JP3237990B2 - Cold forging steel with excellent cold workability and hardenability - Google Patents

Cold forging steel with excellent cold workability and hardenability

Info

Publication number
JP3237990B2
JP3237990B2 JP05256194A JP5256194A JP3237990B2 JP 3237990 B2 JP3237990 B2 JP 3237990B2 JP 05256194 A JP05256194 A JP 05256194A JP 5256194 A JP5256194 A JP 5256194A JP 3237990 B2 JP3237990 B2 JP 3237990B2
Authority
JP
Japan
Prior art keywords
graphite
steel
cold
hardenability
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05256194A
Other languages
Japanese (ja)
Other versions
JPH07242990A (en
Inventor
昌 片山
賢一郎 内藤
正弘 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP05256194A priority Critical patent/JP3237990B2/en
Publication of JPH07242990A publication Critical patent/JPH07242990A/en
Application granted granted Critical
Publication of JP3237990B2 publication Critical patent/JP3237990B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は冷間加工性と焼入性に優
れた冷間鍛造用鋼で、冷間鍛造後に熱処理する機械部品
用材料に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cold forging steel excellent in cold workability and hardenability, and relates to a material for machine parts which is heat treated after cold forging.

【0002】[0002]

【従来の技術】現在最も広く使用されている冷間鍛造用
鋼について述べる。通常の冷間鍛造用鋼は圧延後にオフ
ラインで長時間焼鈍されている。圧延後のミクロ組織は
フェライト+パーライトの2相組織であるが、焼鈍後に
は球状セメンタイト組織となっている。鋼種は主として
機械構造用炭素鋼および機械構造用合金鋼である。例え
ば炭素含有量0.55%鋼の場合、フェライト+パーラ
イト組織の硬さはHV200程度であるが、球状セメン
タイト組織になるとその硬さはほぼHV155まで軟化
するために冷間加工性に優れている。冷間鍛造用鋼は冷
間加工後に焼入・焼戻されて使用されることが多い。球
状セメンタイトは焼入れ加熱時にオーステナイトに溶解
しやすく焼入性にも優れている。しかし、軟化の限界値
はHV155程度でさらに硬さを小さくするミクロ組織
が見出されることが期待されている。
2. Description of the Related Art The steel for cold forging which is currently most widely used will be described. Normal cold forging steel is annealed offline for a long time after rolling. Although the microstructure after rolling is a two-phase structure of ferrite + pearlite, it has a spherical cementite structure after annealing. The steel types are mainly carbon steel for machine structure and alloy steel for machine structure. For example, in the case of a steel having a carbon content of 0.55%, the hardness of the ferrite + pearlite structure is about HV200, but the hardness becomes approximately HV155 in the case of the spherical cementite structure, so that the cold workability is excellent. . The steel for cold forging is often used after quenching and tempering after cold working. Spherical cementite is easily dissolved in austenite during quenching and heating, and has excellent hardenability. However, the limit value of softening is about HV155, and it is expected that a microstructure that further reduces the hardness will be found.

【0003】一方、鋼中フェライト+パーライトをフェ
ライト+黒鉛の2相組織にすると、その硬さはHV11
0程度まで減少し冷間加工性が著しく向上することはよ
く知られている。例えば日本金属学会誌,No.2,v
ol.53(1989),P.206の研究論文に黒鉛
率を上げると、冷間加工性能は硫黄快削鋼のそれよりも
優れており、被削性と冷間加工性を兼ね備えた性能の得
られることが報告されている。工業的にも特公昭63−
9580号公報に見られるようにミクロ組織をフェライ
ト+黒鉛の2相にすると加工性の向上が著しいことが紹
介されている。
On the other hand, when ferrite + pearlite in steel has a two-phase structure of ferrite + graphite, its hardness is HV11.
It is well known that it is reduced to about 0 and the cold workability is remarkably improved. For example, Journal of the Japan Institute of Metals, No. 2, v
ol. 53 (1989); In the research paper No. 206, when the graphite ratio is increased, it is reported that the cold workability is superior to that of the sulfur free-cutting steel, and a performance having both machinability and cold workability can be obtained. Industrially
No. 9580 discloses that when the microstructure is made into two phases of ferrite and graphite, the workability is remarkably improved.

