JPH10317104A - Austenitic stainless steel excellent in intergranular stress corrosion crack resistance ant its production - Google Patents

Austenitic stainless steel excellent in intergranular stress corrosion crack resistance ant its production

Info

Publication number
JPH10317104A
JPH10317104A JP12765697A JP12765697A JPH10317104A JP H10317104 A JPH10317104 A JP H10317104A JP 12765697 A JP12765697 A JP 12765697A JP 12765697 A JP12765697 A JP 12765697A JP H10317104 A JPH10317104 A JP H10317104A
Authority
JP
Japan
Prior art keywords
stainless steel
less
stress corrosion
steel
intergranular stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP12765697A
Other languages
Japanese (ja)
Inventor
Takanori Nakazawa
崇徳 中澤
Hiroshi Kihira
寛 紀平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12765697A priority Critical patent/JPH10317104A/en
Publication of JPH10317104A publication Critical patent/JPH10317104A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the austenitic stainless steel excellent in intergranular stress corrosion resistance by heating a stainless steel to a specified temp., subjecting to rolling or forging, solution treatment, then heat treatment at a specified temp. for a prescribed time and cooling at a specified cooling rate. SOLUTION: A stainless steel ingot, which contains, by weight, 0.030-0.080% C, <=3.0% Si, <=3.0% Mn, <=0.03% P, <=0.15% N, 6-16% Ni, 15-22% Cr or/further <=3.0% Mo, is subjected to reduction at >=10% draft at a finish temp. of >=950 deg.C and is made into a steel slab. The steel slab is heated for >=2 hr at 1100-1300 deg.C and is rolled or forged, successively, after solution treatment and then heated at 550-800 deg.C and 1000-1100 deg.C for a prescribed time, is cooled in hot water at a cooling rate of >=3 deg.C/sec. A Cr concentration in a crystal grain boundary and within 0.01 μm both side is regulated to 1.3 times of a Cr average concentration of the whole steel. A Cr enriched layer is formed on a crystal grain boundary, the generation of intergranular stress corrosion crack is prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は耐粒界応力腐食割れ
性に優れたオーステナイト系ステンレス鋼およびその製
造方法に関するものである。
The present invention relates to an austenitic stainless steel excellent in intergranular stress corrosion cracking resistance and a method for producing the same.

【0002】[0002]

【従来の技術】高温高圧水中環境等で使用されるオース
テナイト系ステンレス鋼においては、耐粒界応力腐食割
れ性が重要視される。この粒界腐食は、粒界へのCr系
炭化物析出にともなうCrの欠乏層により生じることが
知られている。このため、この炭化物の析出を防止する
には、例えばステンレス鋼便覧(平成7年1月24日発
行)の269ページ「4)高温水」の部分に示されてい
るように、炭素(C)量を低減することが有効とされて
いる。
2. Description of the Related Art In austenitic stainless steels used in a high-temperature, high-pressure water environment, etc., resistance to intergranular stress corrosion cracking is regarded as important. It is known that this intergranular corrosion is caused by a Cr-deficient layer accompanying the precipitation of Cr-based carbides at the grain boundaries. Therefore, in order to prevent the precipitation of carbides, for example, as shown in “4) High-temperature water” on page 269 of the Stainless Steel Handbook (issued on January 24, 1995), carbon (C) It is said that reducing the amount is effective.

【0003】しかしながら、Cのオーステナイト系ステ
ンレス鋼中への固溶度は極めて小さく、例えば600℃
では数ppm にすぎない。現行の工業規模での精錬技術で
はC量を0.01%以下にすることは困難であるため、
わずかではあるが600℃においても過飽和なCが存在
することになる。したがって、熱処理後の冷却中あるい
は溶接時に粒界にCr系炭化物の析出が生じる可能性が
残る。これは粒界近傍にCrの欠乏層を形成することに
つながるものであり、材料の寿命に制限を加える要因と
なる。
However, the solid solubility of C in austenitic stainless steel is extremely small, for example, 600 ° C.
Is only a few ppm. It is difficult to reduce the C content to 0.01% or less with the current industrial-scale refining technology.
Although slightly, even at 600 ° C., supersaturated C is present. Therefore, there is a possibility that Cr-based carbide precipitates at grain boundaries during cooling after heat treatment or during welding. This leads to the formation of a Cr deficient layer near the grain boundaries, which is a factor that limits the life of the material.

