JPS6157390B2 - - Google Patents

Info

Publication number
JPS6157390B2
JPS6157390B2 JP58207248A JP20724883A JPS6157390B2 JP S6157390 B2 JPS6157390 B2 JP S6157390B2 JP 58207248 A JP58207248 A JP 58207248A JP 20724883 A JP20724883 A JP 20724883A JP S6157390 B2 JPS6157390 B2 JP S6157390B2
Authority
JP
Japan
Prior art keywords
temperature
hot working
conditions
based alloy
heating temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58207248A
Other languages
Japanese (ja)
Other versions
JPS60100655A (en
Inventor
Takeshi Yoshida
Ichiro Sekine
Masaaki Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP58207248A priority Critical patent/JPS60100655A/en
Publication of JPS60100655A publication Critical patent/JPS60100655A/en
Publication of JPS6157390B2 publication Critical patent/JPS6157390B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、結晶粒界に析出して応力腐食割れ
発生の原因となるM23C6型炭化物の析出を抑制
し、一方熱間加工時には積極的に素地中にM7C3
型炭化物を均一微細に析出させることによつて耐
応力腐食割れ性のすぐれた高Cr含有Ni基合金部
材を製造する方法に関するものである。 従来、例えば高温高圧にさらされる軽水型原子
炉の構造部材などの製造には、耐食性向上成分と
してのCr:13〜33%、および加工性向上成分と
してのFe:5〜15%を含有し、さらに必要に応
じて脱酸成分および強度向上成分としてSi、
Mn、Al、Ti、Zr、B、Nb、Ta、W、およびV
などのうちの1種または2種以上をそれぞれ0.1
〜1%含有し、かつ耐応力腐食割れ性を低下させ
る不可避不純物としてのC含有量を0.1%以下と
し、残りがNiとその他の不可避不純物からなる
組成(以上重量%)を有するNi基合金が使用さ
れている。 また、これらの高Cr含有Ni基合金部材は、通
常、インゴツトを、1150〜1250℃の温度で分塊鍛
造した後、加熱温度:1100〜1200℃、加工終了温
度:800℃以上の条件で熱間加工し、必要に応じ
て冷間加工を施し、最終的に歪取り、再結晶化、
あるいは溶体化のための熱処理を施すことによつ
て製造されている。 しかし、このような高Cr含有Ni基合金部材の
製造法においては、熱間加工あるいは熱処理時な
どの冷却過程でM23C6型炭化物が結晶粒界に連続
して析出するのを避けることができず、この結果
Cr欠乏層が形成し、このCr欠乏層は応力腐食割
れの原因となることから、例えば特公昭58−
17823号公報に記載されるような特別な条件での
熱処理を施してCr欠乏層の消失をはかつている
が、これらの熱処理はいずれも長時間を要し、か
つ制御が面倒であるなどの問題点がある。 そこで、本発明者等は、上述のような観点か
ら、特別な条件での熱処理を必要とすることな
く、耐応力腐食割れ性のすぐれた高Cr含有Ni基
合金部材を製造すべく研究を行なつた結果、前記
部材の熱間加工に際して、初回の熱間加工におけ
る加熱温度を1080℃以上として完全固溶体とし、
かつ加工終了温度を700〜800℃としてM7C3型炭
化物が粒界および粒内を問わず、素地中に積極的
に均一微細に分散析出した組織を得るようにし、
引続いての2回以降の熱間加工を、前記初回熱間
加工時に析出した微細なM7C3型炭化物を固溶さ
せないために、加熱温度を900〜1050℃とし、加
工終了温度を初回熱間加工の場合と同じく700〜
800℃とした条件で行ない、さらに最終的に施さ
れる再結晶化あるいは歪取りのための熱処理を、
750〜1050℃の温度で行なつて、上記の熱間加工
時に形成された組織、すなわち微細なM7C3型炭
化物が均一に分散析出した組織が損なわれないよ
うにすると、この結果得られた高Cr含有Ni基合
金部材は、Cr欠乏層発生の原因となるM23C6型炭
化物の連続した結晶粒界析出がないことから、す
ぐれた耐応力腐食割れ性を具備するという知見を
得たのである。 この発明は、上記知見にもとづいてなされたも
のであつて、高Cr含有Ni基合金部材の製造法に
おいて、初回の熱間加工条件を、加熱温度:1080
℃以上、加工終了温度:700〜800℃とし、2回以
降の熱間加工条件を、加熱温度:900〜1050℃、
加工終了温度:700〜800℃とした条件で熱間加工
を行ない、さらに前記の熱間加工、あるいは前記
の熱間加工および通常の条件での冷間加工後の部
材に対して、750〜1050℃の温度で歪取りあるい
は再結晶化のための熱処理を施すことによつて、
耐応力腐食割れ性のすぐれた高Cr含有Ni基合金
部材を製造する方法に特徴を有するものである。 つぎに、この発明の高Cr含有Ni基合金部材の
製造法において、熱間加工条件および熱処理条件
を上記の通りに限定した理由を説明する。 (a) 初回熱間加工の加熱温度 その加熱温度が1080℃未満では、前工程の分
塊鍛造あるいは熱間鍛造で析出したM23C6型炭
化物を完全に固溶させることができないので、
1080℃以上の温度に加熱しなければならない
が、1200℃を越えると結晶粒が粗大化するよう
になるので、1200℃を越えて加熱することは望
ましくない。 (b) 初回熱間加工の加工終了温度 初回の熱間加工に際しては、耐応力腐食割れ
性劣化の原因となるM23C6型炭化物を析出させ
ることなく、耐応力腐食割れ性に何らの悪影響
も及ぼさない微細なM7C3型炭化物を析出させ
るようにするものであるため、その加工終了温
度をM7C3型炭化物の析出速度が最も速い温度
域である700〜800℃とすることによつてM7C3
型炭化物を積極的に析出させるようにするので
ある。したがつて、加工終了温度が800℃を越
えた高温であるとM7C3型炭化物の析出が緩慢
となつて望ましくなく、一方その加工終了温度
が700℃未満になるとM23C6型炭化物が析出す
るようになるのであつて、かかる理由から、そ
の加工終了温度を700〜800℃と定めた。 (c) 2回以降の熱間加工における加熱温度 その加熱温度が1050℃を越えると、初回熱間
加工で折角析出させた微細なM7C3型炭化物が
再び固溶するようになり、一方、その加熱温度
が、900℃未満になると熱間加工を工業的に実
施することが困難になることから、その加熱温
度を900〜1050℃と定めた。 (d) 2回以降の熱間加工における加工終了温度 2回以降の熱間加工における加工終了温度も
初回熱間加工におけると同じ理由によつて定め
たのであつて、M7C3型炭化物の析出速度の速
い700〜800℃の温度域で熱間加工を終了するよ
うにしたのである。 なお、M7C3型炭化物の析出は、熱間加工に
おける1加熱当りの加工率が20%以上になると
一段と促進されるようになる。また、冷間加工
に際して、中間焼鈍を行なう必要がある場合、
その加熱温度が上記の2回以降の熱間加工にお
ける加熱温度と同じ900〜1050℃となることは
勿論である。 つぎに、この発明の高Cr含有Ni基合金部材の
製造法を実施例により説明する。 実施例 通常の溶解法により、第1表に示される成分組
成をもつた高Cr含有Ni基合金を溶製し、直径:
300mmφ×長さ:1000mmの寸法をもつたインゴツ
トに鋳造した後、いずれも1200℃に加熱して分塊
鍛造を施し、それぞれ第1表に示される厚さのス
ラブとし、ついで同じく第1表に示される条件に
て初回熱間圧延を施し、引続いて同じく第1表に
示される条件にて2回以降の熱間圧延を行ない、
最終的に同じく第1表に示される条件にて再結晶
化のための熱処理(熱処理後の冷却はいずれも急
冷)を施すことによつて本発明法1〜5および比
較法1〜7をそれぞれ実施した。なお、比較法1
〜7は、いずれも熱間加工条件および熱処理条件
のうちのいずれかの条件(第1表に※印を付した
もの)がこの発明の範囲から外れた条件で実施し
たものである。 ついで、上記本発明法1〜5および比較法1〜
7によつて得られた板材について、応力腐食割れ
試験および粒界腐食試験を行なつた。応力腐食割
れ試験は、幅:15mm×長さ:100mm×厚さ:2mm
の板材を2枚重ねてU字型に曲げた、いわゆる2
重U字曲げ試験片を用い、この試験片を、
500ppmのClイオンを含有し、かつ脱気しない
300℃の高温水中に1000時間浸漬の条件で行な
い、試験後、最大応力腐食割れ深さを測定した。
また、粒
This invention suppresses the precipitation of M 23 C 6 type carbide, which precipitates at grain boundaries and causes stress corrosion cracking, while actively suppressing M 7 C 3 type carbide in the substrate during hot working.