【0004】しかし、特開平2−111842号公報に
紹介されているようにフェライト+黒鉛の2相になる
と、冷間加工性は向上するものの焼入性が低下するため
に、ミクロ組織をフェライト+セメンタイト+黒鉛の3
相組織とすることが望ましいとされている。黒鉛は焼入
加熱時に分解速度が遅く十分にオーステナイト中に溶解
しないために焼入硬さが低い欠点がある。また、黒鉛が
分解すると空孔が残存するために機械的性質が低下す
る。すなわち焼入性が劣るとされている。セメンタイト
の黒鉛化を制御してセメンタイト組織を一部残存させて
いることが、冷間加工性と焼入性とを合わせ持つために
有効であるとしている。黒鉛化を制御するための工業的
な方法として熱間圧延後の焼鈍時間を調整することが提
案されている。焼鈍時間を調整することは焼鈍炉の操業
コストを増加させる。焼鈍時間一定の条件下で、鋼の化
学成分を調整することによりフェライト+セメンタイト
+黒鉛の3相組織を有する鋼を開発することが工業界か
ら強く望まれている。
[0004] However, as disclosed in Japanese Patent Application Laid-Open No. 2-111842, when two phases of ferrite and graphite are formed, the cold workability is improved, but the hardenability is reduced. Cementite + graphite 3
It is desirable to have a phase structure. Graphite has the disadvantage of low quenching hardness because it has a slow decomposition rate during quenching heating and does not dissolve sufficiently in austenite. In addition, when graphite is decomposed, pores remain, so that the mechanical properties deteriorate. That is, it is said that hardenability is inferior. It is said that controlling the graphitization of cementite and leaving a part of the cementite structure is effective for achieving both cold workability and hardenability. As an industrial method for controlling graphitization, it has been proposed to adjust the annealing time after hot rolling. Adjusting the annealing time increases the operating cost of the annealing furnace. There is a strong demand from the industry to develop a steel having a three-phase structure of ferrite + cementite + graphite by adjusting the chemical composition of the steel under the conditions of constant annealing time.

【0005】[0005]

【発明が解決しようとする課題】本発明は焼鈍時間一定
の条件下で、鋼の化学成分を調整することによりフェラ
イト+セメンタイト+黒鉛の3相組織を有する鋼を開発
し、冷間加工性と焼入性に優れた冷間鍛造用鋼を提供せ
んとするものである。
SUMMARY OF THE INVENTION The present invention has developed a steel having a three-phase structure of ferrite + cementite + graphite by adjusting the chemical composition of the steel under the condition of a constant annealing time, and has developed a steel having a cold workability. It is an object of the present invention to provide a steel for cold forging having excellent hardenability.

【0006】[0006]

