JP2002012937A - Structural steel low in yield strength and excellent in toughness, and its production method - Google Patents

Structural steel low in yield strength and excellent in toughness, and its production method

Info

Publication number
JP2002012937A
JP2002012937A JP2000196527A JP2000196527A JP2002012937A JP 2002012937 A JP2002012937 A JP 2002012937A JP 2000196527 A JP2000196527 A JP 2000196527A JP 2000196527 A JP2000196527 A JP 2000196527A JP 2002012937 A JP2002012937 A JP 2002012937A
Authority
JP
Japan
Prior art keywords
less
steel
yield strength
toughness
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000196527A
Other languages
Japanese (ja)
Inventor
Naoki Saito
直樹 斎藤
Shuji Aihara
周二 粟飯原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000196527A priority Critical patent/JP2002012937A/en
Publication of JP2002012937A publication Critical patent/JP2002012937A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a structural steel usable for a steel structure of building, and the like, having a yield strength of 14 kgf/mm2 or less (137 MPa or less) and excellent in toughness, and to provide its production method. SOLUTION: This structural steel low in yield strength and excellent in toughness, is composed of, by weight %, C of 0.005% or below, Si of 0.04% or below, Mn of 0.20% or below, P of 0.02% or below, S of 0.02% or below, Al of 0.015% or below, N of 0.004% or below, Ti of below 0.01-0.03% and Mg of 0.0005-0.0050% or below, and further one or two of Nb of below 0.002-0.01% and V of below 0.002-0.05%, and the balance Fe with inevitable impurities, wherein the total of solid soluble C and solid soluble N is 0.006% or below, and TiN composite particles, which are deposited in scale of 0.2 μm or less on MgO or MgO/Al2O3, are present in an average spacing between particles of 0.5 μm or less in this steel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】建築などの鋼構造物に用いら
れる、降伏強さが低く、且つ、靭性の優れた構造用鋼お
よびその製造方法に関するものである。特に、降伏強さ
が14kgf/mm2 以下(137MPa以下)で、且
つ、靭性に優れた構造用鋼およびその製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structural steel having a low yield strength and excellent toughness, which is used for a steel structure such as a building, and a method for producing the same. In particular, the present invention relates to a structural steel having a yield strength of 14 kgf / mm 2 or less (137 MPa or less) and excellent toughness, and a method for producing the same.

【0002】[0002]

【従来の技術】建築構造物が地震に遭遇した際に、地震
のエネルギーを部材の塑性変形により吸収し、構造物全
体としての健全性を確保する観点から、降伏強さが低
く、かつ脆性破壊の発生を阻止できるような材料が求め
られている。
2. Description of the Related Art When a building structure encounters an earthquake, the energy of the earthquake is absorbed by plastic deformation of members, and from the viewpoint of ensuring the soundness of the entire structure, the yield strength is low and brittle fracture occurs. There is a need for a material that can prevent the occurrence of phenomena.

【0003】従来、低降伏比でかつ優れた靭性を有する
鋼の製造技術として、このような観点から、いくつかの
知見が開示されている。例えば、特開平10−1832
93号公報では、C:0.010%以下、Si:0.4
0%以下、Mn:1.5%以下、Ti:0.40%以
下、N:0.006%以下で、C、Ti、N量間の関係
が −0.105≦C−(Ti−3.4N)/4≦0.
010% を満足し、熱間圧延後900〜960℃の温
度で焼準処理して靭性の優れた低降伏点鋼およびその製
造方法が開示されている。さらに、特開平10−245
62号公報には上記の基本成分において、鋳片の加熱温
度を1050℃〜1200℃の温度に加熱後、850℃
以上の温度で熱間圧延し、その後、必要に応じて900
℃〜1000℃の温度で焼準処理をする方法が、さら
に、特開平10−298644号公報には、上記の基本
成分にNbを0.005〜0.015%追加して添加さ
れた鋼において、鋳片を1050〜1200℃に加熱
後、850℃以上の温度で熱間圧延し、その後、必要に
応じて900〜1000℃の温度で焼準処理する技術が
開示されている。熱間圧延と熱処理の条件を規定するこ
とにより降伏強さが低く、伸びの高い構造用鋼が製造で
きることが示されている。
Heretofore, several findings have been disclosed from such a viewpoint as a technique for producing steel having a low yield ratio and excellent toughness. For example, Japanese Patent Application Laid-Open No. 10-1832
No. 93, C: 0.010% or less, Si: 0.4
0% or less, Mn: 1.5% or less, Ti: 0.40% or less, N: 0.006% or less, and the relationship between the amounts of C, Ti, and N is -0.105≤C- (Ti-3 .4N) / 4 ≦ 0.
A low yield point steel which satisfies 010% and is subjected to normalizing treatment at a temperature of 900 to 960 ° C. after hot rolling and excellent in toughness, and a method for producing the same. Further, JP-A-10-245
No. 62 discloses that, at the above basic components, the slab is heated to a temperature of 1050 ° C. to 1200 ° C. and then heated to 850 ° C.
Hot rolling at the above temperature, and then 900 if necessary
A method of normalizing at a temperature of from 1000C to 1000C is disclosed in Japanese Unexamined Patent Publication No. Hei 10-298644, for a steel obtained by adding 0.005 to 0.015% of Nb to the above basic component. A technique is disclosed in which a slab is heated to 1050 to 1200 ° C, hot-rolled at a temperature of 850 ° C or higher, and then, if necessary, a normalizing treatment is performed at a temperature of 900 to 1000 ° C. It is shown that by defining the conditions of hot rolling and heat treatment, a structural steel having a low yield strength and a high elongation can be produced.

