JPH08239739A - Heat tratment for ni-base alloy excellent in corrosion resistance - Google Patents

Heat tratment for ni-base alloy excellent in corrosion resistance

Info

Publication number
JPH08239739A
JPH08239739A JP6708495A JP6708495A JPH08239739A JP H08239739 A JPH08239739 A JP H08239739A JP 6708495 A JP6708495 A JP 6708495A JP 6708495 A JP6708495 A JP 6708495A JP H08239739 A JPH08239739 A JP H08239739A
Authority
JP
Japan
Prior art keywords
less
cooling
base alloy
stress corrosion
corrosion cracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6708495A
Other languages
Japanese (ja)
Other versions
JP3140319B2 (en
Inventor
Hitomi Ito
眸 伊東
Takanari Kusakabe
隆也 日下部
Haruhiko Kajimura
治彦 梶村
Mamoru Inoue
守 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Nippon Steel Corp
Original Assignee
Mitsubishi Heavy Industries Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Sumitomo Metal Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP07067084A priority Critical patent/JP3140319B2/en
Publication of JPH08239739A publication Critical patent/JPH08239739A/en
Application granted granted Critical
Publication of JP3140319B2 publication Critical patent/JP3140319B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To improve stress corrosion cracking resistance under high-temp. and high-concentration alkaline environments by specifying the composition of an Ni-base alloy and the heating and cooling conditions at the final annealing, respectively. CONSTITUTION: The Ni-base alloy has a composition consisting of, by weight, 0.015-0.05% C, <=0.5% Si, <=0.015% P, >35-40% Cr, 50-57% Ni, <=0.5% Al, and the balance essentially Fe. As the conditions for subjecting an ingot of this Ni-base alloy to rolling and to final annealing, a treatment, consisting of heating up to a temp. between 1000-1200 deg.C, holding there for 1-60min, and cooling through the temp. region between 900 and 500 deg.C at (1 to 100) deg.C/sec cooling rate, is preformed. By the control of cooling velocity at cooling at the time of final annealing, grain boundary Cr carbides can be sufficiently precipitated and the occurrence of Cr-deficient layer can be prevented and, as a result, excellent stress corrosion cracking resistance can be obtained. Further, treatment time can be shortened because the necessity of two-stage heat treatment can be obviated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、加圧水型原子力発電所
において使用される熱交換器伝熱管の管材として用いら
れる耐応力腐食割れ性に優れたNi基合金の熱処理方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat treatment method for a Ni-base alloy having excellent resistance to stress corrosion cracking, which is used as a tube material of a heat exchanger tube used in a pressurized water nuclear power plant.

【0002】[0002]

【従来の技術】現在、高温高圧水にさらされる化学プラ
ントや原子力(軽水炉)プラントの熱交換器伝熱管の管
材としては、例えば特開昭59−232246号公報に
開示されているような、Cr:25〜35%、Ni:4
0〜70%のAlloy690合金(商品名、60%N
i−30%Cr−9%Fe合金)などのNi基合金が使
用されている。
2. Description of the Related Art At present, as a tube material for a heat exchanger heat transfer tube of a chemical plant or a nuclear power plant (light water reactor) which is exposed to high-temperature and high-pressure water, Cr as disclosed in, for example, JP-A-59-232246 is used. : 25-35%, Ni: 4
0-70% Alloy690 alloy (trade name, 60% N
Ni-based alloys such as i-30% Cr-9% Fe alloy) have been used.

【0003】しかし、実際のプラントにおける水質環境
は、例えば280℃程度のpHが9.2〜9.5という
ような高温弱アルカリ環境であるが、伝熱管と管支持板
の隙間部でアルカリ濃縮が生じる懸念があり、このよう
な高温高濃度アルカリ環境下では、前記合金といえども
耐応力腐食割れ性(耐SCC性)が十分に確保できると
はいえない。
However, the water quality environment in an actual plant is a high temperature weak alkaline environment such as a pH of 9.2 ° C. to 9.5 at about 280 ° C., but alkali concentration in the gap between the heat transfer tube and the tube support plate. Under such a high temperature and high concentration alkaline environment, it cannot be said that even the above alloys can sufficiently secure the stress corrosion cracking resistance (SCC resistance).