【課題を解決するための手段】本発明は前記の課題を解
決するためになされ、その要旨は、化学成分値を重量%
表示として、C:0.30〜0.70%、Si:0.
30〜1.1%、Mn:0.3〜0.8%、P:≦0.
020%、S:≦0.025%、Al:0.01〜0.
05%、B:0.001〜0.005%、Pb:0.0
05〜0.05%、を含み、残部はFe及び不可避的不
純物からなり、かつ、フェライト+セメンタイト+黒鉛
の3相組織を有し、3相組織に占める黒鉛の比率(黒鉛
として析出した炭素量/鋼中炭素含有量×100)が2
0〜70%である冷間加工性と焼入性に優れた冷間鍛造
用鋼。 C:0.30〜0.70%、Si:0.30〜1.1
%、Mn:0.3〜0.8%、P:≦0.020%、
S:≦0.025%、Al:0.01〜0.05%、
B:0.001〜0.005%、Pb:0.005〜
0.05%、Mo:0.01〜0.03%、を含み、残
部はFe及び不可避的不純物からなり、かつ、フェライ
ト+セメンタイト+黒鉛の3相組織を有し、3相組織に
占める黒鉛の比率(黒鉛として析出した炭素量/鋼中炭
素含有量×100)が20〜70%である冷間加工性と
焼入性に優れた冷間鍛造用鋼である。
Means for Solving the Problems The present invention has been made to solve the above-mentioned problems, and the gist of the present invention is that the chemical component value is expressed by weight%.
As display, C: 0.30 to 0.70%, Si: 0.
30 to 1.1%, Mn: 0.3 to 0.8%, P: ≦ 0.
020%, S: 0.025%, Al: 0.01-0.
05%, B: 0.001 to 0.005%, Pb: 0.0
And the balance consists of Fe and unavoidable impurities, and has a three-phase structure of ferrite + cementite + graphite, and the ratio of graphite in the three-phase structure (the amount of carbon precipitated as graphite). / Carbon content in steel x 100) is 2
Cold forging steel excellent in cold workability and hardenability of 0 to 70%. C: 0.30 to 0.70%, Si: 0.30 to 1.1
%, Mn: 0.3 to 0.8%, P: ≦ 0.020%,
S: ≦ 0.025%, Al: 0.01 to 0.05%,
B: 0.001 to 0.005%, Pb: 0.005 to
0.05%, Mo: 0.01 to 0.03%, the balance being Fe and unavoidable impurities, and having a three-phase structure of ferrite + cementite + graphite, graphite occupying the three-phase structure The ratio of (carbon content precipitated as graphite / carbon content in steel × 100) is 20 to 70%, and is a cold forging steel excellent in cold workability and hardenability.

【0007】即ち、本発明者らは種々検討を重ねた結
果、焼鈍中にセメンタイトが分解して黒鉛が析出する過
程で、黒鉛化を抑制するインヒビターとして微量の鉛が
有効であることを見出し、焼鈍時間を変化させることな
く、鉛含有量を調整することによりフェライト+セメン
タイト+黒鉛の3相組織に占める黒鉛の比率を制御する
ことに成功して本発明をなした。
That is, the present inventors have made various studies and found that a trace amount of lead is effective as an inhibitor to suppress graphitization in the process of decomposing cementite and depositing graphite during annealing. By controlling the lead content without changing the annealing time, the ratio of graphite in the three-phase structure of ferrite + cementite + graphite was successfully controlled, and the present invention was made.

【0008】[0008]

【作用】以下に本発明を詳細に説明する。第1の発明に
ついては、C含有量は焼入・焼戻し後、部品としての強
度を確保するために0.30%以上でなければならな
い。上限値は焼き割れ発生を防止するために0.70%
とした。Siは鋼中の炭素活量を大きくすることにより
黒鉛化を促進する作用があり必須の元素であり、その下
限値は0.30%でなければならない。1.1%を超え
るとフェライト相に固溶して素地の硬さが大きくなり冷
間加工性が低下するので上限値を1.1%に限定した。
Mnは鋼中硫黄をMnSとして固定・分散させるために
必要な量及びマトリックスに固溶させて焼入れ後の強度
を確保するために必要な量を加算した量が必要であり、
その下限値は0.3%である。Mn含有量が大きくなる
素地の硬さが大きくなり冷間加工性が低下するので上限
を0.8%とした。
The present invention will be described below in detail. In the first invention, the C content must be 0.30% or more after quenching / tempering to secure the strength as a part. The upper limit is 0.70% in order to prevent the occurrence of burning cracks
And Si is an essential element because it has an effect of promoting graphitization by increasing the carbon activity in steel, and its lower limit must be 0.30%. If it exceeds 1.1%, it forms a solid solution with the ferrite phase, so that the hardness of the base material increases and the cold workability deteriorates. Therefore, the upper limit is limited to 1.1%.
Mn is required to add an amount necessary for fixing and dispersing sulfur in steel as MnS and an amount necessary for dissolving it in a matrix to secure strength after quenching,
The lower limit is 0.3%. The upper limit was set to 0.8% because the hardness of the base material with an increased Mn content increases and the cold workability decreases.