The present invention relates to a method for producing a high Cr-containing Ni-based alloy member with excellent stress corrosion cracking resistance by uniformly and finely precipitating type carbides. Conventionally, for example, in the production of structural members of light water reactors exposed to high temperature and high pressure, Cr: 13 to 33% as a corrosion resistance improving component and Fe: 5 to 15% as a workability improving component are contained. Furthermore, if necessary, Si can be added as a deoxidizing component and a strength improving component.
Mn, Al, Ti, Zr, B, Nb, Ta, W, and V
0.1 each of one or more of the following.
A Ni-based alloy containing ~1% and having a composition (wt%) in which the C content as an unavoidable impurity that reduces stress corrosion cracking resistance is 0.1% or less, and the remainder is Ni and other unavoidable impurities. It is used. In addition, these high Cr-containing Ni-based alloy members are usually produced by blooming an ingot at a temperature of 1150 to 1250°C, and then heat treatment at a heating temperature of 1100 to 1200°C and a processing finish temperature of 800°C or higher. Temperature processing, cold working as necessary, final distortion removal, recrystallization,
Alternatively, it is manufactured by applying heat treatment for solution treatment. However, in the manufacturing method of such high Cr-containing Ni-based alloy members, it is necessary to avoid continuous precipitation of M 23 C 6 type carbides at grain boundaries during hot working or cooling during heat treatment. Not possible, this result
A Cr-depleted layer is formed, and this Cr-depleted layer causes stress corrosion cracking.
The Cr-depleted layer has been removed by heat treatment under special conditions as described in Publication No. 17823, but all of these heat treatments require a long time and have problems such as being troublesome to control. There is a point. Therefore, from the above-mentioned viewpoint, the present inventors conducted research in order to manufacture a high Cr-containing Ni-based alloy member with excellent stress corrosion cracking resistance without requiring heat treatment under special conditions. As a result, when hot working the member, the heating temperature in the first hot working is set to 1080°C or higher to make it a complete solid solution,
In addition, the processing end temperature is set at 700 to 800°C to obtain a structure in which M 7 C 3 type carbide is actively uniformly and finely dispersed and precipitated in the matrix, regardless of the grain boundaries and inside the grains.
In order to prevent the fine M 7 C 3 type carbide precipitated during the first hot working from becoming a solid solution, the heating temperature is set at 900 to 1050°C in the subsequent two hot workings, and the working end temperature is set to the same temperature as the first time. 700~ as in the case of hot processing
It is carried out at 800℃, and then the final heat treatment for recrystallization or strain relief is carried out.
If the process is carried out at a temperature of 750 to 1050°C to avoid damaging the structure formed during the above hot working, that is, the structure in which fine M 7 C 3 type carbides are uniformly dispersed and precipitated, this result can be obtained. It was found that high Cr-containing Ni-based alloy parts have excellent stress corrosion cracking resistance because there is no continuous grain boundary precipitation of M 23 C 6 type carbides, which causes the formation of Cr-depleted layers. It was. This invention has been made based on the above knowledge, and in a method for manufacturing a high Cr-containing Ni-based alloy member, the initial hot working conditions are set to a heating temperature of 1080° C.
℃ or higher, processing end temperature: 700 to 800℃, and hot processing conditions from the second time onwards: heating temperature: 900 to 1050℃,
Processing end temperature: Hot working is carried out under conditions of 700 to 800°C, and the member after the above hot working or the above hot working and cold working under normal conditions is heated to 750 to 1050°C. By applying heat treatment for strain relief or recrystallization at a temperature of ℃,