【0004】このような高温高濃度アルカリ環境下にお
ける耐応力腐食割れ性を向上させるため、特開昭59−
85850号公報や特開昭60−50134号公報に開
示された発明では、最終熱処理後に更に特殊熱処理とし
て、600〜750℃で0.1〜100時間保持した
後、徐冷するという2段階の熱処理を行なっている。
In order to improve the resistance to stress corrosion cracking under such a high temperature and high concentration alkaline environment, Japanese Patent Laid-Open No. 59-59-
In the inventions disclosed in JP-A-85850 and JP-A-60-50134, a special heat treatment after the final heat treatment is a two-stage heat treatment of holding at 600 to 750 ° C. for 0.1 to 100 hours and then gradually cooling. Are doing.

【0005】前記2段階の熱処理は、粒界にCrカーバ
イドを析出させると共に、Crカーバイドが析出したこ
とによる粒界近傍でのCr欠乏層を回復させるまで長時
間の処理が必要である。また、この熱処理は最終処理で
あり、処理後そのままでプラントに使用できるように、
酸化被膜の形成を防ぐため通常真空中で熱処理が行なわ
れる。このように、長時間を要する2段階の熱処理が必
要であり、また真空処理が行なわれるため、製造コスト
の高騰は避けられない。
The above-mentioned two-step heat treatment requires a long period of time for precipitating Cr carbide in the grain boundaries and for recovering the Cr-deficient layer near the grain boundaries due to the precipitation of Cr carbide. Also, this heat treatment is the final treatment, so that it can be used in the plant as it is after treatment.
In order to prevent the formation of an oxide film, heat treatment is usually performed in vacuum. As described above, since a two-step heat treatment that requires a long time is required and a vacuum treatment is performed, an increase in manufacturing cost cannot be avoided.

【0006】[0006]

【発明が解決しようとする課題】前記のごとく、従来の
耐応力腐食割れ性に優れたNi基合金の熱処理方法は、
いずれも2段階の熱処理が必要で処理に長時間を要し、
製造コストが高騰するという問題があった。
As described above, the conventional heat treatment method for Ni-base alloys having excellent resistance to stress corrosion cracking is as follows.
Both require a two-step heat treatment, which requires a long time for treatment.
There has been a problem that manufacturing costs have risen.

【0007】本発明は、前記従来の方法に見られる問題
点を排除し、高温高濃度アルカリ環境に下における耐応
力腐食割れ性に優れたNi基合金の熱処理方法を提供す
るものである。
The present invention eliminates the problems found in the above-mentioned conventional methods and provides a heat treatment method for a Ni-base alloy which is excellent in stress corrosion cracking resistance under a high temperature and high concentration alkaline environment.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するた
め、種々の合金について検討した結果、Crが35%を
超えたNi基合金では、前記従来方法のように2段階熱
処理を施さなくても、最終焼鈍における冷却時の冷却速
度を制御することにより、粒界Crカーバイドを析出さ
せ、しかも顕著なCr欠乏層の発生も押さえ得ることが
わかった。また更に、昇温時の加熱速度を制御すること
により、粒界Crカーバイドの析出量を増加させ、耐応
力腐食割れ性を向上できることがわかった。本発明は、
前記知見に基づいて完成されたものである。
In order to achieve the above object, as a result of studying various alloys, as a result, in a Ni-based alloy having a Cr content of more than 35%, a two-step heat treatment is not required unlike the conventional method. It was found that grain boundary Cr carbide can be precipitated and a remarkable Cr-deficient layer can be suppressed by controlling the cooling rate during cooling in the final annealing. Further, it was found that by controlling the heating rate at the time of temperature rise, the precipitation amount of grain boundary Cr carbide can be increased and the stress corrosion cracking resistance can be improved. The present invention
It was completed based on the above findings.

【0009】すなわち、本発明の第1の耐食性に優れた
Ni基合金の熱処理方法は、重量%で、C:0.015
〜0.05%、Si:0.5%以下、P:0.015%
以下、Cr:35%を超え40%以下、Ni:50〜5
7%、Al:0.5%以下、残部は実質的にFeからな
るNi基合金の製造時の最終焼鈍において、1000〜
1200℃の温度域に加熱して1〜60分間保持した
後、900〜500℃の温度範囲を冷却速度1〜100
℃/secで冷却することにある。
That is, the first heat treatment method for a Ni-base alloy having excellent corrosion resistance according to the present invention is C: 0.015% by weight.
~ 0.05%, Si: 0.5% or less, P: 0.015%
Below, Cr: more than 35% and 40% or less, Ni: 50 to 5
7%, Al: 0.5% or less, and the balance of 1000 to 1000 in the final annealing during the production of the Ni-based alloy consisting essentially of Fe.
After heating to a temperature range of 1200 ° C and holding for 1 to 60 minutes, a temperature range of 900 to 500 ° C is cooled at a cooling rate of 1 to 100.
It is to cool at ° C / sec.