【0009】Pは鋼中において粒界に燐化合物として析
出して黒鉛の核発生サイトとなり、黒鉛化を促進するも
のの平均黒鉛粒径を大きくするので、その上限を0.0
20%としなければならない。SはMnと結合してMn
S介在物として存在する。冷間加工性の点からその上限
値を0.025%とした。
P precipitates as a phosphorus compound at the grain boundaries in steel and becomes a nucleus generation site for graphite, which promotes graphitization, but increases the average graphite particle size.
Must be 20%. S combines with Mn to form Mn
Present as S inclusions. The upper limit was set to 0.025% from the viewpoint of cold workability.

【0010】Alは鋼を脱酸して圧延時の表面疵を防止
するために0.01%以上必要であり、脱酸の効果は
0.05%で飽和し、アルミナ系介在物が増加するので
上限を0.05%とした。BはNと反応してオーステナ
イト結晶粒界にBNとして析出する。BNの結晶構造は
黒鉛と同じく六方晶系であり黒鉛の析出核となる。黒鉛
を析出させるためにその下限値は0.001%でなけれ
ばならない。黒鉛を析出させる効果は0.005%で飽
和するので上限を0.005%とした。
[0010] Al is required to be 0.01% or more in order to deoxidize steel and prevent surface flaws at the time of rolling. The deoxidizing effect is saturated at 0.05%, and alumina-based inclusions increase. Therefore, the upper limit was set to 0.05%. B reacts with N and precipitates as BN at the austenite grain boundaries. BN has the same hexagonal crystal structure as graphite, and serves as a precipitation nucleus of graphite. In order to deposit graphite, its lower limit must be 0.001%. Since the effect of depositing graphite is saturated at 0.005%, the upper limit is made 0.005%.

【0011】Pbはメカニズムは明らかでないが極く微
量の添加で黒鉛が析出する過程で黒鉛化を抑制する作用
がある。すなわち黒鉛化に対する極めて有効なインヒビ
ターである。黒鉛化を抑制する元素はCr,Mnなど他
にもあるが、加工性など他の性質に影響を及ぼすために
使用が難しい。Pbは添加量が少ない上に介在物として
存在するために加工性、機械的性質、焼入性など他の性
質に影響を与えない。Pb含有量が0.005%未満で
は黒鉛化を抑制する作用が認められないので下限値を
0.005%とした。また、0.05%添加すると、黒
鉛化は100%抑制されるので上限値を0.05%とし
た。
Although the mechanism of Pb is not clear, Pb has an effect of suppressing graphitization in the process of depositing graphite with a very small amount of addition. That is, it is a very effective inhibitor for graphitization. There are other elements that suppress graphitization, such as Cr and Mn, but they are difficult to use because they affect other properties such as workability. Pb does not affect other properties such as workability, mechanical properties and hardenability because Pb is added in a small amount and exists as inclusions. When the Pb content is less than 0.005%, the effect of suppressing graphitization is not recognized, so the lower limit was made 0.005%. When 0.05% is added, graphitization is suppressed by 100%. Therefore, the upper limit is set to 0.05%.

【0012】フェライト+セメンタイト+黒鉛の3相組
織に占める黒鉛の比率(黒鉛として析出した炭素量/鋼
中炭素含有量×100)を規定した理由について述べ
る。黒鉛の比率が20%未満になると、冷間加工性の低
下が著しくなるために下限値を20%とした。また、7
0%を超えると焼入れ性の低下が著しいので上限値を7
0%とした。
The reason why the ratio of graphite in the three-phase structure of ferrite + cementite + graphite (the amount of carbon precipitated as graphite / the carbon content in steel × 100) will be described. When the proportion of graphite is less than 20%, the cold workability significantly decreases, so the lower limit is set to 20%. Also, 7
If the content exceeds 0%, the hardenability is significantly reduced.
0%.