The present invention is characterized by a method for producing a high Cr-containing Ni-based alloy member with excellent stress corrosion cracking resistance. Next, the reason why the hot working conditions and heat treatment conditions are limited as described above in the method for manufacturing a high Cr-containing Ni-based alloy member of the present invention will be explained. (a) Heating temperature for initial hot working If the heating temperature is less than 1080°C, the M 23 C 6 type carbide precipitated in the previous process of blooming or hot forging cannot be completely dissolved.
It is necessary to heat the material to a temperature of 1080°C or higher, but it is not desirable to heat it above 1200°C because crystal grains will become coarser if the temperature exceeds 1200°C. (b) Processing end temperature of initial hot working During the initial hot working, M 23 C 6 type carbide, which causes deterioration of stress corrosion cracking resistance, is not precipitated and there is no adverse effect on stress corrosion cracking resistance. Since the purpose is to precipitate fine M 7 C 3 type carbides that do not cause any damage, the processing end temperature should be set at 700 to 800°C, which is the temperature range in which the precipitation rate of M 7 C 3 type carbides is fastest. by M 7 C 3
The purpose is to actively precipitate type carbides. Therefore, if the finishing temperature is too high to exceed 800°C, the precipitation of M 7 C 3 type carbide will be slow, which is undesirable, whereas if the finishing temperature is less than 700°C, M 23 C 6 type carbide will precipitate. For this reason, the processing completion temperature was set at 700 to 800°C. (c) Heating temperature in second and subsequent hot workings When the heating temperature exceeds 1050°C, the fine M 7 C 3 type carbide that was painstakingly precipitated in the first hot working becomes solid solution again; If the heating temperature is less than 900°C, it will be difficult to carry out hot working industrially, so the heating temperature was set at 900 to 1050°C. (d) Processing end temperature in the second and subsequent hot workings The processing finishing temperature in the second and subsequent hot workings was determined for the same reason as the first hot working. The hot working was completed in the temperature range of 700 to 800°C, where the precipitation rate is high. Note that the precipitation of M 7 C 3 type carbides is further accelerated when the processing rate per heating in hot working becomes 20% or more. In addition, if it is necessary to perform intermediate annealing during cold working,
Of course, the heating temperature is 900 to 1050°C, which is the same as the heating temperature in the second and subsequent hot workings. Next, the method for manufacturing a high Cr-containing Ni-based alloy member of the present invention will be explained using examples. Example A high Cr-containing Ni-based alloy having the composition shown in Table 1 was melted using a normal melting method, and the diameter:
After casting into ingots with dimensions of 300mmφ x length: 1000mm, they were heated to 1200℃ and subjected to blooming forging to form slabs with the thickness shown in Table 1. The first hot rolling was performed under the conditions shown, followed by the second and subsequent hot rolling under the conditions also shown in Table 1,
Finally, methods 1 to 5 of the present invention and comparative methods 1 to 7 were obtained by heat treatment for recrystallization (cooling after heat treatment was rapid cooling) under the conditions shown in Table 1. carried out. Furthermore, comparative method 1
Tests 7 to 7 were all carried out under conditions in which one of the hot working conditions and heat treatment conditions (marked with * in Table 1) was outside the scope of the present invention. Next, the above-mentioned methods 1 to 5 of the present invention and comparative methods 1 to 5
A stress corrosion cracking test and an intergranular corrosion test were conducted on the plate material obtained in Example 7. For stress corrosion cracking test, width: 15mm x length: 100mm x thickness: 2mm
The so-called 2.
Using a heavy U-shaped bending test piece, this test piece was
Contains 500ppm Cl ions and does not degas
The test was conducted under the condition of immersion in high-temperature water at 300°C for 1000 hours, and after the test, the maximum stress corrosion cracking depth was measured.
Also, grain