【0010】また、本発明の第2の耐食性に優れたNi
基合金の熱処理方法は、重量%で、C:0.015〜
0.05%、Si:0.5%以下、P:0.015%以
下、Cr:35%を超え40%以下、Ni:50〜57
%、Al:0.5%以下、残部は実質的にFeからなる
Ni基合金の製造時の最終焼鈍において、昇温速度15
0〜500℃/minで1000〜1200℃の温度域
に加熱して1〜60分間保持した後、900〜500℃
の温度範囲を冷却速度1〜100℃/secで冷却する
ことにある。
The second corrosion resistant Ni of the present invention is also used.
The heat treatment method for the base alloy is C: 0.015 by weight%.
0.05%, Si: 0.5% or less, P: 0.015% or less, Cr: more than 35% and 40% or less, Ni: 50 to 57.
%, Al: 0.5% or less, the balance is substantially 15% in the final annealing during the production of the Ni-based alloy consisting essentially of Fe.
After heating in the temperature range of 1000 to 1200 ° C at 0 to 500 ° C / min and holding for 1 to 60 minutes, 900 to 500 ° C
In the temperature range of 1 to 100 ° C./sec.

【0011】[0011]

【作用】本発明によれば、2段階熱処理を施さなくて
も、最終焼鈍における冷却時の冷却速度を制御すること
により、粒界Crカーバイドを十分に析出させ、しかも
顕著なCr欠乏層の発生も押さえることができ、優れた
耐応力腐食割れ性が得られる。また、更に、昇温時の加
熱速度を制御することにより、粒界Crカーバイドの析
出量を増加させ、耐応力腐食割れ性をより一層向上でき
る。しかも、2段階熱処理を必要としないため、処理時
間が節減され製造コストの低減に有効である。
According to the present invention, grain boundary Cr carbide is sufficiently precipitated by controlling the cooling rate at the time of cooling in the final annealing without performing the two-step heat treatment, and a remarkable Cr-deficient layer is generated. Can also be suppressed and excellent stress corrosion cracking resistance can be obtained. Further, by controlling the heating rate at the time of temperature rise, the precipitation amount of grain boundary Cr carbide can be increased, and the stress corrosion cracking resistance can be further improved. Moreover, since the two-step heat treatment is not required, the processing time is saved and the manufacturing cost is effectively reduced.

【0012】本発明において使用する合金の化学成分組
成を限定したのは次の理由による。Cは、粒界でのCr
カーバイドを析出するのに必須の元素であり、所要の析
出量を得るには0.015%以上が必要である。しか
し、0.05%を超えると強度が高くなりすぎ、製管性
が低下すると共に、最終焼鈍におけるCrカーバイドの
粒界析出によりCr欠乏層の形成が起こり耐応力腐食割
れ性が劣化する。そのため、0.015〜0.05%に
限定した。
The reason for limiting the chemical composition of the alloy used in the present invention is as follows. C is Cr at the grain boundary
It is an essential element for precipitating carbide, and 0.015% or more is necessary to obtain the required amount of precipitation. However, if it exceeds 0.05%, the strength becomes too high, the pipe formability is deteriorated, and a Cr deficient layer is formed due to the precipitation of grain boundaries of Cr carbide in the final annealing to deteriorate the stress corrosion cracking resistance. Therefore, it is limited to 0.015 to 0.05%.

【0013】Siは、脱酸のため必要な元素であるが、
0.3%を超えると高Crフェライトのa’相の析出が
加速されるので上限は0.3%とした。しかし、少なす
ぎると脱酸効果が不十分となるので、0.05%以上含
有することが望ましい。
Si is an element necessary for deoxidation,
If it exceeds 0.3%, the precipitation of the a'phase of high Cr ferrite is accelerated, so the upper limit was made 0.3%. However, if it is too small, the deoxidizing effect will be insufficient, so it is desirable to contain 0.05% or more.