【0004】[0004]

【発明が解決しようとする課題】このように従来鋼は、
熱処理後の冷却中あるいは溶接時に粒界にCr系炭化物
の析出を生じ、Cr欠乏による粒界応力腐食割れの可能
性を残すものである。本発明はこのような従来の問題点
を解消するものであり、溶接等による加熱にともなうC
r欠乏の形成を抑制できる耐粒界応力腐食割れ性に優れ
たオーステナイト系ステンレス鋼およびその製造方法を
提供することにある。
As described above, the conventional steel is
During cooling after heat treatment or during welding, precipitation of Cr-based carbides occurs at grain boundaries, leaving the possibility of intergranular stress corrosion cracking due to Cr deficiency. The present invention is intended to solve such a conventional problem.
An object of the present invention is to provide an austenitic stainless steel excellent in intergranular stress corrosion cracking resistance capable of suppressing the formation of r deficiency and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】上記の原因は、鋼中に存
在するCが熱処理後の冷却中あるいは溶接時に結晶粒界
にCr系炭化物として析出することに関係している。す
なわち、粒界に析出するCr系炭化物は粒界近傍にCr
欠乏層を形成し、粒界応力腐食の原因となることが知ら
れている。このためC量を低減し析出を抑制することが
行われている。しかしながら、ステンレス鋼の低C化に
は限界があり、VOD等の真空精錬技術の発達によりC
量は大幅に低減されてきたものの、数ppm と言われてい
る。EB溶解等の手段により極低C化することは可能で
あるが、著しく高い費用を要するので通常の製造工程に
おいて600℃におけるCの溶解度以下にすることは不
可能である。
The cause described above is related to the fact that C present in steel precipitates as a Cr-based carbide at grain boundaries during cooling after heat treatment or during welding. That is, the Cr-based carbide precipitated at the grain boundary is
It is known that a deficient layer is formed and causes intergranular stress corrosion. For this reason, the amount of carbon is reduced to suppress precipitation. However, there is a limit to the reduction of C in stainless steel, and with the development of vacuum refining technology such as VOD, C
Although the amount has been greatly reduced, it is said to be a few ppm. Although it is possible to reduce the carbon content to an extremely low level by means such as EB dissolution or the like, it is extremely expensive, so that it is impossible to lower the solubility of C at 600 ° C. or less in a normal production process.

【0006】本発明者等は粒界に析出したCr炭化物の
固溶過程を調査した。その結果、溶体化温度での加熱に
よりCr炭化物が消滅するが保持時間が短い場合には粒
界および粒界近傍のCr濃度が高いことを見出した。こ
の理由は、Cに比べCrの拡散が遅いためCr炭化物の
固溶後もその近傍にCrが残留するためであると考えら
れる。このような粒界および粒界近傍にCrが濃化した
材料の炭化物析出温度域への加熱による粒界応力腐食割
れ性を調査した。すなわち、0.045%C−0.6%
Si−0.9%Mn−0.015%P−0.001%S
−9.2%Ni−18.5%Cr−0.041%N系の
粒界近傍のCr濃度を変化させた試料を用い、600
℃、1時間の加熱処理によりCr炭化物を粒界に析出さ
せた後、その粒界応力腐食割れ性を調査した。図1は粒
界近傍のCr濃度と300℃高温水中における粒界応力
腐食割れ性の関係を示したもので、粒界近傍のCr濃度
が24%以上で粒界応力腐食割れが生じないことがわか
る。これは、粒界近傍にCrが濃化している場合にはそ
の後の加熱によるCr炭化物析出によるCr欠乏層の形
成が抑制されるためと考えられる。
The present inventors have investigated the solid solution process of Cr carbide precipitated at the grain boundaries. As a result, it has been found that the Cr carbide disappears by heating at the solution temperature, but when the holding time is short, the Cr concentration at the grain boundaries and near the grain boundaries is high. It is considered that the reason for this is that the diffusion of Cr is slower than that of C, so that Cr remains in the vicinity even after the solid solution of Cr carbide. The intergranular stress corrosion cracking property of such a material in which Cr was concentrated in the grain boundary and in the vicinity of the grain boundary by heating to a carbide precipitation temperature range was investigated. That is, 0.045% C-0.6%
Si-0.9% Mn-0.015% P-0.001% S
-9.2% Ni-18.5% Cr-0.041% N Using a sample in which the Cr concentration in the vicinity of the grain boundary was changed, 600
After precipitating Cr carbide at the grain boundaries by heating at 1 ° C. for 1 hour, the grain boundary stress corrosion cracking properties were investigated. FIG. 1 shows the relationship between the Cr concentration in the vicinity of the grain boundary and the intergranular stress corrosion cracking property in 300 ° C. high-temperature water. Recognize. This is presumably because, when Cr is concentrated near the grain boundaries, formation of a Cr-deficient layer due to precipitation of Cr carbide due to subsequent heating is suppressed.