【表】 界腐食試験は、ASTM・G28にもとづき、硫酸・
硫酸第2鉄溶液中における粒界腐食速度を測定す
ることにより行なつた。これらの測定結果を第1
表に合せて示した。 第1表に示される結果から、本発明法1〜5に
よつて製造された高Cr含有Ni基合金部材におい
ては、結晶粒界にM23C6型炭化物の析出がなく、
したがつてCr欠乏層の形成がないことから、す
ぐれた耐応力腐食割れ性を示し、かつ粒界腐食速
度も遅く、すぐれた耐粒界腐食性を示すことが明
らかである。これに対して、比較法1〜7によつ
て製造された高Cr含有Ni基合金板材に見られる
ように、熱間加工条件および熱処理条件のうちの
いずれかの条件でもこの発明の範囲から外れる
と、耐応力腐食割れ性および耐粒界腐食性のすぐ
れた高Cr含有Ni基合金部材を得ることができな
いことが明らかである。 上述のように、この発明の方法によれば、特別
な熱処理条件を必要とすることなく、単に熱間加
工における加熱温度および加工終了温度、並びに
最終的に施される熱処理における加熱温度を特定
するだけで、耐応力腐食割れ性および耐粒界腐食
性のすぐれた高Cr含有Ni基合金部材を製造する
ことができるのである。
[Table] The field corrosion test is based on ASTM G28.
This was done by measuring the intergranular corrosion rate in a ferric sulfate solution. These measurement results are the first
Shown in the table. From the results shown in Table 1, in the high Cr-containing Ni-based alloy members manufactured by methods 1 to 5 of the present invention, there was no precipitation of M 23 C 6 type carbides at grain boundaries;
Therefore, since there is no formation of a Cr-depleted layer, it is clear that the material exhibits excellent stress corrosion cracking resistance and also has a slow intergranular corrosion rate, exhibiting excellent intergranular corrosion resistance. On the other hand, as seen in the high Cr-containing Ni-based alloy sheets manufactured by Comparative Methods 1 to 7, any of the hot working conditions and heat treatment conditions are outside the scope of the present invention. It is clear that it is not possible to obtain a high Cr-containing Ni-based alloy member with excellent stress corrosion cracking resistance and intergranular corrosion resistance. As described above, according to the method of the present invention, the heating temperature and processing end temperature in hot working and the heating temperature in the final heat treatment are simply specified without requiring special heat treatment conditions. By simply using this method, a high Cr-containing Ni-based alloy member with excellent stress corrosion cracking resistance and intergranular corrosion resistance can be manufactured.

Claims (1)

【特許請求の範囲】[Claims] 1 高Cr含有Ni基合金部材の製造法において、
分塊鍛造後の初回の熱間加工条件を、加熱温度:
1080℃以上、加工終了温度:700〜800℃とし、2
回以降の熱間加工条件を、加熱温度:900〜1050
℃、加工終了温度:700〜800℃とした条件で熱間
加工を行ない、さらに前記の熱間加工、あるいは
前記の熱間加工および通常の条件での冷間加工後
の部材に対して、750〜1050℃の温度で歪取りお
よび再結晶化のための熱処理を施すことを特徴と
する耐応力腐食割れ性のすぐれた高Cr含有Ni基
合金部材の製造法。
1 In the manufacturing method of high Cr-containing Ni-based alloy members,
The initial hot working conditions after blooming forging are heating temperature:
1080℃ or higher, processing end temperature: 700-800℃, 2
After the hot processing conditions, heating temperature: 900 ~ 1050
℃, processing end temperature: 700 to 800℃, and then the above-mentioned hot working, or the above-mentioned hot working and cold working under normal conditions. A method for manufacturing a high Cr-containing Ni-based alloy member with excellent stress corrosion cracking resistance, which comprises performing heat treatment for strain relief and recrystallization at a temperature of ~1050°C.
JP58207248A 1983-11-04 1983-11-04 Production of high cr-containing ni-base alloy member having excellent resistance to stress corrosion cracking Granted JPS60100655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58207248A JPS60100655A (en) 1983-11-04 1983-11-04 Production of high cr-containing ni-base alloy member having excellent resistance to stress corrosion cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58207248A JPS60100655A (en) 1983-11-04 1983-11-04 Production of high cr-containing ni-base alloy member having excellent resistance to stress corrosion cracking

Publications (2)

Publication Number Publication Date
JPS60100655A JPS60100655A (en) 1985-06-04
JPS6157390B2 true JPS6157390B2 (en) 1986-12-06

Family

ID=16536661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58207248A Granted JPS60100655A (en) 1983-11-04 1983-11-04 Production of high cr-containing ni-base alloy member having excellent resistance to stress corrosion cracking