【0014】Mnは、Siと同様に脱酸のため必要な元
素であり、0.5%以下を含有させる。
Mn is an element necessary for deoxidation like Si, and contains 0.5% or less.

【0015】Pは、不純物として含まれるが、粒界に偏
析して耐応力腐食割れ性を劣化させるため、0.015
%以下に限定した。
Although P is contained as an impurity, it segregates at the grain boundaries and deteriorates the stress corrosion cracking resistance.
% Or less.

【0016】Crは、Ni基合金の耐応力腐食割れ性を
維持するのに必要不可欠な元素であり、35%未満では
高温高圧水にさらされる熱交換器伝熱管として要求され
る耐食性が確保できず、また40%を超えると高Crフ
ェライトのa’相の析出が加速されるため、35〜40
%に限定した。
Cr is an essential element for maintaining the stress corrosion cracking resistance of the Ni-based alloy, and if it is less than 35%, the corrosion resistance required for a heat exchanger heat transfer tube exposed to high temperature and high pressure water can be secured. If it exceeds 40%, the precipitation of the a'phase of high Cr ferrite is accelerated, so that 35-40
Limited to%.

【0017】Niは、合金の主成分であり、組織を安定
させ、高Crフェライトのa’相の析出を抑制するため
50%以上の含有が必要である。また、耐食性の点から
は上限を定める必要はないが、Cr等他の合金元素の添
加割合を考慮して上限を57%とし、50〜57%に限
定した。
Ni is a main component of the alloy, and it is necessary to contain Ni in an amount of 50% or more in order to stabilize the structure and suppress the precipitation of the a'phase of high Cr ferrite. Although it is not necessary to set the upper limit from the viewpoint of corrosion resistance, the upper limit was set to 57% in consideration of the addition ratio of other alloy elements such as Cr, and was limited to 50 to 57%.

【0018】Alは、Si及びMnと同様に脱酸作用を
有する元素であるが、0.5%を超えると合金の清浄度
を低下させるため、0.5%以下に限定した。しかし、
添加量が少なすぎると脱酸効果が十分でなく熱間加工性
の劣化を招くので0.05%以上を含有することが望ま
しい。
Al is an element having a deoxidizing action like Si and Mn, but if it exceeds 0.5%, the cleanliness of the alloy is lowered, so the content is limited to 0.5% or less. But,
If the addition amount is too small, the deoxidizing effect is not sufficient and the hot workability is deteriorated. Therefore, it is preferable to contain 0.05% or more.

【0019】前記以外の成分元素としてTiがあるが、
TiはNと化合してTiNあるいはTi(C,N)とし
てBを固定し、熱間加工性の改善あるいは強度の向上に
有効な元素であり、0.5%以下含有させることが望ま
しい。
Although Ti is a component element other than the above,
Ti is an element effective in improving the hot workability and the strength by fixing B as TiN or Ti (C, N) by combining with N, and it is desirable to contain 0.5% or less.

【0020】次に、本発明における熱処理を限定した理
由について説明する。焼鈍温度は、1000℃未満では
十分な焼鈍効果が得られず、かつ固溶していない炭化物
量が多く強度が高くなりすぎることと、固溶C量が少な
くなるため冷却速度の制御による粒界への炭化物析出量
が現象するため、十分な耐食性が確保でず、また120
0℃を超えると結晶粒径が大きくなりすぎ、強度の低下
を招くため、1000〜1200℃に限定した。また、
この際の焼鈍時間は、1分未満ではCの固溶が十分に得
られないため、1分以上保持する必要がある。しかし、
60分を超えて長く保持しても焼鈍効果には変わりが見
られないので、1分〜60分とした。
Next, the reason for limiting the heat treatment in the present invention will be explained. If the annealing temperature is less than 1000 ° C, a sufficient annealing effect cannot be obtained, and the amount of undissolved carbides is large and the strength becomes too high, and the amount of solute C decreases, so that the grain boundary is controlled by controlling the cooling rate. Since the amount of carbides deposited on the steel does not occur, sufficient corrosion resistance cannot be ensured.
If the temperature exceeds 0 ° C, the crystal grain size becomes too large and the strength decreases, so the temperature was limited to 1000 to 1200 ° C. Also,
If the annealing time at this time is less than 1 minute, a solid solution of C cannot be sufficiently obtained, and therefore it is necessary to hold for 1 minute or more. But,
Since the annealing effect does not change even if held longer than 60 minutes, it was set to 1 to 60 minutes.

