JPH08269550A - Production of austenitic stainless steel excellent in intergranular stress corrosion cracking resistance - Google Patents

Production of austenitic stainless steel excellent in intergranular stress corrosion cracking resistance

Info

Publication number
JPH08269550A
JPH08269550A JP7685495A JP7685495A JPH08269550A JP H08269550 A JPH08269550 A JP H08269550A JP 7685495 A JP7685495 A JP 7685495A JP 7685495 A JP7685495 A JP 7685495A JP H08269550 A JPH08269550 A JP H08269550A
Authority
JP
Japan
Prior art keywords
stress corrosion
corrosion cracking
stainless steel
austenitic stainless
cracking resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7685495A
Other languages
Japanese (ja)
Inventor
Takanori Nakazawa
崇徳 中澤
Michiro Kaneko
道郎 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7685495A priority Critical patent/JPH08269550A/en
Publication of JPH08269550A publication Critical patent/JPH08269550A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To provide a chemical composition of austenitic stainless steel excellent in stress corrosion cracking resistance and its production. CONSTITUTION: The chemical composition of an Ni-Cr austenitic stainless steel, in which the content of C is limited to <=0.03% in order to inhibit the precipitation of carbides, causing intergranular stress corrosion cracking, in the grain boundaries and also N having a high degree of ability of entering solid solution is incorporated by <=0.15%, is set. Subsequently, at the time of producing this steel, a slab of this steel is heated at a temp. in the range between 1100 and 1300 deg.C, thereby, the amount of precipitation of carbides per unit grain boundary is reduced and also the amount of depletion of Cr in the vicinity of grain boundaries is reduced and further a Cr-depleted region is dispersed. By the chemical composition and manufacturing method mentioned above, the austenitic stainless steel excellent in intergranular stress corrosion cracking resistance can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は耐粒界応力腐食割れ性に
優れたオーステナイト系ステンレス鋼の製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing austenitic stainless steel having excellent intergranular stress corrosion cracking resistance.

【0002】[0002]

【従来の技術】高温高圧水中環境等で使用されるオース
テナイト系ステンレス鋼においては、耐粒界応力腐食割
れ性が重要視される。この粒界腐食は、粒界へのCr系
炭化物析出に伴なうCrの欠乏層により生じることが知
られている。このため、この炭化物の析出を防止するに
は、たとえば『ステンレス鋼便覧』(平成7年1月24
日発行)の269ページ「4)高温水」に示されている
ように、炭素(C)量を低減することが有効とされてい
る。
2. Description of the Related Art In an austenitic stainless steel used in a high temperature and high pressure water environment, the intergranular stress corrosion cracking resistance is important. It is known that this intergranular corrosion is caused by a Cr-deficient layer accompanying the precipitation of Cr-based carbides at the grain boundaries. Therefore, in order to prevent the precipitation of this carbide, for example, "Handbook of Stainless Steel" (January 24, 1995)
It is said that reducing the amount of carbon (C) is effective as shown in “4) High-temperature water” on page 269 of the Japanese issue).

【0003】しかしながら、炭素のオーステナイト系ス
テンレス鋼中への固溶度は極めて小さく、たとえば60
0℃では数ppm にすぎない。現行の工業規模での精錬技
術ではC量を0.01%以下にすることは困難であるた
め、わずかではあるが600℃においても過飽和なCが
存在することになる。したがって、熱処理後の冷却中あ
るいは溶接時に粒界にCr系炭化物の析出が生じる可能
性が残る。これは粒界近傍にCrの欠乏層を形成するこ
とにつながるものであり、材料の寿命に制限を加える要
因となる。
However, the solid solubility of carbon in austenitic stainless steel is extremely small, for example, 60.
It is only a few ppm at 0 ° C. Since it is difficult to reduce the amount of C to 0.01% or less by the current refining technology on an industrial scale, supersaturated C is present even at 600 ° C. although it is slight. Therefore, there is a possibility that Cr-based carbide may be precipitated at grain boundaries during cooling after heat treatment or during welding. This leads to the formation of a Cr-deficient layer in the vicinity of the grain boundary, which becomes a factor that limits the life of the material.