Country Status (1)

Country Link
JP (1) JPS60100655A (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5019179A (en) * 1989-03-20 1991-05-28 Mitsubishi Metal Corporation Method for plastic-working ingots of heat-resistant alloy containing boron
US20040221929A1 (en) 2003-05-09 2004-11-11 Hebda John J. Processing of titanium-aluminum-vanadium alloys and products made thereby
US7837812B2 (en) 2004-05-21 2010-11-23 Ati Properties, Inc. Metastable beta-titanium alloys and methods of processing the same by direct aging
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
JP5550374B2 (en) * 2010-02-05 2014-07-16 Mmcスーパーアロイ株式会社 Ni-base alloy and method for producing Ni-base alloy
US9255316B2 (en) 2010-07-19 2016-02-09 Ati Properties, Inc. Processing of α+β titanium alloys
US8499605B2 (en) 2010-07-28 2013-08-06 Ati Properties, Inc. Hot stretch straightening of high strength α/β processed titanium
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
US8613818B2 (en) 2010-09-15 2013-12-24 Ati Properties, Inc. Processing routes for titanium and titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
US8652400B2 (en) 2011-06-01 2014-02-18 Ati Properties, Inc. Thermo-mechanical processing of nickel-base alloys
US9050647B2 (en) 2013-03-15 2015-06-09 Ati Properties, Inc. Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864364A (en) * 1981-10-14 1983-04-16 Sumitomo Metal Ind Ltd Manufacture of ni-cr alloy with superior corrosion resistance
JPS5867854A (en) * 1981-10-16 1983-04-22 Sumitomo Metal Ind Ltd Preparation of nickel base high chromium alloy excellent in stress, corrosion cracking resistance
JPS58153763A (en) * 1982-03-05 1983-09-12 Sumitomo Metal Ind Ltd Preparation of nickel-chromium alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864364A (en) * 1981-10-14 1983-04-16 Sumitomo Metal Ind Ltd Manufacture of ni-cr alloy with superior corrosion resistance
JPS5867854A (en) * 1981-10-16 1983-04-22 Sumitomo Metal Ind Ltd Preparation of nickel base high chromium alloy excellent in stress, corrosion cracking resistance
JPS58153763A (en) * 1982-03-05 1983-09-12 Sumitomo Metal Ind Ltd Preparation of nickel-chromium alloy

Also Published As

Publication number Publication date
JPS60100655A (en) 1985-06-04

Similar Documents

Publication Publication Date Title
JPS6157390B2 (en)
JPS6159390B2 (en)
JPS59159961A (en) Superplastic al alloy
JP2002146497A (en) METHOD FOR MANUFACTURING Ni-BASED ALLOY
JP4229307B2 (en) Aluminum alloy plate for aircraft stringers having excellent stress corrosion cracking resistance and method for producing the same
US2859143A (en) Ferritic aluminum-iron base alloys and method of producing same
US2799602A (en) Process for producing stainless steel
JPS5850299B2 (en) Manufacturing method for precipitation-strengthened high-strength cold-rolled steel sheets
CN116727443A (en) Nickel-based alloy coiled plate and production method thereof
JPS5953347B2 (en) Manufacturing method of aircraft stringer material
JPH0138866B2 (en)
JP4414588B2 (en) Ni-based alloy with excellent surface quality and method for producing the same
JPH09217149A (en) Large-sized casting and forging, made of duplex stainless steel excellent in corrosion resistance and toughness, and their production
JPH0461057B2 (en)
JP2858069B2 (en) Stress corrosion cracking resistant high strength aluminum alloy sheet and method for producing the same
KR850001234B1 (en) Method for producing aircraft stringer material(o-material)
JPH05339688A (en) Production of molding material for casting metal
JPH08239739A (en) Heat tratment for ni-base alloy excellent in corrosion resistance
JPS6123862B2 (en)
JPH05202444A (en) Steel plate excellent in toughness at low temperature and its production
JPS61170549A (en) Production of aluminium foil
JPS6324062B2 (en)
JPH046233A (en) Continuous casting mold material made of cu alloy having high cooling power and its manufacture
JPH0236669B2 (en)
JPH0610308B2 (en) Cold rolling method for iron-copper alloy sheet