【0021】焼鈍後の冷却速度は、Cr炭化物が析出し
やすい900〜500℃の温度域を制御する必要があ
る。その冷却速度が1℃/sec未満では、粒界への炭
化物析出が多くなるが、析出に伴い粒界近傍でCr欠乏
層が形成されるので、1℃/sec以上の冷却速度が必
要である。しかし、100℃/secを超えると粒界へ
のCr炭化物の析出が不十分となり耐食性が低下する。
そのため、900〜500℃の温度域での冷却速度は1
〜100℃/secに限定した。
It is necessary to control the cooling rate after annealing in the temperature range of 900 to 500 ° C. at which Cr carbides easily precipitate. If the cooling rate is less than 1 ° C./sec, carbide precipitation in the grain boundaries increases, but a Cr-deficient layer is formed in the vicinity of the grain boundaries due to the precipitation, so a cooling rate of 1 ° C./sec or more is required. . However, if it exceeds 100 ° C./sec, the precipitation of Cr carbide at the grain boundaries becomes insufficient and the corrosion resistance decreases.
Therefore, the cooling rate in the temperature range of 900-500 ° C is 1
Limited to -100 ° C / sec.

【0022】前記のごとく、炭化物析出の観点からは焼
鈍時の冷却速度が最も重要であるが、焼鈍温度に加熱す
る際の昇温速度を制御することにより、更にCr炭化物
の析出量を増加させ、耐食性の向上が図れる。一般に、
連続炉での焼鈍では、昇温温度は比較的に遅い(100
℃/min程度)が、昇温温度が遅いと500〜900
℃の温度域で昇温中にCr炭化物が析出し、その後再結
晶や粒成長が起こる。このため、粒内にCr炭化物が数
多く析出した状態となる。このため、粒界への炭化物析
出量を増加させ、耐食性を更に向上させるには、最終焼
鈍時の昇温速度は150℃/min以上とする必要があ
る。しかし、500℃/minを超えると効果が飽和
し、昇温用装置のコストが高くなるので上限は500℃
/minとした。
As described above, the cooling rate during annealing is the most important from the viewpoint of carbide precipitation, but by controlling the rate of temperature increase during heating to the annealing temperature, the precipitation amount of Cr carbide is further increased. The corrosion resistance can be improved. In general,
In annealing in a continuous furnace, the temperature rise is relatively slow (100
(° C / min), but 500-900 when the temperature rise is slow.
Cr carbides precipitate during the temperature rise in the temperature range of ° C, and then recrystallization and grain growth occur. For this reason, a large amount of Cr carbide is precipitated in the grains. Therefore, in order to increase the amount of carbide precipitated at the grain boundaries and further improve the corrosion resistance, it is necessary to set the heating rate at the final annealing to 150 ° C./min or more. However, when the temperature exceeds 500 ° C / min, the effect is saturated and the cost of the temperature raising device becomes high. Therefore, the upper limit is 500 ° C.
/ Min.

【0023】[0023]

【実施例】表1に化学組成を示した本発明の対象合金
a、b、c、dと本発明の対象外の比較合金e、f、g
を真空溶解により溶製した鋳塊に、鍛造、熱間圧延、中
間熱処理及び冷間圧延等を施して、それぞれ最終板厚3
mmの冷間圧延板に仕上げた。そして、表2に示す種々
の条件により最終焼鈍を施した。更に、これらの処理材
から寸法が2×10×40(mm)の腐食試験片と試験
片の平行部寸法が2×3×20(mm)の低歪速度応力
腐食割れ試験片を作製し、下記要領で粒界腐食試験と低
歪速度応力腐食割れ試験(SSRT)を行なった。
EXAMPLES Alloys a, b, c and d of the present invention whose chemical compositions are shown in Table 1 and comparative alloys e, f and g which are not the subject of the present invention
Forging, hot rolling, intermediate heat treatment, cold rolling, etc., are applied to the ingot melted by vacuum melting to obtain a final plate thickness of 3
Finished into a cold rolled plate of mm. Then, final annealing was performed under various conditions shown in Table 2. Further, a corrosion test piece having a size of 2 × 10 × 40 (mm) and a low strain rate stress corrosion cracking test piece having a dimension of a parallel portion of the test piece of 2 × 3 × 20 (mm) were prepared from these treated materials, An intergranular corrosion test and a low strain rate stress corrosion cracking test (SSRT) were carried out as follows.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】(1) 粒界腐食試験 Crカーバイドの粒界析出により形成される粒界でのC
r欠乏層を検出するため、65%HNO3+0.2g/
1Cr6+溶液を用いて、沸騰,24時間の浸漬試験を行
なった。この試験では、Cr欠乏層がある場合には腐食
速度が大きくなる。
(1) Grain boundary corrosion test C at the grain boundary formed by grain boundary precipitation of Cr carbide
To detect the r-deficient layer, 65% HNO 3 +0.2 g /
A 1Cr 6+ solution was used to carry out a boiling and 24-hour immersion test. In this test, the corrosion rate increases when there is a Cr-depleted layer.