【0007】このような粒界近傍へのCr濃化層の形成
はCr炭化物の粒界析出処理とその後の溶体化熱処理を
調整することにより制御することができることを見出し
た。すなわち、十分な量のCr炭化物を粒界に先ず析出
させ、その後、溶体化熱処理条件をCr炭化物は固溶さ
せるがCr濃化域が残留する範囲に制御することであ
る。さらに、全粒界にわたり均一にCr農化部を形成す
るためにはCr濃度の変動を小さくしておく必要がある
が、これは凝固組織の破壊と鋼片の均質化熱処理の組み
合わせにより達成できる。
It has been found that the formation of such a Cr-enriched layer in the vicinity of the grain boundary can be controlled by adjusting the grain boundary precipitation treatment of Cr carbide and the subsequent solution heat treatment. That is, a sufficient amount of Cr carbide is firstly precipitated at the grain boundary, and then the solution heat treatment conditions are controlled so that the Cr carbide is dissolved but the Cr-enriched region remains. Furthermore, it is necessary to keep the variation in Cr concentration small in order to form a Cr-agricultural part uniformly over all grain boundaries, but this can be achieved by a combination of fracture of the solidification structure and heat treatment for homogenizing the steel slab. .

【0008】本発明は、以上のような知見に基づいてな
されたものであって、その要旨とするところは、以下の
通りである。 (1)重量%で、 C :0.030〜0.080%、 Si:3.0%以下、 Mn:3.0%以下、 P :0.03%以下、 N :0.15%以下、 Ni:6〜16%、 Cr:15〜22%、 必要に応じて、 Mo:3.0%以下 を含有し、残部がFeおよび不可避不純物からなり、粒
界および粒界の両側0.01μm以内におけるCrの濃
度が平均値の1.3倍以上であることを特徴とする、耐
粒界応力腐食割れ腐食性に優れたオーステナイト系ステ
ンレス鋼。 (2)重量%で、 C :0.030〜0.080%、 Si:3.0%以下、 Mn:3.0%以下、 P :0.03%以下、 N :0.15%以下、 Ni:6〜16%、 Cr:15〜22%、 必要に応じて、 Mo:3.0%以下 を含有し、残部がFeおよび不可避不純物からなるステ
ンレス鋼の鋼塊あるいは連続鋳造鋳片を、仕上げ温度9
50℃以上で10%以上の圧下を加えることにより製造
した鋼片を1100〜1300℃の範囲で2時間以上加
熱した後、圧延あるいは鍛造し、溶体化熱処理を施した
後、550〜800℃の範囲において式1に規定される
時間・t1 以上加熱した後、1000〜1100℃の範
囲で式2に規定される時間・t2 の80〜100%の時
間加熱した後、3℃/sec以上の冷却速度にて冷却するこ
とを特徴とする耐粒界応力腐食割れ性に優れたオーステ
ナイト系ステンレス鋼の製造方法。 式1:t1 =−0.04T+32.2 式2:t2 =−0.009T+10 ただし、t1 ,t2 :時間(hr)、T:温度(℃)
[0008] The present invention has been made based on the above findings, and the gist thereof is as follows. (1) By weight%, C: 0.030 to 0.080%, Si: 3.0% or less, Mn: 3.0% or less, P: 0.03% or less, N: 0.15% or less, Ni: 6 to 16%, Cr: 15 to 22%, if necessary, Mo: 3.0% or less, the balance being Fe and unavoidable impurities, within 0.01 μm of the grain boundary and both sides of the grain boundary An austenitic stainless steel excellent in intergranular stress corrosion cracking corrosion resistance, characterized in that the concentration of Cr is 1.3 times or more the average value. (2) By weight%, C: 0.030 to 0.080%, Si: 3.0% or less, Mn: 3.0% or less, P: 0.03% or less, N: 0.15% or less, Ni: 6 to 16%, Cr: 15 to 22%, if necessary, Mo: 3.0% or less, the balance being Fe and inevitable impurities. Finishing temperature 9
A steel slab manufactured by applying a reduction of 10% or more at 50 ° C or more is heated in a range of 1100 to 1300 ° C for 2 hours or more, then rolled or forged, and subjected to a solution heat treatment. after heating defined as the time · t 1 above equation 1 in range, after heating 80% to 100% of the time period · t 2 defined in formula 2 in the range of 1000 to 1100 ° C., 3 ° C. / sec or higher A method for producing an austenitic stainless steel excellent in intergranular stress corrosion cracking resistance, characterized by cooling at a cooling rate of. Formula 1: t 1 = −0.04T + 32.2 Formula 2: t 2 = −0.009T + 10 where t 1 , t 2 : time (hr), T: temperature (° C.)