【0004】しかしながら、上記の方法では、靭性の向
上を得るために、圧延温度および熱処理条件を制御する
必要があり、結晶粒の細粒化に際し微細なTiNなどの
析出物を利用することが考えられている。しかしなが
ら、これらの方法では製造方法によっては、固溶Nが生
成し母材の靭性などを低下させるだけでなく、熱処理な
どにより、粗大な析出物が生成することで、やはり靭性
が低下することが知られている。
However, in the above-mentioned method, it is necessary to control the rolling temperature and the heat treatment conditions in order to obtain an improvement in toughness, and it is conceivable to use fine precipitates such as TiN for grain refinement. Have been. However, according to these methods, depending on the production method, not only solid solution N is generated to lower the toughness and the like of the base material, but also coarse precipitates are generated by the heat treatment and the like, and the toughness is also lowered. Are known.

【0005】[0005]

【発明が解決しようとする課題】本発明は、降伏強さを
低く押さえた上で、靭性が良好な鋼およびその製造法を
提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a steel having good toughness while keeping the yield strength low, and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】鋼の降伏点を低下させる
ためには、Cをはじめ、合金元素を低減すると同時に、
圧延後にフェライトを十分に軟化させる熱処理が必要に
なる。本発明のように、降伏点が14kgf/mm2 以下(1
37MPa以下)の鋼の極めて低い降伏点を安定して製
造するためには、その熱処理条件は高温、長時間になら
ざる得ず、靭性が同時に低下する問題がある。
In order to reduce the yield point of steel, it is necessary to reduce alloying elements including C,
Heat treatment for sufficiently softening the ferrite after rolling is required. As in the present invention, the yield point is 14 kgf / mm 2 or less (1
In order to stably produce an extremely low yield point of steel (37 MPa or less), the heat treatment conditions must be high temperature and long time, and there is a problem that toughness is reduced at the same time.

【0007】本発明は上記課題を解決するためになされ
たものであり、降伏強さを低くするために実施する高温
の熱処理後でも良好な靭性を有する結晶粒を確保するた
めに、本発明者らは種々の検討を重ねた。その結果、本
発明は、MgOあるいはMgO・Al2 3 上に析出し
たTiNとの複合粒子により結晶粒の制御が可能となる
と同時に、TiNが高温でも安定に存在し、長時間の熱
処理後でも靭性が良好であることの知見から構成された
もので、その骨子は、次のとおりである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems. In order to secure crystal grains having good toughness even after a high-temperature heat treatment performed to reduce the yield strength, the present invention has been made. Conducted various studies. As a result, according to the present invention, the crystal grains can be controlled by the composite particles with TiN precipitated on MgO or MgO.Al 2 O 3 , and at the same time, TiN is stably present even at a high temperature, and even after a long-time heat treatment. It consists of knowledge that toughness is good, and the gist is as follows.

【0008】(1) 重量%で、C :0.005%以
下、Si:0.04%以下、Mn:0.20%以下、P
:0.02%以下、S :0.02%以下、Al:
0.015%以下、N :0.004%以下、Ti:
0.01〜0.03%未満、Mg:0.0005〜0.
0050以下、を含有し、さらに、Nb:0.002〜
0.01%未満、V :0.002〜0.05%未満、
のうち一種または2種を含有し、残部Feおよび不可避
的不純物からなる鋼において、固溶Cと固溶Nの合計が
0.006%以下とし、さらに、MgOあるいはMgO
・Al2 3 上に0.2μm 以下の大きさで析出したT
iN複合粒子が平均粒子間隔で0.5μm 以下の距離で
鋼中に存在することを特徴とする降伏強さが低く、且
つ、靭性に優れた構造用鋼。
(1) C: 0.005% or less, Si: 0.04% or less, Mn: 0.20% or less, P
: 0.02% or less, S: 0.02% or less, Al:
0.015% or less, N: 0.004% or less, Ti:
0.01 to less than 0.03%, Mg: 0.0005 to 0.5%.
0050 or less, and Nb: 0.002 to
Less than 0.01%, V: less than 0.002 to 0.05%,
One or two of which, the balance being Fe and inevitable impurities, the total of solid solution C and solid solution N is 0.006% or less, and MgO or MgO
T deposited on Al 2 O 3 with a size of 0.2 μm or less
A structural steel having low yield strength and excellent toughness, characterized in that iN composite particles are present in the steel at a distance of 0.5 μm or less at an average particle interval.

【0009】(2) B:0.0002〜0.0020
%を含有することを特徴とする、(1)に記載の降伏強
さが低く、且つ、靭性に優れた構造用鋼。
(2) B: 0.0002 to 0.0020
%. The structural steel according to (1), wherein the yield strength is low and the toughness is excellent.

【0010】(3) (1)または(2)に記載の鋼と
同一成分を有する鋼片、または、鋳片を1050〜12
50℃に加熱し、仕上げ温度を800℃以上となるよう
に熱間圧延を行った後、800〜960℃に加熱後空冷
することを特徴とする、降伏強さが低く、且つ、靭性に
優れた構造用鋼の製造方法。
(3) A slab or a slab having the same composition as the steel described in (1) or (2) is used
After heating to 50 ° C. and performing hot rolling so that the finishing temperature becomes 800 ° C. or higher, air-cooling after heating to 800 to 960 ° C., low yield strength, and excellent toughness Method of manufacturing structural steel.

【0011】(4) (1)または(2)に記載の鋼と
同一成分を有する鋼片、または、鋳片を1050〜12
50℃に加熱し、仕上げ温度を800℃以上となるよう
に熱間圧延を行った後、800〜960℃に加熱後空冷
する過程で、600〜910℃に保熱後空冷することを
特徴とする、降伏強さが低く、且つ、靭性に優れた構造
用鋼の製造方法。
(4) A slab or cast slab having the same composition as the steel described in (1) or (2) is used for 1050-12
After heating to 50 ° C. and performing hot rolling so that the finishing temperature is 800 ° C. or higher, in the process of heating to 800 to 960 ° C. and air cooling, maintaining the heat at 600 to 910 ° C. and air cooling. A method for producing a structural steel having low yield strength and excellent toughness.