【0027】(2) 低歪速度応力腐食割れ試験 耐粒界応力腐食割れ性を検出するため、20%NaOH
水溶液中320℃で定電位低歪速度応力腐食割れ試験を
行なった。電位は、最も応力腐食割れ感受性が高くなる
(腐食電位+100mV)に保った。この環境では、引
張り速度は遅い方が応力腐食割れ感受性が高まるので、
8×10-7-1の歪速度に設定して試験を行なった。破
断後の破面を走査型電子顕微鏡で観察した。その破断面
の粒界破面率により耐粒界応力腐食割れ性を評価した。
(2) Low strain rate stress corrosion cracking test To detect intergranular stress corrosion cracking resistance, 20% NaOH was used.
A constant potential low strain rate stress corrosion cracking test was performed in an aqueous solution at 320 ° C. The potential was kept at the highest level of stress corrosion cracking susceptibility (corrosion potential +100 mV). In this environment, the slower the pulling rate, the higher the sensitivity to stress corrosion cracking.
The test was conducted by setting the strain rate to 8 × 10 -7 S -1 . The fracture surface after fracture was observed with a scanning electron microscope. The intergranular stress corrosion cracking resistance was evaluated by the intergranular fracture surface ratio of the fracture surface.

【0028】その試験結果を表2に示す。比較例11と
してあげたC量が少ないe合金は、本発明と同様の適切
な焼鈍を施しても粒界破面率が大きく耐粒界応力腐食割
れ性が劣る。また、比較例12のC量が多いf合金は、
Crカーバイドの析出が多くなり粒界腐食試験での腐食
速度が大きく、かつ粒界破面率もCr欠乏沿うの生成に
より大きい。更に、比較例13のCr含有量が少ないg
合金は、腐食速度及び粒界破面率が共に大きく耐粒界応
力腐食割れ性の向上は見られない。
The test results are shown in Table 2. The e alloy containing a small amount of C given as Comparative Example 11 has a large intergranular fracture surface ratio and a poor intergranular stress corrosion cracking resistance even when subjected to the appropriate annealing as in the present invention. In addition, the f alloy containing a large amount of C in Comparative Example 12
The precipitation of Cr carbide is increased, the corrosion rate in the intergranular corrosion test is high, and the intergranular fracture surface ratio is also larger in the formation along the Cr deficiency. Furthermore, g with a low Cr content in Comparative Example 13
The alloy has a large corrosion rate and a high intergranular fracture surface ratio, and no improvement in intergranular stress corrosion cracking resistance is observed.

【0029】また、本発明のb合金を使用して、本発明
の焼鈍条件から焼鈍温度が外れている比較例14、焼鈍
時間が短い比較例15、焼鈍後の冷却速度が0.5℃/
secと遅い比較例16及び冷却速度が200℃/se
cと大きい比較例17は、いずれも粒界破面率が大きく
耐粒界応力腐食割れ性の向上は見られない。
Further, using the b alloy of the present invention, Comparative Example 14 in which the annealing temperature deviates from the annealing conditions of the present invention, Comparative Example 15 in which the annealing time is short, and the cooling rate after annealing is 0.5 ° C. /
Comparative Example 16 slow as sec and cooling rate of 200 ° C./se
In Comparative Example 17 where c is large, the intergranular fracture surface ratio is large and no improvement in intergranular stress corrosion cracking resistance is observed.