【0013】次に第2の発明の成分などの限定理由につ
いて述べると、C,Si,Mn,P,S,Al,B,P
bについては第1の発明と全く同じである。Moは焼入
れ性倍数が高く黒鉛化を阻害しない元素である。Moは
炭化物を生成しやすく炭素の活量を低下させる元素であ
るから黒鉛化を阻害する元素であると考えられるが、請
求範囲の成分系では理由は不明であるが黒鉛化を阻害し
ない。焼入れ後の強度を増加させるためには下限値を
0.01%とすることが必要であり、焼入性効果の飽和
点が0.03%であるところから、上限値を0.03%
とした。
Next, the reasons for limiting the components of the second invention will be described. C, Si, Mn, P, S, Al, B, P
b is exactly the same as in the first invention. Mo is an element having a high hardenability factor and not inhibiting graphitization. Mo is an element that easily forms carbides and lowers the activity of carbon, so it is considered to be an element that inhibits graphitization. However, in the component system of the claims, it does not inhibit graphitization, although the reason is unknown. In order to increase the strength after quenching, it is necessary to set the lower limit to 0.01%. Since the saturation point of the hardenability effect is 0.03%, the upper limit is set to 0.03%.
And

【0014】ここで本発明鋼の製造手段について言及す
る。本発明鋼は通常の製造法及び圧延工程で容易に製造
できる。圧延終了直後にそのライン上に設置されている
水冷却装置により鋼材表面に均一に散水して急冷却し、
その後に加熱炉で焼鈍する方法である。圧延後の冷却開
始温度は780℃、冷却終了温度は200℃で平均冷却
速度は8℃/sである。焼鈍温度は680℃である。
Here, means for producing the steel of the present invention will be described. The steel of the present invention can be easily manufactured by ordinary manufacturing methods and rolling steps. Immediately after the end of rolling, water is evenly sprayed on the steel surface by a water cooling device installed on the line and rapidly cooled,
Thereafter, annealing is performed in a heating furnace. The cooling start temperature after rolling is 780 ° C, the cooling end temperature is 200 ° C, and the average cooling rate is 8 ° C / s. The annealing temperature is 680 ° C.

【0015】[0015]

【実施例】次に実施例により本発明の効果をさらに具体
的に示す。表1に供試鋼の化学成分を、表2にミクロ組
織と冷間加工性及び焼入硬さを示す。
Next, the effects of the present invention will be described more specifically by way of examples. Table 1 shows the chemical components of the test steel, and Table 2 shows the microstructure, cold workability and quenching hardness.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】フェライト+セメンタイト+黒鉛の3相組
織に占める黒鉛の比率は、黒鉛として析出した炭素量を
鋼中炭素含有量で除すことにより求めた。黒鉛として析
出した炭素量は黒鉛と化学炭素(セメンタイト)を電解
抽出する方法により定量できる。冷間鍛造性は冷間据え
込み試験により評価した。試験条件は次の通りである。 試験片形状:20mmφ×30mmh、試験片の状態:
フェライト−黒鉛組織、圧縮率:40〜65%まで5%
刻みで6段階、試験の繰り返し数:10回、割れ発生率
が50%未満となる最大圧縮率を限界圧縮率とし、その
値の大小により冷間鍛造性の良否を判断した。焼入性は
黒鉛の析出した丸棒を825℃×60minで焼入れし
硬さを測定することにより判定した。本発明鋼の冷間鍛
造性を示す限界圧縮率は比較鋼のそれとほぼ同等であ
り、焼入硬さはHV40−HV60程度高い冷間加工性
と焼入性に優れた冷間鍛造用鋼である。
The ratio of graphite in the three-phase structure of ferrite + cementite + graphite was determined by dividing the amount of carbon precipitated as graphite by the carbon content in steel. The amount of carbon deposited as graphite can be quantified by a method of electrolytically extracting graphite and chemical carbon (cementite). Cold forgeability was evaluated by a cold upsetting test. The test conditions are as follows. Test piece shape: 20mmφ × 30mmh, condition of test piece:
Ferrite-graphite structure, compressibility: 5% from 40 to 65%
The maximum compressibility at which the crack occurrence rate was less than 50% was defined as the critical compressibility, and the quality of the cold forgeability was judged based on the magnitude of the value. The hardenability was determined by quenching a round bar on which graphite was precipitated at 825 ° C. for 60 minutes and measuring the hardness. The critical compressibility showing the cold forgeability of the steel of the present invention is almost equal to that of the comparative steel, and the quench hardness is about HV40-HV60, which is a high cold workability steel with excellent cold workability and hardenability. is there.