【0009】[0009]

【発明の実施の形態】先ず本発明の成分系において、C
は析出熱処理により結晶粒界にCr炭化物として析出
し、その後の溶体化処理により粒界およびその近傍にC
r濃度の高い領域を形成するために必要な元素であり、
そのためには0.030%以上必要である。一方、多量
の添加は炭化物の固溶を困難にするため望ましくないた
め上限を0.080%とした。
BEST MODE FOR CARRYING OUT THE INVENTION First, in the component system of the present invention, C
Precipitates as Cr carbides at the crystal grain boundaries by precipitation heat treatment, and C
element necessary for forming a region having a high r concentration,
For that purpose, 0.030% or more is required. On the other hand, the addition of a large amount makes the solid solution of the carbide difficult, so that it is not desirable, so the upper limit was made 0.080%.

【0010】次に、SiおよびMnはいずれも脱酸材と
して必要であるが、Siは2.0%を越えて過剰に存在
すると、また、Mnは3.0%を越えて過剰に存在する
と熱間加工性を損なうことから前者は2.0%以下、後
者は3.0%以下とした。
Next, both Si and Mn are necessary as deoxidizing materials. However, when Si is present in excess of 2.0%, and when Mn is present in excess of 3.0%, Since the hot workability is impaired, the former is set to 2.0% or less, and the latter is set to 3.0% or less.

【0011】Pは粒界に偏析する傾向のある元素であ
り、粒界の耐食性を損なう可能性があるため、その上限
を0.03%とした。
P is an element that tends to segregate at the grain boundaries and may impair the corrosion resistance of the grain boundaries. Therefore, the upper limit is set to 0.03%.

【0012】Niはオーステナイト生成元素として必須
の元素であり、フェライト形成元素であるCr量に対し
成分平衡上オーステナイト組織にするための必要量は6
%から16%の範囲である。
Ni is an essential element as an austenite-forming element, and the amount required for forming an austenitic structure in terms of component balance is 6 with respect to the amount of Cr, which is a ferrite-forming element.
% To 16%.

【0013】またCrは耐食性を向上させる元素であ
り、そのためには15%以上を必要とするが、22%を
越えると繰り返し溶接等の高温加熱による脆化が生じる
ため上限を22%とした。
[0013] Further, Cr is an element for improving the corrosion resistance. For that purpose, 15% or more is required, but if it exceeds 22%, embrittlement due to high-temperature heating such as repeated welding occurs, so the upper limit is made 22%.

【0014】NはCと共にオーステナイト系ステンレス
鋼の強化元素である。NはCに比べ溶解度が大きいこと
から、熱処理後の冷却中あるいは溶接時にも固溶状態で
安定して存在できる。したがって、Nを溶解度の範囲内
で使用すれば強化作用が期待でき、かつ窒化物による粒
界脆化等も生じないことになる。このような観点からN
量の上限を0.15%とした。なお、下限を設けない理
由は、用途に応じてN量を変化させて強度を制御するた
めであるが、通常の工業規模溶製でのレベル0.01%
が強いて言えば下限となる。
N is a strengthening element of austenitic stainless steel together with C. Since N has a higher solubility than C, it can stably exist in a solid solution state even during cooling after heat treatment or during welding. Therefore, if N is used within the range of solubility, a strengthening effect can be expected, and grain boundary embrittlement due to nitride does not occur. From such a viewpoint, N
The upper limit of the amount was 0.15%. The reason for not setting the lower limit is to control the strength by changing the N amount according to the application.
Is the lower limit.

【0015】Moは耐食性を高める作用のある元素であ
り、必要に応じて添加する。その際3.0%を越えて添
加すると熱間変形抵抗を高めるため圧延あるいは鍛造が
困難になる。したがって、含有差せる場合は3.0%以
下とした。
Mo is an element having an effect of improving corrosion resistance, and is added as necessary. At that time, if added in excess of 3.0%, hot deformation resistance is increased, so that rolling or forging becomes difficult. Therefore, when the content can be varied, the content is set to 3.0% or less.