【0012】(5) (1)または(2)に記載の鋼と
同一成分を有する鋼片、または、鋳片を1050〜12
50℃に加熱し、仕上げ温度を800℃以上となるよう
に熱間圧延を行った後、800〜960℃に加熱後空冷
し、さらに、600〜910℃に加熱後空冷することを
特徴とする、降伏強さが低く、且つ、靭性に優れた構造
用鋼の製造方法。
(5) A steel slab or a cast slab having the same composition as the steel described in (1) or (2),
After heating to 50 ° C. and performing hot rolling so that the finishing temperature becomes 800 ° C. or higher, air cooling is performed after heating to 800 to 960 ° C., and further air cooling is performed after heating to 600 to 910 ° C. A method for producing a structural steel having a low yield strength and excellent toughness.

【0013】[0013]

【発明の実施の形態】ここで、固溶Cと固溶Nの合計量
は内部摩擦法により測定するものとする。構造用鋼の降
伏強さを低下させるためには、通常、置換型固溶硬化元
素(Si、Mn、P、Cu、Niなど)を低減すること
に加えて、固溶C、N量を低減することが必要である。
このためにはTi、Nb、Vの炭窒化物生成元素を含有
させ、炭窒化物としてC、Nを固定して固溶C、N量を
低減することが有効であることは従来より知られてい
る。降伏強さを低くするためには、C、N量を低下させ
た上で、Ti、Nb、Vの含有量を適正な範囲内に限定
する必要がある。これら元素の含有量が少ないと、鋼中
のC、Nを十分に固定することができず、固溶C、N量
が増加するために降伏強さを低く保つことができなくな
る。逆に、これら元素を多量に含有すると、固溶C、N
量を十分に低減し、降伏強さの低下には効果を発揮する
が、炭窒化物が粗大、多量に生成するために靭性の向上
が阻害されてしまう。
DETAILED DESCRIPTION OF THE INVENTION Here, the total amount of solute C and solute N is measured by an internal friction method. In order to reduce the yield strength of structural steel, usually, in addition to reducing substitution-type solid solution hardening elements (Si, Mn, P, Cu, Ni, etc.), the amount of solute C and N is reduced. It is necessary to.
For this purpose, it is conventionally known that it is effective to contain carbon, nitride, and carbon generating elements such as Ti, Nb, and V, and to fix C and N as carbonitrides to reduce the amount of solute C and N. ing. In order to lower the yield strength, it is necessary to reduce the contents of C, N and to limit the contents of Ti, Nb, and V within an appropriate range. If the content of these elements is small, C and N in steel cannot be fixed sufficiently, and the amount of solid solution C and N increases, so that the yield strength cannot be kept low. Conversely, when these elements are contained in large amounts, solid solution C, N
Although the amount is sufficiently reduced and it is effective in lowering the yield strength, coarse and large amounts of carbonitride are formed, which hinders improvement in toughness.

【0014】これを解決する手段として、発明者らは鋼
中に微細な酸化物を分散すると、これらがTiNの析出
核として作用し、粗大な炭化物による靭性の低下を防止
するだけでなく、高温でも溶解せず微細なTiNとして
結晶粒の過度な粗大化を防止することを知見した。
As a means for solving this problem, the present inventors disperse fine oxides in steel, these act as precipitation nuclei of TiN, not only to prevent a decrease in toughness due to coarse carbides, but also to prevent high temperature. However, it has been found that fine TiN is prevented from dissolving and prevents excessive coarsening of crystal grains.

【0015】これらの新知見をもとに、合金元素の量を
以下の理由で限定した。Cは固溶硬化、および、転位固
着作用により降伏強さを上昇させるので、低い方が好ま
しい。Cを0.005%超含有すると、炭化物形成元素
を含有していても固溶C量を低くすることが困難とな
り、降伏強さを低く抑えることができないし、粗大炭化
物を多量に生成して伸びを低下させる。従って、上限を
0.005%とした。
[0015] Based on these new findings, the amounts of alloying elements were limited for the following reasons. Since C increases the yield strength by solid solution hardening and dislocation fixing action, C is preferably lower. If C is contained in excess of 0.005%, it becomes difficult to lower the amount of solid solution C even if it contains a carbide forming element, yield strength cannot be suppressed low, and a large amount of coarse carbides is formed. Decrease elongation. Therefore, the upper limit is made 0.005%.

【0016】Siは固溶硬化能を有するので低い方がよ
い。0.04%超含有すると降伏強さを低く抑えること
ができないので上限を0.04%とした。
Since Si has a solid solution hardening ability, the lower the better, the better. If the content exceeds 0.04%, the yield strength cannot be suppressed low, so the upper limit was made 0.04%.

【0017】Mnは固溶硬化能を有するので低い方がよ
い。0.20%超含有すると降伏強さを低く抑えること
ができないので上限を0.20%とした。
Since Mn has a solid solution hardening ability, the lower the better, the better. If the content exceeds 0.20%, the yield strength cannot be suppressed low, so the upper limit was made 0.20%.

【0018】Pは固溶硬化能と粒界脆化傾向を有するの
で低い方がよい。0.02%超含有すると降伏強さを低
く抑えることができないことに加えて、粒界に偏析して
粒界脆化を助長するので、上限を0.02%とした。
Since P has a solid solution hardening ability and a tendency of embrittlement at grain boundaries, the lower the P, the better. If the content exceeds 0.02%, the yield strength cannot be suppressed low, and in addition, segregation at grain boundaries promotes grain boundary embrittlement, so the upper limit was made 0.02%.

【0019】Sは硫化物を生成して伸びを低下させるの
で、低い方がよい。0.02%超含有すると伸びの向上
ができなくなるので、上限を0.02%とした。
Since S forms sulfides and lowers elongation, the lower the S, the better. If the content exceeds 0.02%, the elongation cannot be improved, so the upper limit was made 0.02%.

【0020】Alは脱酸元素であるが、0.015%超
では後で述べるMgを含有する酸化物が生成しないため
に、これを上限とした。
Al is a deoxidizing element, but if it exceeds 0.015%, an oxide containing Mg, which will be described later, will not be formed, so that the upper limit is set.