【0030】一方、本発明のa〜d合金を使用して、本
発明の焼鈍条件で焼鈍した実施例1〜10は、いずれも
粒界破面率は小さく、耐粒界応力腐食割れ性の向上が達
成されていることがわかる。
On the other hand, in Examples 1 to 10 using the alloys a to d of the present invention and annealed under the annealing conditions of the present invention, the intergranular fracture surface ratio is small and the intergranular stress corrosion cracking resistance is low. It can be seen that the improvement has been achieved.

【0031】[0031]

【発明の効果】この発明によれば、耐粒界応力腐食割れ
性の優れたNi基合金を得ることができ、高温高圧水に
さらされる化学プラントや原子力(軽水炉)プラントの
熱交換器伝熱管の管材として最適の合金を提供できる。
また、2段階熱処理を必要としないため、処理時間が節
減され製造コストを低減できる。
According to the present invention, a Ni-base alloy having excellent intergranular stress corrosion cracking resistance can be obtained, and a heat exchanger heat transfer tube for a chemical plant or a nuclear (light water reactor) plant exposed to high-temperature high-pressure water. It is possible to provide an optimal alloy for the pipe material of.
Further, since the two-step heat treatment is not necessary, the processing time can be saved and the manufacturing cost can be reduced.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 梶村 治彦 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 (72)発明者 井上 守 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Haruhiko Kajimura 4-53 Kitahama, Chuo-ku, Osaka City, Osaka Prefecture Sumitomo Metal Industries, Ltd. (72) Mamoru Inoue 4-chome Kitahama, Chuo-ku, Osaka City, Osaka Prefecture No. 33 Sumitomo Metal Industries, Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.015〜0.05
%、Si:0.5%以下、P:0.015%以下、C
r:35%を超え40%以下、Ni:50〜57%、A
l:0.5%以下、残部は実質的にFeからなるNi基
合金の製造時の最終焼鈍において、1000〜1200
℃の温度域に加熱して1〜60分間保持した後、900
〜500℃の温度範囲を冷却速度1〜100℃/sec
で冷却することを特徴とする耐食性に優れたNi基合金
の熱処理方法。
1. C: 0.015 to 0.05 by weight%
%, Si: 0.5% or less, P: 0.015% or less, C
r: more than 35% and 40% or less, Ni: 50 to 57%, A
l: 0.5% or less, the balance is 1000 to 1200 in the final annealing during the production of the Ni-based alloy consisting essentially of Fe.
After heating in the temperature range of ℃ and holding for 1 to 60 minutes, 900
~ 500 ℃ temperature range cooling rate 1-100 ℃ / sec
A method for heat treatment of a Ni-based alloy having excellent corrosion resistance, which comprises cooling with an alloy.
【請求項2】 重量%で、C:0.015〜0.05
%、Si:0.5%以下、P:0.015%以下、C
r:35%を超え40%以下、Ni:50〜57%、A
l:0.5%以下、残部は実質的にFeからなるNi基
合金の製造時の最終焼鈍において、昇温速度150〜5
00℃/minで1000〜1200℃の温度域に加熱
して1〜60分間保持した後、900〜500℃の温度
範囲を冷却速度1〜100℃/secで冷却することを
特徴とする耐食性に優れたNi基合金の熱処理方法。
2. C: 0.015 to 0.05 by weight
%, Si: 0.5% or less, P: 0.015% or less, C
r: more than 35% and 40% or less, Ni: 50 to 57%, A
l: 0.5% or less, the balance is substantially 50% in the final annealing during the production of the Ni-based alloy consisting essentially of Fe
After being heated to a temperature range of 1000 to 1200 ° C. at 00 ° C./min and held for 1 to 60 minutes, the temperature range of 900 to 500 ° C. is cooled at a cooling rate of 1 to 100 ° C./sec. Excellent Ni-based alloy heat treatment method.
JP07067084A 1995-02-28 1995-02-28 Heat treatment method for Ni-base alloy with excellent corrosion resistance Expired - Fee Related JP3140319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07067084A JP3140319B2 (en) 1995-02-28 1995-02-28 Heat treatment method for Ni-base alloy with excellent corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07067084A JP3140319B2 (en) 1995-02-28 1995-02-28 Heat treatment method for Ni-base alloy with excellent corrosion resistance

Publications (2)