【0019】[0019]

【発明の効果】以上の実施例からも明らかなごとく本発
明によれば、冷間加工性と焼入性のいずれの性質にも著
しく優れている冷間鍛造用鋼を提供することが可能であ
り、産業上の効果は極めて顕著なものがある。
According to the present invention, as is apparent from the above embodiments, it is possible to provide a steel for cold forging which is remarkably excellent in both properties of cold workability and hardenability. Yes, the industrial effects are very significant.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−311546(JP,A) 特開 平4−214839(JP,A) 特開 平2−111842(JP,A) 特開 昭63−216952(JP,A) 特開 平4−228519(JP,A) 特開 平5−339676(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 301 C22C 38/60 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-311546 (JP, A) JP-A-4-214839 (JP, A) JP-A-2-111842 (JP, A) JP-A-63-1988 216952 (JP, A) JP-A-4-228519 (JP, A) JP-A-5-339676 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 38/00 301 C22C 38/60

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】C :0.30〜0.70% Si:0.30〜1.1% Mn:0.3〜0.8% P :≦0.020% S :≦0.025% Al:0.01〜0.05% B :0.001〜0.005% Pb:0.005〜0.05% を含み、残部はFe及び不可避的不純物からなり、 かつ、フェライト+セメンタイト+黒鉛の3相組織を有
し、3相組織に占める黒鉛の比率(黒鉛として析出した
炭素量/鋼中炭素含有量)が20〜70%である冷間加
工性と焼入性に優れた冷間鍛造用鋼。
1. C: 0.30 to 0.70% Si: 0.30 to 1.1% Mn: 0.3 to 0.8% P: ≦ 0.020% S: ≦ 0.025% Al : 0.01 to 0.05% B: 0.001 to 0.005% Pb: 0.005 to 0.05%, with the balance being Fe and unavoidable impurities, and of ferrite + cementite + graphite Cold forging excellent in cold workability and hardenability in which the ratio of graphite in the three-phase structure (the amount of carbon precipitated as graphite / the carbon content in steel) is 20-70%. For steel.
【請求項2】C :0.30〜0.70% Si:0.30〜1.1% Mn:0.3〜0.8% P :≦0.020% S :≦0.025% Al:0.01〜0.05% B :0.001〜0.005% Pb:0.005〜0.05% Mo:0.01〜0.03% を含み、残部はFe及び不可避的不純物からなり、 かつ、フェライト+セメンタイト+黒鉛の3相組織を有
し、3相組織に占める黒鉛の比率(黒鉛として析出した
炭素量/鋼中炭素含有量)が20〜70%である冷間加
工性と焼入性に優れた冷間鍛造用鋼。
2. C: 0.30 to 0.70% Si: 0.30 to 1.1% Mn: 0.3 to 0.8% P: ≦ 0.020% S: ≦ 0.025% Al : 0.01 to 0.05% B: 0.001 to 0.005% Pb: 0.005 to 0.05% Mo: 0.01 to 0.03%, with the balance being Fe and unavoidable impurities And has a three-phase structure of ferrite + cementite + graphite, and the ratio of graphite in the three-phase structure (the amount of carbon precipitated as graphite / the carbon content in steel) is 20 to 70%. Cold forging steel with excellent hardenability.
JP05256194A 1994-02-28 1994-02-28 Cold forging steel with excellent cold workability and hardenability Expired - Fee Related JP3237990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05256194A JP3237990B2 (en) 1994-02-28 1994-02-28 Cold forging steel with excellent cold workability and hardenability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05256194A JP3237990B2 (en) 1994-02-28 1994-02-28 Cold forging steel with excellent cold workability and hardenability