【0021】NはCと同様に、固溶硬化、および、転位
固着作用により降伏強さを上昇させるので、低い方が好
ましい。Nを0.004%超含有すると、窒化物形成元
素を含有していても固溶N量を低くすることが困難とな
り、降伏強さを低く抑えることができないし、粗大窒化
物を多量に生成して伸びを低下させる。従って、上限を
0.004%とした。
N, like C, increases the yield strength by solid solution hardening and dislocation fixation, so that N is preferably lower. If the N content exceeds 0.004%, it becomes difficult to lower the amount of solute N even if it contains a nitride-forming element, so that the yield strength cannot be kept low, and a large amount of coarse nitride is generated. And reduce elongation. Therefore, the upper limit is made 0.004%.

【0022】Tiは炭窒化物を形成し、固溶C、N量を
低下させることにより降伏強さを低く抑えるために必要
な元素であると同時に、脱酸材としても作用する。その
ために、0.01%未満ではその効果が顕著でないの
で、下限を0.01%とした。0.03%以上含有する
と、固溶C、Nを十分に低減し、降伏強さを顕著に低下
させるが、粗大な析出物を生成するために靭性の向上が
困難となる。従って、0.03%未満を上限とした。
Ti is a necessary element for forming carbonitrides and suppressing the yield strength by lowering the amounts of solid solution C and N, and also acts as a deoxidizer. Therefore, if the content is less than 0.01%, the effect is not remarkable, so the lower limit is set to 0.01%. When the content is 0.03% or more, solid solution C and N are sufficiently reduced, and the yield strength is remarkably reduced. However, since coarse precipitates are formed, it is difficult to improve toughness. Therefore, the upper limit is set to less than 0.03%.

【0023】Mgは脱酸材として添加されるもので、T
iおよびAlなどと複合的に添加されるとMgOもしく
はMgO・Al2 3 などの微細酸化物を生成する。こ
れらの酸化物は、TiNの析出核として働くことが発明
者らの実験から明らかになっており、母材の靭性を向上
するためには、その平均粒子径が0.2μm以下でかつ
TiNと複合した平均粒子の間隔が0.5μm以下の距
離で鋼中に分散していることが必要である。このような
酸化物の分散状態を達成するためには、溶鋼中の固溶酸
素を制御しつつ、Ti、Al、Mgを添加することで、
達成できる。
Mg is added as a deoxidizing agent.
When added in combination with i and Al, a fine oxide such as MgO or MgO.Al 2 O 3 is generated. It is clear from experiments by the inventors that these oxides act as precipitation nuclei for TiN. In order to improve the toughness of the base material, the oxide has an average particle diameter of not more than 0.2 μm and TiN. It is necessary that the distance between the composite average particles is dispersed in the steel at a distance of 0.5 μm or less. In order to achieve such a dispersion state of oxides, Ti, Al, and Mg are added while controlling dissolved oxygen in molten steel,
Can be achieved.

【0024】なお、本発明で規定した粒子の分散状態
は、抽出レプリカを作成した後、透過型電子顕微鏡(T
EM)にて10000〜50000倍程度の倍率で測定
される。その場合の粒子の同定は、1000μm2 程度
の視野において、判別した介在物において、TEM付属
のエネルギー分散型X線分光法(EDS)による組成分
析により実施され、場合によっては、電子線回折により
結晶構造を解析しても良い。
Incidentally, the dispersion state of the particles specified in the present invention can be determined by preparing an extraction replica and then using a transmission electron microscope (T
EM) at a magnification of about 10,000 to 50,000 times. In this case, the particles are identified by a composition analysis by energy dispersive X-ray spectroscopy (EDS) attached to the TEM in the discriminated inclusion in a visual field of about 1000 μm 2 , and in some cases, the crystal is determined by electron diffraction. The structure may be analyzed.

【0025】このようにして得られた粒子について、観
察合計が30個以上について、その平均粒径として、円
相当径を平均化し、平均した粒子の大きさを求めた。ま
た、それぞれの粒子において、最も近接した粒子の距離
を20個以上測定し、その間隔を平均粒子間距離とし
た。Nb、および、Vは炭窒化物形成元素として等価な
作用を有するので、選択元素としてこれらのうち1種ま
たは2種を用いることができる。
With respect to the particles obtained as described above, the circle equivalent diameter was averaged as the average particle diameter for 30 or more observations, and the average particle size was determined. In each particle, the distance between the closest particles was measured at 20 or more, and the interval was defined as the average interparticle distance. Since Nb and V have an equivalent function as carbonitride forming elements, one or two of these elements can be used as selective elements.

【0026】NbはTiと同様に降伏強さを抑える効果
を有する。0.002%未満では固溶C、N量の低下が
顕著でないので、下限を0.002%とした。逆に0.
01%以上含有すると、熱間圧延における未再結晶温度
域を広げるため、特に、圧延温度が低下しやすい板厚が
10mm以下の鋼板を製造する際に、未再結晶域の圧延
となりやすく、降伏点の上昇を招くので、Nb量の上限
を0.01%未満とした。
Nb has an effect of suppressing the yield strength similarly to Ti. If the amount is less than 0.002%, the amount of dissolved C and N is not remarkably reduced, so the lower limit is made 0.002%. Conversely, 0.
When the content is 01% or more, the non-recrystallization region in hot rolling is widened, and therefore, when a steel sheet having a thickness of 10 mm or less, in which the rolling temperature is liable to decrease, is likely to be rolled in the non-recrystallization region. Therefore, the upper limit of the Nb content is set to less than 0.01%.

【0027】VもNbと同様な効果を有する。0.00
2%未満では固溶C、N量の低下が顕著でないので、下
限を0.002%とした。VもNbと同様に再結晶を抑
制する効果を有するがNbほど顕著ではない。しかし、
0.05%以上含有すると、再結晶抑制が顕著となり、
特に、圧延温度が低下しやすい板厚が10mm以下の鋼
板において、未再結晶域圧延となりやすく、やはり降伏
点の上昇を招く。従って、V量の上限を0.05%未満
とした。
V also has the same effect as Nb. 0.00
If it is less than 2%, the amount of dissolved C and N is not remarkably reduced, so the lower limit is made 0.002%. V also has the effect of suppressing recrystallization similarly to Nb, but is not as remarkable as Nb. But,
When the content is 0.05% or more, recrystallization suppression becomes remarkable,
In particular, in a steel sheet having a sheet thickness of 10 mm or less, at which the rolling temperature tends to decrease, rolling in the non-recrystallized region is likely to occur, which also increases the yield point. Therefore, the upper limit of the V amount is set to less than 0.05%.