【0016】溶接等の再加熱によりCr炭化物が析出し
た状態においても耐粒界応力腐食割れ性を確保するため
にはCr欠乏層の形成を防止する必要がある。そのため
にはあらかじめ粒界およびその近傍のCrの濃度を高く
する必要がある。その量はCr濃度の平均値の1.3倍
以上であれば炭化物の再析出によるCr欠乏層の形成を
防止できる。なお、Cr濃度は薄膜試料を用い電子顕微
鏡・EDS(Energy Dispersive Spectroscopy)により測
定した値である。
It is necessary to prevent the formation of a Cr-deficient layer in order to ensure intergranular stress corrosion cracking resistance even when Cr carbide is precipitated by reheating such as welding. For this purpose, it is necessary to increase the concentration of Cr in and near the grain boundaries in advance. If the amount is at least 1.3 times the average value of the Cr concentration, the formation of a Cr deficient layer due to reprecipitation of carbide can be prevented. The Cr concentration is a value measured using an electron microscope and EDS (Energy Dispersive Spectroscopy) using a thin film sample.

【0017】以上の化学成分範囲の鋼の凝固偏析を軽減
するため、先ず鋼塊あるいは連続鋳造鋳片の凝固組織破
壊を目的とする仕上げ温度950℃以上で10%以上の
圧下により鋼片を製造する必要がある。この熱間加工は
後工程の均質化熱処理を効果的なものとするために不可
欠なものである。このようにして製造された鋼片を圧延
あるいは鍛造する前に、高温で加熱することによりCr
の成分偏析を軽減する必要がある。このために必要な熱
処理は1100℃以下では十分な拡散効果がえられない
ため1100℃を下限とし、一方、1300℃を越える
温度での加熱はデルタフェライト相の増加をまねき、か
えって成分変動を拡大させることになるため1300℃
を上限とした。また、加熱時間については2時間未満で
は十分な均質化が行えないため、2時間以上とした。
In order to reduce the solidification segregation of steel having the above chemical composition range, first, a steel slab is manufactured by rolling at a finishing temperature of 950 ° C. or more and a rolling reduction of 10% or more for the purpose of breaking the solidification structure of a steel ingot or a continuously cast slab. There is a need to. This hot working is indispensable for making the subsequent homogenizing heat treatment effective. Before rolling or forging the slab thus manufactured, the slab is heated at a high temperature so that
Needs to be reduced. For this purpose, the necessary heat treatment is performed at a temperature below 1100 ° C, so that a sufficient diffusion effect cannot be obtained. Therefore, the lower limit is set at 1100 ° C. 1300 ℃
Was set as the upper limit. If the heating time is less than 2 hours, sufficient homogenization cannot be performed, so that the heating time is set to 2 hours or more.

【0018】粒界および粒界近傍のCr濃度を高めるた
めの処理として、先ずCr炭化物の析出のために550
〜800℃の範囲で式1に示す時間以上の加熱が必要で
ある。なお、550℃以下では拡散が遅いため、また、
800℃以上でもCの過飽和度が小さくなるため、十分
な量の析出が得られない。次ぎに、Cr炭化物の固溶処
理として100〜1100℃で式2に示す時間の80〜
100%の時間での加熱が必要である。すなわち、10
00℃以下では未固溶の炭化物が残留し、1100℃以
上ではCrの拡散が活発となりCr濃化層が消滅するた
め、また、保持時間が短いと炭化物が残留し、長いとC
r濃化層が消滅するため、この温度範囲に制限する必要
がある。
As a treatment for increasing the Cr concentration at the grain boundary and the vicinity of the grain boundary, first, 550 is deposited for precipitation of Cr carbide.
It is necessary to heat at a temperature in the range of 800800 ° C. for the time shown in the formula 1. At 550 ° C or lower, diffusion is slow.
Even at a temperature of 800 ° C. or more, the degree of supersaturation of C becomes small, so that a sufficient amount of precipitation cannot be obtained. Next, as a solid solution treatment of Cr carbide, a temperature of 100 to 1100 ° C. and a time of 80 to
Heating for 100% of the time is required. That is, 10
If the temperature is lower than 00 ° C., undissolved carbides remain, and if the temperature is higher than 1100 ° C., the diffusion of Cr becomes active and the Cr-enriched layer disappears.
Since the r-enriched layer disappears, it is necessary to limit the temperature to this range.

【0019】以上説明したような化学組成範囲ならびに
製造方法に基づく本発明鋼は、各種電気炉等による製鋼
を行った後、通常の造塊あるいは連続鋳造により鋼塊あ
るいは鋳片とし、圧延あるいは鍛造することにより鋼片
とした後に、均質化熱処理を行い、圧延あるいは鍛造し
各種形状の鋼材として使用に供されるものである。以下
に本発明の効果を実施例に基づいてさらに具体的に示
す。
The steel of the present invention based on the chemical composition range and the production method as described above is made into a steel ingot or slab by ordinary ingot or continuous casting after steel making by various electric furnaces or the like, and then rolled or forged. After that, the steel slab is subjected to a homogenizing heat treatment, and then rolled or forged to be used as steel materials of various shapes. The effects of the present invention will be more specifically described below based on examples.

【0020】[0020]

【実施例】表1に供試材鋼の化学成分を示す。また、表
2に鋼片製造時の圧下率、鋼片の均質化熱処理条件、炭
化物析出熱処理、溶体化熱処理条件、粒界近傍のCr濃
度、および、これらの試料に600℃、1時間の熱処理
を施した後、平行部直径:3mm、標点間距離:20mmの
低速度引張試験片を採取し、300℃の高温水中で試験
した結果を示す。
EXAMPLES Table 1 shows the chemical composition of the test material steel. Table 2 shows the draft in the production of steel slabs, the heat treatment conditions for homogenizing the steel slabs, the heat treatment conditions for carbide precipitation, the solution heat treatment, the Cr concentration near the grain boundaries, and the heat treatment at 600 ° C. for 1 hour for these samples. , A low-speed tensile test piece having a parallel part diameter of 3 mm and a gauge length of 20 mm was sampled, and the result of a test in high-temperature water at 300 ° C. is shown.

【0021】これらの特性調査結果から明かなように、
本発明例は比較鋼に比べ耐粒界応力腐食割れ性が優れた
ものである。これに対し、比較例においては、例えば合
金番号8は炭化物析出処理温度が低いため、また、合金
番号11は析出処理温度が高いため、いずれも十分な粒
界近傍のCr濃化が達成できず粒界割れが発生してい
る。合金番号9は溶体化処理温度が低いため、また、合
金番号10は高いため、粒界近傍のCr濃化が不十分と
なりやはり粒界割れを生じている。
As is clear from the results of these characteristic investigations,
The example of the present invention is superior in the intergranular stress corrosion cracking resistance to the comparative steel. In contrast, in the comparative examples, for example, alloy No. 8 has a low carbide precipitation temperature, and alloy No. 11 has a high precipitation temperature. Grain boundary cracking has occurred. Alloy No. 9 has a low solution heat treatment temperature and Alloy No. 10 has a high temperature, so that the Cr concentration near the grain boundaries is insufficient and grain boundary cracking is also caused.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【発明の効果】以上述べた如く、本発明鋼は鋼片の加熱
処理および炭化物の析出・固溶処理により優れた耐粒界
応力腐食割れ性を有する材料となっており、高温水中等
で使用される耐食材料として工業的に極めて有効なもの
である。
As described above, the steel of the present invention is a material having excellent intergranular stress corrosion cracking resistance due to heat treatment of steel slabs and precipitation and solid solution treatment of carbides. It is industrially extremely effective as a corrosion-resistant material to be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】粒界応力腐食割れに及ぼす粒界近傍Cr濃度の
影響を示す図である。
FIG. 1 is a diagram showing the effect of Cr concentration near grain boundaries on intergranular stress corrosion cracking.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.030〜0.080%、 Si:3.0%以下、 Mn:3.0%以下、 P :0.03%以下、 N :0.15%以下、 Ni:6〜16%、 Cr:15〜22% を含有し、残部がFeおよび不可避不純物からなり、粒
界および粒界の両側0.01μm以内におけるCrの濃
度が平均値の1.3倍以上であることを特徴とする、耐
粒界応力腐食割れ腐食性に優れたオーステナイト系ステ
ンレス鋼。
C: 0.030 to 0.080%, Si: 3.0% or less, Mn: 3.0% or less, P: 0.03% or less, N: 0.15% by weight% In the following, Ni: 6 to 16%, Cr: 15 to 22%, the balance being Fe and unavoidable impurities, the grain boundary and the Cr concentration within 0.01 μm on both sides of the grain boundary being 1.3 of the average value. Austenitic stainless steel excellent in intergranular stress corrosion cracking corrosion resistance, characterized in that it is twice or more.
【請求項2】 請求項1記載のステンレス鋼にさらに、
重量%でMo:3.0%以下を含有することを特徴とす
る請求項1記載の耐粒界応力腐食割れ性に優れたオース
テナイト系ステンレス鋼。
2. The stainless steel according to claim 1, further comprising:
The austenitic stainless steel having excellent intergranular stress corrosion cracking resistance according to claim 1, characterized by containing Mo: 3.0% or less by weight.
【請求項3】 重量%で、 C :0.030〜0.080%、 Si:3.0%以下、 Mn:3.0%以下、 P :0.03%以下、 N :0.15%以下、 Ni:6〜16%、 Cr:15〜22% を含有する鋼塊あるいは連続鋳造鋳片を、仕上げ温度9
50℃以上で10%以上の圧下を加えることにより製造
した鋼片を1100〜1300℃の範囲で2時間以上加
熱した後、圧延あるいは鍛造し、溶体化熱処理を施した
後、550〜800℃の範囲において式1に規定される
時間・t1 以上加熱した後、1000〜1100℃の範
囲で式2に規定される時間・t2 の80〜100%の時
間加熱した後、3℃/sec以上の冷却速度にて冷却するこ
とを特徴とする耐粒界応力腐食割れ性に優れたオーステ
ナイト系ステンレス鋼の製造方法。 式1:t1 =−0.04T+32.2 式2:t2 =−0.009T+10 ただし、t1 ,t2 :時間(hr)、T:温度(℃)
3. In% by weight, C: 0.030 to 0.080%, Si: 3.0% or less, Mn: 3.0% or less, P: 0.03% or less, N: 0.15% Hereinafter, a steel ingot or a continuously cast slab containing 6 to 16% of Ni and 15 to 22% of Cr was subjected to a finishing temperature of 9%.
A steel slab manufactured by applying a reduction of 10% or more at 50 ° C or more is heated in a range of 1100 to 1300 ° C for 2 hours or more, then rolled or forged, and subjected to a solution heat treatment. after heating defined as the time · t 1 above equation 1 in range, after heating 80% to 100% of the time period · t 2 defined in formula 2 in the range of 1000 to 1100 ° C., 3 ° C. / sec or higher A method for producing an austenitic stainless steel excellent in intergranular stress corrosion cracking resistance, characterized by cooling at a cooling rate of. Formula 1: t 1 = −0.04T + 32.2 Formula 2: t 2 = −0.009T + 10 where t 1 , t 2 : time (hr), T: temperature (° C.)
【請求項4】 請求項3記載の鋼塊あるいは鋳片に、さ
らに重量%でMo:3.0%以下を含有することを特徴
とする請求項3記載の耐応力腐食割れ性に優れたオース
テナイト系ステンレス鋼の製造方法。
4. The austenitic steel having excellent stress corrosion cracking resistance according to claim 3, wherein the steel ingot or the slab according to claim 3 further contains Mo: 3.0% or less by weight. Method for producing stainless steel.
JP12765697A 1997-05-16 1997-05-16 Austenitic stainless steel excellent in intergranular stress corrosion crack resistance ant its production Withdrawn JPH10317104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12765697A JPH10317104A (en) 1997-05-16 1997-05-16 Austenitic stainless steel excellent in intergranular stress corrosion crack resistance ant its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12765697A JPH10317104A (en) 1997-05-16 1997-05-16 Austenitic stainless steel excellent in intergranular stress corrosion crack resistance ant its production

Publications (1)

Publication Number Publication Date
JPH10317104A true JPH10317104A (en) 1998-12-02

Family

ID=14965493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12765697A Withdrawn JPH10317104A (en) 1997-05-16 1997-05-16 Austenitic stainless steel excellent in intergranular stress corrosion crack resistance ant its production

Country Status (1)