【0004】[0004]

【発明が解決しようとする課題】このように従来鋼は、
熱処理後の冷却中あるいは溶接時に粒界にCr系炭化物
の析出を生じ、Cr欠乏による粒界応力腐食割れの可能
性を残すものである。本発明の目的とするところは、わ
ずかな量の過飽和なCが存在しても優れた耐粒界応力腐
食割れ性を示すオーステナイト系ステンレス鋼の製造方
法の提供にある。
As described above, the conventional steel is
During the cooling after the heat treatment or during welding, precipitation of Cr-based carbides occurs at the grain boundaries, leaving the possibility of intergranular stress corrosion cracking due to Cr deficiency. An object of the present invention is to provide a method for producing an austenitic stainless steel exhibiting excellent intergranular stress corrosion cracking resistance even in the presence of a slight amount of supersaturated C.

【0005】[0005]

【課題を解決するための手段】上記したようなCrの欠
乏が生じる原因は、鋼中に存在するCが熱処理後の冷却
中あるいは溶接時に結晶粒界にCr系炭化物として析出
することに関係している。すなわち、粒界に析出するC
r系炭化物は粒界近傍にCr欠乏層を形成し、粒界応力
腐食の原因となることが知られている。このためC量を
低減し析出を抑制することが行われている。
The cause of the above-mentioned Cr deficiency is related to the fact that C existing in the steel precipitates as Cr-based carbides in the grain boundaries during cooling after heat treatment or during welding. ing. That is, C that precipitates at grain boundaries
It is known that the r-based carbide forms a Cr-deficient layer in the vicinity of the grain boundary and causes the grain boundary stress corrosion. Therefore, the amount of C is reduced to suppress the precipitation.

【0006】しかしながら、ステンレス鋼の低C化には
限界があり、VOD等の真空精錬技術の発達によりC量
は大幅に低減されてきたものの、数ppm といわれる60
0℃におけるCの溶解度以下にすることは困難である。
なお、EB溶解等の手段により極低C化することは可能
であるが、著しく高い費用を要することから実用に供し
えない。
However, there is a limit to the reduction of C in stainless steel, and although the amount of C has been greatly reduced by the development of vacuum refining technology such as VOD, it is said to be several ppm.
It is difficult to make the solubility of C at 0 ° C. or lower.
Although it is possible to make the carbon content extremely low by means such as EB melting, it is not practically applicable because it requires a significantly high cost.

【0007】本発明者等はC量が0.03%以下の低C
系のNi−Crオーステナイト系ステンレス鋼の微細組
織を観察することにより、Cr系炭化物は全粒界に析出
するのではなく、ある周期を持って粒界に析出すること
を明らかにした。この周期性について詳細な調査を行っ
た結果、Crの濃厚偏析帯と重なった結晶粒界にCr系
炭化物が析出することをつきとめた。すなわち、C量が
少ないため炭化物形成元素であるCr量の多い結晶粒界
に優先的に析出するものと考えられる。このような炭化
物が集中的に析出した粒界近傍にはCr欠乏層が連続的
に存在することになるため、粒界応力腐食割れが生じる
ことになる。
The present inventors have found that the C content is 0.03% or less and low C
By observing the fine structure of the Ni-Cr austenitic stainless steel of the system, it was clarified that the Cr-based carbides do not precipitate at all the grain boundaries but at the grain boundaries with a certain period. As a result of a detailed examination of this periodicity, it was found that Cr-based carbides were precipitated at the grain boundaries that overlapped with the Cr concentrated segregation zone. That is, it is considered that since the amount of C is small, it preferentially precipitates at the grain boundaries where the amount of Cr, which is a carbide forming element, is large. Since a Cr-deficient layer is continuously present in the vicinity of the grain boundary where such carbide is intensively deposited, grain boundary stress corrosion cracking occurs.