Publications (2)

Publication Number Publication Date
JPH07242990A JPH07242990A (en) 1995-09-19
JP3237990B2 true JP3237990B2 (en) 2001-12-10

Family

ID=12918227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05256194A Expired - Fee Related JP3237990B2 (en) 1994-02-28 1994-02-28 Cold forging steel with excellent cold workability and hardenability

Country Status (1)

Country Link
JP (1) JP3237990B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4119516B2 (en) * 1998-03-04 2008-07-16 新日本製鐵株式会社 Steel for cold forging

Also Published As

Publication number Publication date
JPH07242990A (en) 1995-09-19

Similar Documents

Publication Publication Date Title
JP4609138B2 (en) Manufacturing method of oil well pipe steel excellent in sulfide stress cracking resistance and oil well seamless steel pipe
JP6479527B2 (en) Bolt wire with excellent pickling property and delayed fracture resistance after quenching and tempering, and bolt
CN111394639B (en) Manufacturing method of high-wear-resistance gear steel
WO2013145868A1 (en) Boron-added high strength bolt steel having excellent delayed fracture resistance and high strength bolt
KR100264363B1 (en) Method of manufacturing steel for machine structural use exhibiting excellent free cutting characteristic, cold forging characteristic and post hardening /tempering fatigue resistance
JP2004143482A (en) High strength cold formed spring steel wire and its production method
JPH11335777A (en) Case hardening steel excellent in cold workability and low carburizing strain characteristics, and its production
JP6798557B2 (en) steel
WO2016158343A1 (en) Steel wire for use in bolts that has excellent cold headability and resistance to delayed fracture after quenching and tempering, and bolt
JP3764627B2 (en) Case-hardened boron steel for cold forging that does not generate abnormal structure during carburizing and its manufacturing method
JP2014015664A (en) Boron-added steel for high strength bolt having excellent delayed fracture resistance, and high strength bolt
JP5489497B2 (en) Method for producing boron steel sheet with excellent hardenability
JP3237990B2 (en) Cold forging steel with excellent cold workability and hardenability
JPH11131187A (en) Rapidly graphitizable steel and its production
JPH10317104A (en) Austenitic stainless steel excellent in intergranular stress corrosion crack resistance ant its production
EP3553197B1 (en) High strength steel wire having excellent corrosion resistance and method for manufacturing same
JP3552286B2 (en) Manufacturing method of machine structural steel having excellent machinability, cold forgeability and fatigue strength after quenching and tempering, and a method of manufacturing the member
JP2003321711A (en) Method of producing gear obtained by using steel for carburization having excellent grain size property as stock
JP2767254B2 (en) Method for producing Cr-Mo case hardened steel
JP2955456B2 (en) Hypoeutectoid graphite precipitated steel with excellent fatigue strength and cold workability
JP4196485B2 (en) Machine structural steel with excellent machinability, cold forgeability and hardenability
JP2002012937A (en) Structural steel low in yield strength and excellent in toughness, and its production method
JPH07126799A (en) Manufacture of high strength bolt excellent in delayed breakdown resistance
JP3217943B2 (en) Method for producing steel for machine structural use having excellent machinability, cold forgeability and fatigue properties after quenching and tempering
JP3343505B2 (en) High strength bolt steel with excellent cold workability and delayed fracture resistance and its manufacturing method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071005

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081005

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091005

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees