】
【実施例】
次に本発明を、実施例及び比較例を用いて説明する。表1に供試鋼A、B、C、Dの化学成分を示す。いずれも本発明の範囲内の成分を持つ鋼である。各鋼を150kg 真空溶解炉で溶製・造塊し、1250℃に加熱し厚さ60mmに分塊圧延後、再度1250℃に加熱して厚さ12mmの厚板とした。表1にはAc1、Ac3変態点も併せて示した。
【0026】
【表1】

Figure 0003687249
【0027】
この厚板に対して、表2,表3に示す種々の熱処理を施した後に、肉厚中央部の硬度測定結果、及び表面のスケ−ル除去の必要性を調査した。結果も表2,表3に併せて示す。表2,表3における加熱温度・時間は第1の熱処理を、保持温度・時間は第2の熱処理を示す。
【0028】
【表2】
Figure 0003687249
【0029】
【表3】
Figure 0003687249
【0030】
第1の熱処理温度がAc3変態点を越える高温の場合(比較例A3´,D3´)は、表2、表3の熱処理条件が本発明範囲内の場合も硬度が十分に下がっておらず、いずれもHRB90以上であり、スケ−ルの発生量が多く、脱スケ−ル処理を必要とする。
【0031】
第1の熱処理の加熱温度がAc1変態点〜Ac3変態点の間であっても、加熱時間が短く、本発明に規定する範囲外の比較例の場合(比較例C2´,D2´)は、オ−ステナイト化及び炭化物の固溶化が十分に行われず、第2の熱処理の熱処理条件が本発明範囲内の場合も硬度は十分に下がっていない。
【0032】
第1の熱処理条件が本発明に規定する範囲内の場合であっても、第2の熱処理条件が本発明に規定する範囲外の場合は、硬度は十分に下がらず、曲げ加工等の施工性の面から見た軟化は不十分である。第2の熱処理の等温保持温度が本発明の範囲より低い比較例A5´、A6´、B3´、第2の熱処理の等温保持時間が本発明の範囲より短い比較例A1´、A4´、B1´、C1´、D4´の硬度もHRB85を越えており、十分に軟化していない。
【0033】
以上はいずれも比較例であるが、本発明の実施例はいずれも、硬度はHRB85以下と十分に軟化している。
また、本発明の実施例で生成したスケ−ルの厚さはいずれも100 μm 以下であり、脱スケ−ル処理は必要でなかった。
【0034】
なお、本発明の方法により、製造した鋼材に冷間加工を施し、溶接して機器 (あるいはプラントに組込み)とした後に、再度熱処理を行い鋼の高温特性を改善する方法ももちろん可能である。
【0035】
【発明の効果】
本発明により、Crを1.9 〜2.6 %含有するCrMo鋼を、短時間に、従って高能率に軟化させることが可能となった。また、従来の軟化焼鈍では、必須であった脱スケ−ル処理が省略可能となったことの工程数の削減、製造コスト削減や酸洗廃液処理が不要になったことの意義も大きい。
【図面の簡単な説明】
【図1】本発明の方法の一部である、第2の熱処理の等温保持温度及び保持時間の範囲を示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a softening heat treatment method for CrMo steel used in petrochemical plants, thermal power plants and the like.
[0002]
[Prior art]
Various components of CrMo steel are widely used in petrochemical plants and thermal power plants. Moreover, those shapes are various, such as a seamless steel pipe, a welded steel pipe, a steel plate, or a shaped steel.
[0003]
Among them, for example, when using steel pipes as various pipes, reaction pipes, and heat exchanger steel pipes, various processes such as bending, expansion, and diameter reduction are performed before incorporation into the plant. There are many. Therefore, when used for these applications, the steel pipe is required to have excellent formability. Other steel shapes are also often cold worked and similarly require excellent workability.
[0004]
In CrMo steel, as a heat treatment method from the viewpoint of obtaining a steel material having sufficient workability,
1) Slow cooling after heating to a high temperature range (above the Ac3 transformation point).
[0005]
2) Isothermal transformation treatment in the temperature range below the Ac1 transformation point after heating to a high temperature range (above the Ac3 transformation point).
3) Normalizing and tempering treatment.
Is generally adopted. However, in order to obtain a sufficiently softened steel material by these methods, a long-time annealing or tempering treatment is necessary, resulting in an increase in heat treatment costs.
[0006]
In the conventional isothermal transformation treatment, the steel is once heated to a temperature above the Ac3 transformation point to make the steel structure into an austenite single phase, and the carbide is completely solid-solved, and then kept isothermally at a temperature below the Ac1 transformation point. This is a heat treatment method in which the matrix is not transformed from the austenite phase to the martensite phase, but transformed into the ferrite phase by softening the carbide in the process to soften the steel. In this case, when the holding time in the isothermal transformation treatment is insufficient, the untransformed austenite phase is transformed into a martensite phase in the subsequent cooling process, resulting in an increase in hardness and deterioration in toughness. Therefore, the holding time of this isothermal heat treatment usually requires 2 hours or more.
[0007]
In addition, these heat treatment methods are based on heating to a temperature higher than the Ac3 transformation point, and a large amount of oxide scale is generated on the surface of the steel material during this high temperature heating. For this reason, removal of the scale after heat treatment is unavoidable, which increases the manufacturing cost and decreases the yield.
[0008]
As a solution for preventing a decrease in yield due to oxidation, for example, JP-A-57-110617 discloses CrMo steel containing Cr: 0.74 to 10.10%, Mo: 0.40 to 1.15% and C: 0.17% or less. In addition, a method is disclosed in which heating is performed in a temperature range from Ac1 transformation point to Ac3 transformation point after hot rolling, and then gradually cooling from the temperature range at a cooling rate of 10 ° C./min or less. When this technique is used, slow cooling for 2 hours or more is required. This is because, when the cooling at the specified cooling rate is finished at a temperature higher than the martensite transformation start temperature, a fine cementite phase is precipitated and the strength is increased, so that it must be gradually cooled to the transformation start temperature or lower.
[0009]
In any case, all of the above technologies
1) Time required for heat treatment is short and efficient.
2) The amount of scale generated at the time of heat treatment is small, and therefore a descaling step after heat treatment is unnecessary. (Scale thickness is 100 μm or less)
3) Low hardness enough to allow cold working. (HRB85 or less)
The problem is that it does not satisfy the above requirements at the same time.
[0010]
[Problems to be solved by the invention]
The present invention provides a method for softening heat treatment of 2.25Cr steel, in which heat treatment is performed at a low temperature and in a short time, thereby lowering the cost of heat treatment, eliminating the need for removal of the oxide scale, and enabling sufficient cold working. It is intended.
[0011]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have studied various heat treatment methods, and by weight percent, C: 0.20% or less, Cr: 1.9 to 2.6%, Mo: 1.5% or less and W : 2.25CrMo steel containing 1 or 2 of 2.0% or less is hot-rolled, kept at a temperature not lower than Ac1 transformation point and not higher than Ac3 transformation point for 5 minutes or more, and then cooled to 0.2 ° C / sec or more Cool to a temperature range of 700 to 760 ° C at a speed and keep isothermal for the time indicated in (1) and (2) below.
(1) When the isothermal holding temperature is 720 ° C or higher and 760 ° C or lower
120 ≧ Retention time (min) ≧ 30
(2) When the isothermal holding temperature is 700 ° C or higher and lower than 720 ° C
120 ≧ Retention time (min) ≧ (3/2) × (740−T)
T: Holding temperature (° C)
The present invention was completed by finding a softening heat treatment method for cooling thereafter.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be specifically described.
In contrast to the isothermal transformation treatment described in the prior art, the present invention first heats the steel to a temperature not lower than the Ac1 transformation point and not higher than the Ac3 transformation point (hereinafter, this heat treatment is referred to as a first heat treatment). By heating to this temperature range, the matrix becomes a two-phase structure of ferrite and austenite, and a part of the carbide in the steel is in solid solution, and the rest is in an insoluble state.
[0013]
From this state, when cooling and isothermal holding at a temperature below the Ac1 transformation point for a certain time (hereinafter, this heat treatment is referred to as a second heat treatment), some of the carbides are already precipitated during the first heat treatment. Therefore, carbide precipitation proceeds rapidly using it as a precipitation nucleus. That is, the main difference from the conventional isothermal heat treatment is that a part of carbide is already present, so that time for nucleation is not required and time for carbide growth is shortened.
[0014]
Also for the matrix, since the ferrite phase already exists, only the time required for the remaining austenite phase to transform to the ferrite phase is sufficient.
For the above reasons, the heat treatment method presented in the present invention can greatly reduce the isothermal holding time in the second heat treatment as compared with the conventional isothermal heat treatment. Furthermore, since the heating temperature in the first heat treatment is lower than that in the conventional method, the amount of scale generation is drastically reduced, and in many cases, the scale removal is reduced to an unnecessary level. It is possible to make it.
[0015]
Generally, when the thickness of the scale formed on the surface exceeds 100 μm, descaling is required. Moreover, when processing steel, the hardness that can withstand cold working is about HRB85.
[0016]
The first heat treatment is a step of making austenite, although partially, and also a step of dissolving some of the carbides. These changes become more prominent as the heat treatment temperature becomes higher than the Ac1 transformation point. In consideration of the amount of austenite phase and the solid solubility of carbide, a more preferable temperature range in the above temperature range is (Ac1 transformation point + 20 ° C.) to (Ac3 transformation-20 ° C.).
[0017]
In addition, the holding time of the first heat treatment needs to be 5 minutes or more in consideration of the partial austenitizing rate and the solid solution rate of carbide. The cooling rate from the first heat treatment to the second heat treatment, if it is extremely slow, increases the time required for the heat treatment and increases the cost, so the lower limit is set to 0.2 ° C./sec.
[0018]
Next, the reason for limiting the isothermal holding temperature and holding time of the second heat treatment will be described. The isothermal holding temperature and holding time of the second heat treatment are shown in FIG. 1 at point A (760,30), point B (720,30) point C (700,60), point D (700,120), point E (760,120). The enclosed range. When the isothermal holding temperature exceeds 760 ° C., it takes a long time to precipitate carbide, which is not preferable. Also, when the temperature is lower than 700 ° C., it takes a long time for precipitation of carbides, and the precipitation form of the carbides changes, so that the tendency to increase fine precipitates becomes remarkable and the hardness increases, which is not preferable. Therefore, the upper limit of the isothermal holding time of the second heat treatment was set to 760 ° C., and the lower limit was set to 700 ° C.
[0019]
When the holding time is short, the precipitation of carbides becomes insufficient, and unprecipitated carbides precipitate as fine carbides during the cooling process, thereby increasing the hardness of the steel. As shown in FIG. 1, the lower limit of the holding time is 30 minutes when the holding temperature is 720 to 760 ° C. If the holding time exceeds 120 minutes, further improvement in characteristics is hardly observed, but problems such as an increase in the amount of scale and an increase in costs become prominent, so the upper limit is set to 120 minutes. .
[0020]
When the isothermal holding temperature is in the temperature range of 700 ° C. or higher and lower than 720 ° C., the moving speed of the element is slow and time is required for precipitation of the carbide. Therefore, the lower the holding temperature, the longer the lower limit of the holding time required. When the lower limit of the retention time is expressed using an equation,
When the isothermal holding temperature is 700 ° C or higher and lower than 720 ° C, holding time (min) = (3/2) x (740-T)
T: Holding temperature (° C)
It becomes. The lower limit time when the isothermal holding temperature is 720 to 760 ° C. is not a function of the isothermal holding temperature, but is 30 minutes. From this equation, it can be seen that the lower limit of the holding time required when the isothermal holding temperature is 700 ° C. is 60 minutes.
[0021]
Next, the reasons for limiting each component range of the steel targeted by the present invention will be described below.
C: C is important as an alloying element for ensuring strength and as an austenite forming element. However, if contained over 0.2%, deterioration of toughness and deterioration of weldability become prominent. 0.2%.
[0022]
Cr; Cr is an element effective in imparting steam oxidation resistance and high temperature corrosion resistance to steel, and the effect becomes remarkable by containing 1.9% or more. On the other hand, when alloying exceeds 2.6%, weldability and toughness deteriorate. Therefore, the Cr content is set to 1.9 to 2.6%.
[0023]
Mo, W; Mo and W are both typical solid solution strengthening elements, and their carbides also have a precipitation strengthening action. The high temperature strength is greatly increased by alloying Mo and W in one or two kinds. However, if Mo exceeding 1.5% and W exceeding 2.0% are contained, the weldability deteriorates, so the upper limit is made Mo: 1.5% and W: 2.0%.
[0024]
Other elements may be contained to the same extent as ordinary CrMo steel. Mn is effective in improving deoxidation and hot workability and increasing the strength, and the content is 2.0% which does not adversely affect toughness and the like. Even if Si and Al having a deoxidizing action and an oxidation-resistant action are added in the ranges of 1.0% and 0.3% or less, respectively, the essence of the present invention is not affected. Nb, V, and Ti, which are elements that increase the strength of steel, may also be included in the ranges of Nb: 0.1% or less, V: 0.3% or less, and Ti: 0.1% or less, where the adverse effects on toughness and the like are not significant. Further, the inclusion of 0.5% or less of Cu, 0.5% or less of Ni, 0.05% or less of N, 0.003% or less of B, 0.001% or less of Ca, or 0.001% or less of Mg does not affect the essence of the present invention. The essence of the present invention is not affected even if the inevitable impurities S and P are contained up to about 0.03% and 0.03%, respectively, to the same extent as ordinary CrMo steel.
[0025]
【Example】
Next, this invention is demonstrated using an Example and a comparative example. Table 1 shows chemical components of test steels A, B, C, and D. Both are steels having components within the scope of the present invention. Each steel was melted and formed in a 150 kg vacuum melting furnace, heated to 1250 ° C., split-rolled to a thickness of 60 mm, and then heated again to 1250 ° C. to obtain a 12 mm thick plate. Table 1 also shows the Ac1 and Ac3 transformation points.
[0026]
[Table 1]
Figure 0003687249
[0027]
After various heat treatments shown in Tables 2 and 3 were applied to the thick plate, the hardness measurement result at the central portion of the thickness and the necessity of removing the scale on the surface were investigated. The results are also shown in Tables 2 and 3. In Tables 2 and 3, the heating temperature and time indicate the first heat treatment, and the holding temperature and time indicate the second heat treatment.
[0028]
[Table 2]
Figure 0003687249
[0029]
[Table 3]
Figure 0003687249
[0030]
When the first heat treatment temperature is a high temperature exceeding the Ac3 transformation point (Comparative Examples A3 ′, D3 ′), the hardness is not sufficiently lowered even when the heat treatment conditions in Tables 2 and 3 are within the scope of the present invention. Both are HRB90 or higher, the amount of scale generated is large, and a descaling process is required.
[0031]
Even when the heating temperature of the first heat treatment is between the Ac1 transformation point and the Ac3 transformation point, the heating time is short, and in the case of comparative examples outside the range specified in the present invention (comparative examples C2 ′ and D2 ′), Even when austenitization and carbide solid solution are not sufficiently performed and the heat treatment conditions of the second heat treatment are within the range of the present invention, the hardness is not sufficiently lowered.
[0032]
Even if the first heat treatment condition is within the range defined in the present invention, if the second heat treatment condition is out of the range defined in the present invention, the hardness is not sufficiently lowered, and workability such as bending is possible. The softening from the viewpoint of this is insufficient. Comparative Examples A5 ′, A6 ′, B3 ′ in which the isothermal holding temperature of the second heat treatment is lower than the range of the present invention, Comparative Examples A1 ′, A4 ′, B1 in which the isothermal holding time of the second heat treatment is shorter than the range of the present invention The hardness of ', C1' and D4 'also exceeds HRB85 and is not sufficiently softened.
[0033]
All of the above are comparative examples, but in all of the examples of the present invention, the hardness is sufficiently softened to HRB85 or less.
In addition, the thicknesses of the scales produced in the examples of the present invention were all 100 μm or less, and no descaling was required.
[0034]
Of course, it is possible to improve the high-temperature properties of the steel by subjecting the manufactured steel material to cold working and welding to make the equipment (or built into the plant) and then heat treating it again.
[0035]
【The invention's effect】
According to the present invention, CrMo steel containing 1.9 to 2.6% of Cr can be softened in a short time and therefore with high efficiency. In addition, in the conventional soft annealing, it is also significant that the essential de-scaling treatment can be omitted, the number of processes is reduced, the manufacturing cost is reduced, and the pickling waste liquid treatment is unnecessary.
[Brief description of the drawings]
FIG. 1 is a diagram showing a range of isothermal holding temperature and holding time of a second heat treatment, which is a part of the method of the present invention.

Claims (1)

重量%にて、C:0.20%以下、Cr:1.9 〜2.6 %を含有し、さらにMo:1.5 %以下とW:2.0 %以下のうち1種または2種を含有する鋼を、熱間圧延後、Ac1変態点以上、Ac3変態点以下の温度に5 分以上保持した後、0.2 ℃/sec以上の冷却速度で700 〜760 ℃の温度範囲まで冷却し、以下の(1)、(2)に示す時間等温保持し、その後冷却することを特徴とする2.25Cr鋼の軟化熱処理方法。
(1)等温保持温度が720 ℃以上760 ℃以下の場合
120 ≧保持時間(分)≧30
(2) 等温保持温度が700 ℃以上720 ℃未満の場合
120 ≧保持時間(分)≧(3/2)×(740−T)
T:保持温度(℃)
After hot rolling, steel containing C: 0.20% or less, Cr: 1.9 to 2.6%, and Mo: 1.5% or less and W: 2.0% or less in weight percent After holding at a temperature not lower than Ac1 transformation point and not higher than Ac3 transformation point for 5 minutes or longer, it is cooled to a temperature range of 700 to 760 ° C at a cooling rate of 0.2 ° C / sec or more, and the following (1) and (2) A method for softening heat treatment of 2.25Cr steel, characterized by holding isothermal for the time indicated and then cooling.
(1) When the isothermal holding temperature is 720 ° C or higher and 760 ° C or lower
120 ≧ Retention time (min) ≧ 30
(2) When the isothermal holding temperature is 700 ° C or higher and lower than 720 ° C
120 ≧ Retention time (min) ≧ (3/2) × (740−T)
T: Holding temperature (° C)
JP01531797A 1997-01-29 1997-01-29 2.25Cr steel softening heat treatment method Expired - Lifetime JP3687249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01531797A JP3687249B2 (en) 1997-01-29 1997-01-29 2.25Cr steel softening heat treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01531797A JP3687249B2 (en) 1997-01-29 1997-01-29 2.25Cr steel softening heat treatment method