【0028】本発明では降伏強さを低く抑えるためには
鋼中の固溶Cと固溶Nの量を低く抑える必要がある。両
元素はほぼ同様な作用を有するので固溶Cと固溶Nの合
計量で評価ができる。この値が0.006%を超えると
これら元素の固溶硬化と転位固着効果により降伏強さの
上昇が顕著となる。従って、上限を0.006%とし
た。固溶Cと固溶Nの合計量は内部摩擦法により測定す
るものとする。
In the present invention, in order to keep the yield strength low, it is necessary to keep the amounts of solute C and solute N in the steel low. Since both elements have almost the same action, evaluation can be made based on the total amount of solid solution C and solid solution N. When this value exceeds 0.006%, the yield strength becomes remarkable due to the solid solution hardening and dislocation fixing effects of these elements. Therefore, the upper limit is made 0.006%. The total amount of solid solution C and solid solution N shall be measured by the internal friction method.

【0029】Bは粒界に偏析し、粒界強度を上昇させ
る。特に、固溶C、Nが低い鋼ではこれら元素の粒界偏
析量が低下し、Pなどの粒界脆化元素の偏析を助長しや
すいので、B添加による粒界強化は靭性確保の観点から
効果がある。B含有量が0.0002%未満では粒界強
化の効果が得られないのでこれを下限とした。逆に、
0.0020%超含有すると粗大なBN析出物を生成
し、これが破壊起点となって靭性低下を招くので、上限
を0.0020%とした。不可避的不純物としてはA
s、Sb、Snなどがあるがこれらは粒界偏析して靭性
低下を招くので、不純物総量を0.01%以下とするこ
とが望ましい。
B segregates at the grain boundaries and increases the grain boundary strength. In particular, in steels having low solid solution C and N, the amount of grain boundary segregation of these elements decreases, and segregation of grain boundary embrittlement elements such as P is easily promoted. effective. If the B content is less than 0.0002%, the effect of strengthening the grain boundary cannot be obtained, so the lower limit is set. vice versa,
If the content exceeds 0.0020%, coarse BN precipitates are formed, which become the starting point of fracture and lower the toughness. Therefore, the upper limit was made 0.0020%. A is inevitable impurity
There are s, Sb, Sn and the like, but these segregate at the grain boundaries and cause a decrease in toughness. Therefore, the total amount of impurities is desirably 0.01% or less.

【0030】次に、圧延および熱処理条件を限定した理
由を以下に述べる。加熱温度を1050℃未満とする
と、最終熱処理後の粒径が小さくなり、降伏強さが上昇
する。また、鋳造後冷却過程で析出したTi、Nb、V
の炭窒化物が粗大のまま残存するので、靭性低下を招
く。逆に、1250℃超の加熱は加熱のコストが上昇
し、工業的に不利となる。従って、加熱温度の範囲を1
050〜1250℃とした。
Next, the reasons for limiting the rolling and heat treatment conditions will be described below. When the heating temperature is lower than 1050 ° C., the particle size after the final heat treatment becomes small, and the yield strength increases. Also, Ti, Nb, V precipitated in the cooling process after casting.
Carbonitride remains coarse, which causes a decrease in toughness. Conversely, heating above 1250 ° C. increases the cost of heating and is industrially disadvantageous. Therefore, the range of the heating temperature is set to 1
500 to 1250 ° C.

【0031】圧延仕上げ温度を800℃未満とすると、
フェライト粒径が小さくなり、降伏強さが上昇するとと
もに、結晶粒が過度に細粒化し降伏強度が上昇するの
で、下限を800℃とした。
When the rolling finishing temperature is less than 800 ° C.,
The lower limit was set to 800 ° C., because the ferrite grain size becomes smaller, the yield strength increases, and the crystal grains become excessively fine to increase the yield strength.

【0032】次に、(3)の製造方法は熱間圧延後、熱
処理により再結晶を生じさせるか、もしくは、一旦オー
ステナイト化し、その後の冷却過程で転位密度の低いフ
ェライトを生成させるのが目的である。熱処理加熱温度
を800℃未満では、再結晶が十分に進行しないので8
00℃を下限とする。逆に、960℃超とすると、オー
ステナイト粒が粗大化し、変態後のフェライト粒も粗大
化して靭性低下を招く。従って上限を960℃とした。
熱処理後の冷却は転位密度の低下を図るために空冷とす
ることが必要である。水冷など空冷よりも速い冷却速度
の冷却方法では変態時に生じる転位が残存し、降伏強度
を低く抑えることができない。
Next, the production method (3) is intended to cause recrystallization by heat treatment after hot rolling, or to form austenite once, and to form ferrite having a low dislocation density in the subsequent cooling process. is there. If the heat treatment heating temperature is lower than 800 ° C., recrystallization does not sufficiently proceed.
00 ° C is the lower limit. Conversely, if the temperature is higher than 960 ° C., the austenite grains become coarse, and the ferrite grains after transformation also become coarse, leading to a decrease in toughness. Therefore, the upper limit was set to 960 ° C.
The cooling after the heat treatment needs to be air-cooled to reduce the dislocation density. In a cooling method having a higher cooling rate than air cooling such as water cooling, dislocations generated during transformation remain, and the yield strength cannot be suppressed low.

【0033】(4)では、(3)と同様に再結晶フェラ
イトを生成させて降伏強度の低下を図るが、800〜9
60℃の熱処理の冷却過程において600〜910℃に
保熱することによって再結晶を促進させ、降伏強度を効
率的に低下させることができる。保熱温度が600℃未
満では再結晶促進効果は顕著でなく、逆に、910℃超
ではオーステナイト域にかかるのでフェライトの再結晶
が進行しない。なお、保熱に先立つ熱処理温度が910
℃以上では逆変態を生じるが、その後の冷却過程におけ
る保持が600〜910℃であれば、変態したフェライ
トの回復が進行するので、降伏強度を顕著に下げること
ができる。保熱の方法は恒温炉に挿入するなど方法は問
わない。
In (4), as in (3), recrystallization ferrite is formed to reduce the yield strength.
By maintaining the temperature at 600 to 910 ° C. in the cooling process of the heat treatment at 60 ° C., recrystallization is promoted, and the yield strength can be reduced efficiently. If the heat retention temperature is lower than 600 ° C., the effect of promoting recrystallization is not significant. The heat treatment temperature prior to heat retention is 910.
Reverse transformation occurs at a temperature of not less than ℃, but if the holding during the subsequent cooling process is at 600 to 910 ℃, the recovery of the transformed ferrite proceeds, so that the yield strength can be significantly reduced. The method of heat retention does not matter, such as insertion into a constant temperature furnace.

【0034】(5)では、熱間圧延後、800〜960
℃に加熱後空冷し、さらに600〜910℃の再加熱に
より転位密度の低下を図るが、この範囲に限定した理由
は上記と同じである。この温度範囲における保持時間を
10〜60分とすることが望ましい。
In (5), after hot rolling, 800 to 960
After cooling to ℃, air-cooling and reheating at 600 to 910 ℃ reduce the dislocation density. The reason for limiting to this range is the same as above. It is desirable that the holding time in this temperature range be 10 to 60 minutes.

【0035】なお、(3)〜(5)において、熱間圧延
後の熱処理加熱前の冷却は必ずしも必要ではないが、鋼
板表面の形状手入れなどのために150℃以下まで冷却
してもよい。本発明の対象の構造物としては、板厚また
は肉厚が4mm以上のものであればよく、厚板、条鋼、
鋼管など鋼材の断面形状に依らない。
In (3) to (5), the cooling before the heat treatment after the hot rolling is not necessarily required, but the cooling may be performed to 150 ° C. or less in order to maintain the shape of the steel sheet surface. The structure of the object of the present invention may have a thickness or a wall thickness of 4 mm or more.
It does not depend on the cross-sectional shape of steel materials such as steel pipes.

【0036】[0036]

【実施例】以下に、本発明の実施例を示す。転炉により
鋼を溶製し、連続鋳造により厚さが240mmのスラブ
製造を製造した。表1に鋼材の化学成分を示す。表中に
は内部摩擦法により測定した固溶C、Nの量も示す。そ
れらを表2に示す条件で熱間圧延、熱処理を行い、板厚
25mmの鋼板を製造した。その後、引張試験およびシャ
ルピー試験さらに、鋼板から抽出レプリカを採取し、電
子顕微鏡にて2μm以下の酸化物、析出物を観察し、そ
の30〜50個の平均粒子径と平均間隔を測定した。そ
れらの結果も表2に示す。
Examples of the present invention will be described below. Steel was melted by a converter, and a slab having a thickness of 240 mm was manufactured by continuous casting. Table 1 shows the chemical components of the steel materials. The table also shows the amounts of dissolved C and N measured by the internal friction method. They were subjected to hot rolling and heat treatment under the conditions shown in Table 2 to produce a steel sheet having a thickness of 25 mm. Thereafter, a tensile test and a Charpy test were performed, and an extracted replica was collected from the steel sheet. Oxides and precipitates of 2 μm or less were observed with an electron microscope, and the average particle diameter and average interval of 30 to 50 particles were measured. The results are also shown in Table 2.

【0037】番号1〜8が発明鋼、9〜20が比較鋼で
ある。発明鋼はすべて降伏強さが14 kgf/mm2 以下
(137MPa以下)であり、靭性も−20℃で200J以上と高
い。これに対し、比較鋼9〜14は本発明成分系範囲内
ではあるが、製造条件が本発明範囲を逸脱している例で
ある。すなわち、比較鋼9は熱間圧延に先立つスラブ加
熱温度が高いもので、靭性が低下し、比較鋼10は、圧
延仕上げ温度が780℃と発明範囲をはずれており、降
伏点が高くなっている。比較鋼11および12は熱処理
条件の温度が上限よりはずれているもので、いずれも降
伏点は低く抑えられているが靭性も低下している。比較
鋼13は熱処理後、鋼板を水冷した例である。この場
合、明らかに降伏点が高い。比較例14は熱処理時の保
持を本発明範囲を逸脱した低温側で実施した例であり、
この場合、極めて靭性が低くなっている。比較鋼15〜
20は、本発明の成分範囲を逸脱して製造された例であ
る。すなわち、比較鋼15および16(鋼E)は、Cが
0.012 %添加されており、いずれも降伏点が170MP
a以上と高くなってしまう。比較鋼17(鋼F)はMn
が0.48%添加された例である。この場合のMnの固溶強
化により降伏点が高い。比較鋼18(鋼G)はMgが添
加量が本発明範囲内の下限以下である例であり、狙いと
した平均粒子径および粒子の平均間隔も広く、靭性も低
い。比較鋼19(鋼H)はNb量が上限を逸脱して添加
されたもの、比較鋼20(鋼I)はN量がやはり上限を
逸脱して添加されたものである。この両者の場合、とも
に降伏点が150MPa以上と高くなっている。
Numbers 1 to 8 are invention steels, and 9 to 20 are comparative steels. All of the invention steels have a yield strength of 14 kgf / mm 2 or less (137 MPa or less) and a high toughness of 200 J or more at −20 ° C. On the other hand, Comparative Steels 9 to 14 are examples in which the production conditions are out of the range of the present invention, although they are within the range of the component system of the present invention. That is, the comparative steel 9 has a high slab heating temperature prior to hot rolling, and has reduced toughness. The comparative steel 10 has a rolling finish temperature out of the invention range of 780 ° C. and a high yield point. . In Comparative Steels 11 and 12, the temperature of the heat treatment condition was deviated from the upper limit, and the yield point was kept low, but the toughness was lowered. Comparative steel 13 is an example in which a steel plate was water-cooled after heat treatment. In this case, the yield point is clearly higher. Comparative Example 14 is an example in which the holding during the heat treatment was performed on the low temperature side outside the range of the present invention,
In this case, the toughness is extremely low. Comparative steel 15 ~
Reference numeral 20 is an example produced outside the component range of the present invention. That is, the comparative steels 15 and 16 (steel E) have C
0.012% added, yield point 170MP
a or higher. Comparative steel 17 (steel F) is Mn
Is an example in which 0.48% is added. In this case, the yield point is high due to solid solution strengthening of Mn. Comparative steel 18 (steel G) is an example in which the addition amount of Mg is equal to or less than the lower limit in the range of the present invention. Comparative steel 19 (steel H) was one in which the Nb content was added outside the upper limit, and comparative steel 20 (steel I) was the one in which the N content was also outside the upper limit. In both cases, the yield point is as high as 150 MPa or more.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【表2】 [Table 2]

【0040】[0040]

【発明の効果】以上説明したとおり、本発明により、
C、Nをはじめとする合金元素、特に、Ti、Nb、V
の量を限定し、かつMgを適量添加することにより鋼中
の固溶C、N量を低減して降伏強さを低く抑えるととも
に、析出物の粗大化を抑え、靭性を向上させることが可
能となる。したがって、構造物を製造する際の制振材料
としての安定した低降伏強さを提供するたけでなく、地
震時などにおける破壊に対する安全性も確保することが
可能となる。
As described above, according to the present invention,
Alloying elements including C and N, especially Ti, Nb, V
It is possible to reduce the amount of solid solution C and N in the steel and to suppress the yield strength by suppressing the amount of dissolved C and N in the steel, and to suppress the coarsening of the precipitates and improve the toughness by limiting the amount of Mg and adding an appropriate amount of Mg. Becomes Therefore, it is possible not only to provide a stable low yield strength as a vibration damping material when manufacturing a structure, but also to ensure safety against destruction at the time of an earthquake or the like.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K032 AA01 AA04 AA16 AA21 AA22 AA27 AA29 AA31 AA35 AA36 BA01 CA02 CA03 CC03 CC04 CD05 CF02 CF03  ────────────────────────────────────────────────── ─── Continued on the front page F term (reference) 4K032 AA01 AA04 AA16 AA21 AA22 AA27 AA29 AA31 AA35 AA36 BA01 CA02 CA03 CC03 CC04 CD05 CF02 CF03

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C :0.005%以下、S
i:0.04%以下、Mn:0.20%以下、P :
0.02%以下、S :0.02%以下、Al:0.0
15%以下、N :0.004%以下、Ti:0.01
〜0.03%未満、Mg:0.0005〜0.0050
以下、を含有し、さらに、Nb:0.002〜0.01
%未満、V :0.002〜0.05%未満、のうち一
種または2種を含有し、残部Feおよび不可避的不純物
からなる鋼において、固溶Cと固溶Nの合計が0.00
6%以下とし、さらに、MgOあるいはMgO・Al2
3 上に0.2μm 以下の大きさで析出したTiN複合
粒子が平均粒子間隔で0.5μm 以下の距離で鋼中に存
在することを特徴とする降伏強さが低く、且つ、靭性に
優れた構造用鋼。
(1) C: 0.005% or less in weight%, S:
i: 0.04% or less, Mn: 0.20% or less, P:
0.02% or less, S: 0.02% or less, Al: 0.0
15% or less, N: 0.004% or less, Ti: 0.01
Less than 0.03%, Mg: 0.0005 to 0.0050
The following are further contained, and Nb: 0.002 to 0.01
%, V: 0.002 to less than 0.05%, the steel containing one or two kinds and the balance consisting of Fe and unavoidable impurities has a total of solid solution C and solid solution N of 0.00
6% or less, and MgO or MgO.Al 2
TiN composite particles precipitated at a size of 0.2 μm or less on O 3 are present in steel at a distance of 0.5 μm or less at an average particle interval, and have a low yield strength and excellent toughness. Structural steel.
【請求項2】B :0.0002〜0.0020%を含
有することを特徴とする、請求項1に記載の降伏強さが
低く、且つ、靭性に優れた構造用鋼。
2. The structural steel having a low yield strength and excellent toughness according to claim 1, wherein the steel contains B: 0.0002 to 0.0020%.
【請求項3】請求項1または2に記載の鋼と同一成分を
有する鋼片、または、鋳片を1050〜1250℃に加
熱し、仕上げ温度を800℃以上となるように熱間圧延
を行った後、800〜960℃に加熱後空冷することを
特徴とする、降伏強さが低く、且つ、靭性に優れた構造
用鋼の製造方法。
3. A steel slab or a slab having the same composition as the steel according to claim 1 or 2 is heated to 1,050 to 1,250 ° C. and hot-rolled to a finishing temperature of 800 ° C. or higher. A method for producing a structural steel having a low yield strength and excellent toughness, comprising heating to 800 to 960 ° C. and then air cooling.
【請求項4】請求項1または2に記載の鋼と同一成分を
有する鋼片、または、鋳片を1050〜1250℃に加
熱し、仕上げ温度を800℃以上となるように熱間圧延
を行った後、800〜960℃に加熱後空冷する過程
で、600〜910℃に保熱後空冷することを特徴とす
る、降伏強さが低く、且つ、靭性に優れた構造用鋼の製
造方法。
4. A slab or a slab having the same composition as the steel according to claim 1 or 2 is heated to 1,050 to 1,250 ° C. and hot-rolled to a finishing temperature of 800 ° C. or higher. A method for producing a structural steel having a low yield strength and excellent toughness, characterized in that, after heating to 800 to 960 ° C. and then air cooling, it is kept at 600 to 910 ° C. and then air cooled.
【請求項5】請求項1または2に記載の鋼と同一成分を
有する鋼片、または、鋳片を1050〜1250℃に加
熱し、仕上げ温度を800℃以上となるように熱間圧延
を行った後、800〜960℃に加熱後空冷し、さら
に、600〜910℃に加熱後空冷することを特徴とす
る、降伏強さが低く、且つ、靭性に優れた構造用鋼の製
造方法。
5. A slab or a slab having the same composition as the steel according to claim 1 or 2 is heated to 1,050 to 1,250 ° C. and hot-rolled to a finishing temperature of 800 ° C. or higher. A method for producing a structural steel having a low yield strength and excellent toughness, comprising heating to 800 to 960 ° C., air cooling, and further heating to 600 to 910 ° C. and air cooling.
JP2000196527A 2000-06-29 2000-06-29 Structural steel low in yield strength and excellent in toughness, and its production method Withdrawn JP2002012937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000196527A JP2002012937A (en) 2000-06-29 2000-06-29 Structural steel low in yield strength and excellent in toughness, and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000196527A JP2002012937A (en) 2000-06-29 2000-06-29 Structural steel low in yield strength and excellent in toughness, and its production method