Country Link
JP (1) JPH10317104A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011067979A1 (en) 2009-12-01 2011-06-09 新日鐵住金ステンレス株式会社 Fine grained austenitic stainless steel sheet exhibiting excellent stress corrosion cracking resistance and processability
US8172959B2 (en) 2004-01-13 2012-05-08 Mitsubishi Heavy Industries, Ltd. Austenitic stainless steel, manufacturing method for the same, and structure using the same
CN106222581A (en) * 2016-08-27 2016-12-14 宝鼎科技股份有限公司 316 austenitic stainless steel overlength oar peculiar to vessel forging shaft and forging methods
CN114774656A (en) * 2022-04-19 2022-07-22 江苏珀然股份有限公司 Process for regulating and controlling grain boundary characteristic distribution of hub material by utilizing reverse rolling
CN115161565A (en) * 2022-07-19 2022-10-11 太原理工大学 Method for improving corrosion resistance of super austenitic stainless steel
CN115386700A (en) * 2022-09-06 2022-11-25 太原理工大学 Method for inhibiting precipitation of twin crystal boundary precipitated phase in deformation of super austenitic stainless steel and facilitating recrystallization
CN115612917A (en) * 2021-07-15 2023-01-17 振石集团东方特钢有限公司 Stainless steel and preparation method and application thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8172959B2 (en) 2004-01-13 2012-05-08 Mitsubishi Heavy Industries, Ltd. Austenitic stainless steel, manufacturing method for the same, and structure using the same
WO2011067979A1 (en) 2009-12-01 2011-06-09 新日鐵住金ステンレス株式会社 Fine grained austenitic stainless steel sheet exhibiting excellent stress corrosion cracking resistance and processability
CN106222581A (en) * 2016-08-27 2016-12-14 宝鼎科技股份有限公司 316 austenitic stainless steel overlength oar peculiar to vessel forging shaft and forging methods
CN115612917A (en) * 2021-07-15 2023-01-17 振石集团东方特钢有限公司 Stainless steel and preparation method and application thereof
CN115612917B (en) * 2021-07-15 2024-02-09 振石集团东方特钢有限公司 Stainless steel and preparation method and application thereof
CN114774656A (en) * 2022-04-19 2022-07-22 江苏珀然股份有限公司 Process for regulating and controlling grain boundary characteristic distribution of hub material by utilizing reverse rolling
CN115161565A (en) * 2022-07-19 2022-10-11 太原理工大学 Method for improving corrosion resistance of super austenitic stainless steel
CN115161565B (en) * 2022-07-19 2023-02-24 太原理工大学 Method for improving corrosion resistance of super austenitic stainless steel
CN115386700A (en) * 2022-09-06 2022-11-25 太原理工大学 Method for inhibiting precipitation of twin crystal boundary precipitated phase in deformation of super austenitic stainless steel and facilitating recrystallization
CN115386700B (en) * 2022-09-06 2023-09-26 太原理工大学 Method for inhibiting precipitation of deformation twin grain boundary precipitated phase of super austenitic stainless steel and facilitating recrystallization

Similar Documents

Publication Publication Date Title
JP5349015B2 (en) Method for producing Ni-saving austenitic stainless hot-rolled steel sheet, slab and hot-rolled steel sheet
JP3895687B2 (en) Steel plate for depositing TiN + ZrN for welded structure, method for producing the same, and welded structure using the same
JP2008208454A (en) High-strength steel excellent in delayed fracture resistance and its production method
JP5363922B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
US20180066344A1 (en) Wire rod for use in bolts that has excellent acid pickling properties and resistance to delayed fracture after quenching and tempering, and bolt
JP5913214B2 (en) Bolt steel and bolts, and methods for producing the same
JP3895686B2 (en) Steel sheet for depositing TiN + MnS for welded structure, method for producing the same, and welded structure using the same
JP2004514060A (en) Steel plate having deposited TiN + CuS for welded structure, method for producing the same, and welded structure using the same
JP2011214058A (en) High-strength stainless steel wire, and method for producing the same
JP5223706B2 (en) Steel material excellent in toughness of heat-affected zone with high heat input and manufacturing method thereof
JPH09249940A (en) High strength steel excellent insulfide stress cracking resistance and its production
JPH10317104A (en) Austenitic stainless steel excellent in intergranular stress corrosion crack resistance ant its production
JPH0551633A (en) Production of high si-containing austenitic stainless steel
JP6690499B2 (en) Austenitic stainless steel sheet and method for producing the same
JP3243987B2 (en) Manufacturing method of high strength and high corrosion resistance martensitic stainless steel
JPS6320412A (en) Hot working method for austenitic stainless steel containing mo and n
JP3518517B2 (en) Manufacturing method of high chromium / ferritic heat resistant steel
JPH11286742A (en) Manufacture of tapered steel plate
JPH08269550A (en) Production of austenitic stainless steel excellent in intergranular stress corrosion cracking resistance
KR0143476B1 (en) Austenite stainless steel with excellent hot working
JPH0790504A (en) Ni-containing steel for low temperature use and secondary cooling method of its continuously cast slab
JP2019112696A (en) Ferritic stainless steel sheet and manufacturing method therefor
JP2003342670A (en) Non-heat treated high tensile steel having excellent toughness
JP2019081931A (en) Nickel-containing steel plate for low temperature excellent in toughness and method for manufacturing the same
JP3237990B2 (en) Cold forging steel with excellent cold workability and hardenability

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040803