Publication Number Publication Date
JPH08239739A true JPH08239739A (en) 1996-09-17
JP3140319B2 JP3140319B2 (en) 2001-03-05

Family

ID=13334668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07067084A Expired - Fee Related JP3140319B2 (en) 1995-02-28 1995-02-28 Heat treatment method for Ni-base alloy with excellent corrosion resistance

Country Status (1)

Country Link
JP (1) JP3140319B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100434784C (en) * 2007-03-06 2008-11-19 江阴市龙山管业有限公司 Nickel chromium and molybdenum alloy steel pipe fitting and producing method thereof
KR101130829B1 (en) * 2009-03-19 2012-04-12 한국원자력연구원 Method of Preventing Initiation of Primary Water Stress Corrosion Cracking of Ni-base Alloy for Nuclear Power Plant
WO2012121390A1 (en) * 2011-03-10 2012-09-13 三菱重工業株式会社 Material for nuclear power device, heat transfer tube for steam generator, steam generator, and nuclear power plant
US10550451B2 (en) * 2015-06-26 2020-02-04 Nippon Steel Corporation Ni-based alloy pipe or tube for nuclear power

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3181280B2 (en) 1999-09-03 2001-07-03 東洋ゴム工業株式会社 Seat cushion pad

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100434784C (en) * 2007-03-06 2008-11-19 江阴市龙山管业有限公司 Nickel chromium and molybdenum alloy steel pipe fitting and producing method thereof
KR101130829B1 (en) * 2009-03-19 2012-04-12 한국원자력연구원 Method of Preventing Initiation of Primary Water Stress Corrosion Cracking of Ni-base Alloy for Nuclear Power Plant
WO2012121390A1 (en) * 2011-03-10 2012-09-13 三菱重工業株式会社 Material for nuclear power device, heat transfer tube for steam generator, steam generator, and nuclear power plant
JP5675958B2 (en) * 2011-03-10 2015-02-25 三菱重工業株式会社 Heat generator tube for steam generator, steam generator and nuclear power plant
US10550451B2 (en) * 2015-06-26 2020-02-04 Nippon Steel Corporation Ni-based alloy pipe or tube for nuclear power

Also Published As

Publication number Publication date
JP3140319B2 (en) 2001-03-05

Similar Documents

Publication Publication Date Title
JP2826974B2 (en) Corrosion resistant duplex stainless steel
JPH0445576B2 (en)
CN114807741B (en) Method for improving austenitic stainless steel performance based on carbide precipitation
JPS6157390B2 (en)
JPS581012A (en) Production of homogeneous steel
JPH09249940A (en) High strength steel excellent insulfide stress cracking resistance and its production
JPH08239739A (en) Heat tratment for ni-base alloy excellent in corrosion resistance
JPH06100935A (en) Production of martensitic stainless steel type seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JP2688392B2 (en) Method for producing martensitic stainless steel with low cracking susceptibility
JPH0114991B2 (en)
JP2787044B2 (en) High strength stainless steel and its manufacturing method
JPH01139717A (en) Method for working high cr ferritic steel for use at high temperature
JPH10317104A (en) Austenitic stainless steel excellent in intergranular stress corrosion crack resistance ant its production
JP2017057473A (en) α+β TYPE TITANIUM ALLOY SHEET AND MANUFACTURING METHOD THEREFOR
JPH0233781B2 (en)
JPS5910415B2 (en) Manufacturing method for high-tensile wire rods and steel bars with excellent stress corrosion cracking resistance
JPS5864364A (en) Manufacture of ni-cr alloy with superior corrosion resistance
JPS6020460B2 (en) Cr-Mo low alloy steel for pressure vessels
JP3192799B2 (en) Manufacturing method of structural member
WO2008047869A1 (en) Nickel material for chemical plant
JP2002194466A (en) Nickel based alloy clad steel and its production method
JPH0297649A (en) Austenitic stainless steel excellent in strength and toughness at very low temperature and its production
JPH1068035A (en) Nickel-chromium alloy excellent in intergranular stress corrosion cracking resistance, and its production
JP3678321B2 (en) Ferritic stainless steel pipe for engine exhaust gas passage members with excellent high-temperature strength
JP3000860B2 (en) Manufacturing method of austenitic stainless steel plate

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001205

LAPS Cancellation because of no payment of annual fees