Publications (1)

Publication Number Publication Date
JP2002012937A true JP2002012937A (en) 2002-01-15

Family

ID=18695001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000196527A Withdrawn JP2002012937A (en) 2000-06-29 2000-06-29 Structural steel low in yield strength and excellent in toughness, and its production method

Country Status (1)

Country Link
JP (1) JP2002012937A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101775541A (en) * 2010-03-09 2010-07-14 武汉钢铁(集团)公司 Quake-proof construction steel with yield strength of 160MPa and production method thereof
CN101781736A (en) * 2010-03-09 2010-07-21 武汉钢铁(集团)公司 Yield strength 225MPa-level earthquake-resistant construction steel and production method thereof
CN102828113A (en) * 2011-06-14 2012-12-19 鞍钢股份有限公司 100 MPa high-performance mild steel for building structure and manufacturing method thereof
CN104087830A (en) * 2014-07-15 2014-10-08 首钢总公司 Method for preparing 160MPa grade low-yield-point building aseismicity steel
CN104087831A (en) * 2014-07-15 2014-10-08 首钢总公司 Manufacturing method of 100-MPa low-yield-point architectural antiseismic steel

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101775541A (en) * 2010-03-09 2010-07-14 武汉钢铁(集团)公司 Quake-proof construction steel with yield strength of 160MPa and production method thereof
CN101781736A (en) * 2010-03-09 2010-07-21 武汉钢铁(集团)公司 Yield strength 225MPa-level earthquake-resistant construction steel and production method thereof
CN101781736B (en) * 2010-03-09 2011-06-29 武汉钢铁(集团)公司 Yield strength 225MPa-level earthquake-resistant construction steel and production method thereof
CN102828113A (en) * 2011-06-14 2012-12-19 鞍钢股份有限公司 100 MPa high-performance mild steel for building structure and manufacturing method thereof
CN102828113B (en) * 2011-06-14 2015-08-05 鞍钢股份有限公司 100MPa high-performance building structure mild steel and manufacture method thereof
CN104087830A (en) * 2014-07-15 2014-10-08 首钢总公司 Method for preparing 160MPa grade low-yield-point building aseismicity steel
CN104087831A (en) * 2014-07-15 2014-10-08 首钢总公司 Manufacturing method of 100-MPa low-yield-point architectural antiseismic steel
CN104087830B (en) * 2014-07-15 2017-04-12 首钢总公司 Method for preparing 160MPa grade low-yield-point building aseismicity steel

Similar Documents

Publication Publication Date Title
JP6064955B2 (en) Manufacturing method of high strength seamless steel pipe for oil wells with excellent resistance to sulfide stress cracking
TWI404808B (en) Boron steel sheet with high quenching property and manufacturing method thereof
EP3020843B1 (en) High-carbon hot-rolled steel sheet and production method for same
EP2801636B1 (en) High carbon hot-rolled steel sheet and method for producing same
JP5363922B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
EP2937433A1 (en) Low-yield-ratio high-strength cold-rolled steel sheet and method for manufacturing same
WO2006022053A1 (en) HIGH TENSILE STEEL PRODUCT BEING EXCELLENT IN WELDABILITY AND TOUGHNESS AND HAVING TENSILE STRENGTH OF 550 MPa CLASS OR MORE, AND METHOD FOR PRODUCTION THEREOF
US20180355453A1 (en) Ultra-high strength steel sheet having excellent phosphatability and hole expandability and method for manufacturing same
JP2016089188A (en) Thick steel plate and method of producing the same
JP2011202207A (en) High-strength cold-rolled steel sheet having elongation, stretch-flange formability and weldability
EP4043597A1 (en) Ferritic stainless steel sheet, method for producing same and ferritic stainless steel member
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP4344073B2 (en) High strength steel excellent in high temperature strength and method for producing the same
JP2009215572A (en) High strength cold rolled steel sheet having excellent yield stress, elongation and stretch-flange formability
WO2020079096A1 (en) Hot rolled steel sheet with ultra-high strength and improved formability and method for producing the same
JP4712842B2 (en) High strength cold-rolled steel sheet with excellent elongation and stretch flangeability
JP4362219B2 (en) Steel excellent in high temperature strength and method for producing the same
JP2017115238A (en) High strength cold rolled steel sheet excellent in bending workability and production method therefor
JP3857835B2 (en) Steel for high strength bolt and method for producing high strength bolt
JP2002012937A (en) Structural steel low in yield strength and excellent in toughness, and its production method
JP3228986B2 (en) Manufacturing method of high strength steel sheet
JP4464867B2 (en) High tensile strength steel material having a tensile strength of 700 MPa or more that has both weldability and toughness, and a method for producing the same
JP3451007B2 (en) Structural steel having low yield strength and low anisotropy in yield strength and method for producing the same
JPH0832945B2 (en) Steel material for building structure having excellent fire resistance and its manufacturing method
JP2000248335A (en) Low yield ratio type fire resistant hot rolled steel sheet and steel pipe excellent in toughness and their production

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070904