Publications (2)

Publication Number Publication Date
JPH10212520A JPH10212520A (en) 1998-08-11
JP3687249B2 true JP3687249B2 (en) 2005-08-24

Family

ID=11885409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01531797A Expired - Lifetime JP3687249B2 (en) 1997-01-29 1997-01-29 2.25Cr steel softening heat treatment method

Country Status (1)

Country Link
JP (1) JP3687249B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2902111B1 (en) 2006-06-09 2009-03-06 V & M France Soc Par Actions S STEEL COMPOSITIONS FOR SPECIAL PURPOSES
CN104073745A (en) * 2014-07-22 2014-10-01 中材装备集团有限公司 Medium carbon wear-resistant steel used for high temperature working condition and preparation method thereof
CN110918642A (en) * 2019-10-30 2020-03-27 邯郸钢铁集团有限责任公司 Production control method for improving bending degree of 42CrMo bar

Also Published As

Publication number Publication date
JPH10212520A (en) 1998-08-11

Similar Documents

Publication Publication Date Title
CN107109509B (en) It is heat-treated steel, wear properties excellent superhigh intensity molded product and its manufacturing method
JP5433964B2 (en) Method for producing high-tensile steel sheet with excellent bending workability and low-temperature toughness
JP5181775B2 (en) High strength steel material excellent in bending workability and low temperature toughness and method for producing the same
JP2952929B2 (en) Duplex stainless steel and method for producing the same
JP2003328079A (en) Steel pipe superior in workability for cold forging, and manufacturing method therefor
JP3687249B2 (en) 2.25Cr steel softening heat treatment method
JPS5867854A (en) Preparation of nickel base high chromium alloy excellent in stress, corrosion cracking resistance
JPH09170046A (en) Martensitic non-heat treated steel with high strength and high toughness and its production
JPH05263196A (en) Ferritic heat resistant steel excellent in high temperature strength and toughness
JPH0699741B2 (en) Processing method of high Cr ferritic steel for high temperature
JP3687206B2 (en) Method for softening heat treatment of 5Cr steel
JPH11302785A (en) Steel for seamless steel pipe
JP3620099B2 (en) Method for producing Cr-Mo steel excellent in strength and toughness
JP4006857B2 (en) Cold forging steel for induction hardening, machine structural parts and manufacturing method thereof
JP3285179B2 (en) Ferritic stainless steel sheet and its manufacturing method
JP4010017B2 (en) Method for producing martensitic stainless steel pipe with excellent SSC resistance
JP3804087B2 (en) Manufacturing method of hot-bending steel pipe
JPS63213620A (en) Manufacture of high strength steel pipe joint
JP3895291B2 (en) Softening heat treatment method for high strength 9Cr steel pipe
JPH1192860A (en) Steel having ultrafine ferritic structure
JPH0735548B2 (en) Method for producing high-Cr ferritic heat-resistant steel pipe having high creep rupture strength
JPS5952207B2 (en) Manufacturing method of low yield ratio, high toughness, high tensile strength steel plate
JPH0297619A (en) Method for forming low-alloy steel for high-temperature service
JPH07113126B2 (en) Method for producing stainless steel with excellent resistance to stress corrosion cracking
JPH1030120A (en) Softening heat treatment for choromium-molybdenom steel

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050530

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 9

EXPY Cancellation because of completion of term