【0008】これに対し、十分に均質化された試料にお
いては粒界へのCr系炭化物の析出が全粒界に分散する
ため、単位粒界あたりの炭化物量が少なくなる。このた
め、形成されるCr欠乏層は、上記のCrの濃厚偏析の
部分に比べ、そのCr濃度の低下量が小さくなると同時
にその粒界に沿った長さも短くなる。その結果、十分に
均質化処理した材料の耐粒界応力腐食割れ性はさらに高
いものとなる。すなわち、図1は0.025%C−0.
5%Si−0.9%Mn−0.021%P−12.0%
Ni−17.5%Cr−0.041%N鋼の粒界応力腐
食割れ性に及ぼす鋼片加熱温度と加熱時間の影響を高温
水中の低速度引張試験により評価した結果を示す。この
図から明らかなように、1100〜1300℃の温度範
囲である時間以上加熱することにより耐粒界応力腐食割
れ性が大幅に改善される。
On the other hand, in a sufficiently homogenized sample, the precipitation of Cr-based carbides at the grain boundaries is dispersed in all the grain boundaries, so that the amount of carbides per unit grain boundary becomes small. Therefore, in the formed Cr-deficient layer, the amount of decrease in the Cr concentration is smaller and the length along the grain boundary is shorter than that in the above-described portion where the Cr is segregated heavily. As a result, the intergranular stress corrosion cracking resistance of the sufficiently homogenized material is further enhanced. That is, FIG. 1 shows 0.025% C-0.
5% Si-0.9% Mn-0.021% P-12.0%
The result of having evaluated the influence of the billet heating temperature and heating time on the grain boundary stress corrosion cracking resistance of Ni-17.5% Cr-0.041% N steel by the low speed tensile test in high temperature water is shown. As is clear from this figure, the intergranular stress corrosion cracking resistance is greatly improved by heating for a time in the temperature range of 1100 to 1300 ° C. for a period of time or longer.

【0009】本発明は、以上のような知見に基づいてな
されたものであって、その要旨とするところは、重量%
で、C :0.030%以下、 Si:2.0%
以下、Mn:3.0%以下、 P :0.0
4%以下、N :0.15%以下、 Ni:6
〜16%、Cr:15〜22%を含有し、または、これ
にさらに重量%で、Mo:3.0%以下を含有し、残部
がFeおよび不可避不純物からなる鋼の鋼片を1100
〜1300℃の範囲で式1で規定されるt時間以上加熱
した後、圧延あるいは鍛造することを特徴とする耐粒界
応力腐食割れ性に優れたオーステナイト系ステンレス鋼
の製造方法である。
The present invention has been made based on the above findings, and the gist thereof is% by weight.
And C: 0.030% or less, Si: 2.0%
Hereinafter, Mn: 3.0% or less, P: 0.0
4% or less, N: 0.15% or less, Ni: 6
.About.16%, Cr: 15 to 22%, or a further 1% by weight of a steel slab containing 100% or less of Mo: 3.0% or less and the balance of Fe and unavoidable impurities.
The method for producing an austenitic stainless steel having excellent intergranular stress corrosion cracking resistance is characterized in that after heating at a temperature of 1300 ° C. to 1300 ° C. for t hours or more, rolling or forging is performed.

【0010】[0010]

【作用】先ず本発明の成分系において、Cは高温使用中
に結晶粒界に炭化物として析出するため、粒界近傍にC
r欠乏層を形成し耐粒界応力腐食割れ性を損なう元素で
ある。このような観点からC量は0.030%以下に制
限した。次に、SiおよびMnはいずれも脱酸材として
必要であるが、Siは2.0%を超えて過剰に存在する
と、また、Mnは3.0%を超えて過剰に存在すると熱
間加工性を損なうことから前者は2.0%以下、後者は
3.0%以下とした。
First, in the component system of the present invention, since C precipitates as carbides at the grain boundaries during high temperature use, C is present near the grain boundaries.
It is an element that forms an r-deficient layer and impairs intergranular stress corrosion cracking resistance. From such a viewpoint, the C content is limited to 0.030% or less. Next, both Si and Mn are necessary as deoxidizing agents, but if Si is present in excess of 2.0% and Mn is present in excess of 3.0%, hot working is performed. The former is set to 2.0% or less and the latter is set to 3.0% or less because the property is impaired.

【0011】Pは粒界に偏析する傾向のある元素であ
り、粒界の耐食性を損なう可能性があるため、その上限
を0.04%とした。Niはオーステナイト生成元素と
して必須の元素であり、フェライト形成元素であるCr
量に対し成分平衡上オーステナイト組織にするための必
要量は6〜16%の範囲である。またCrは耐食性を向
上させる元素であり、そのためには15%以上を必要と
するが、22%を超えると繰り返し溶接等の高温加熱に
よる脆化が生じるため上限を22%とした。
P is an element that tends to segregate at the grain boundaries and may impair the corrosion resistance of the grain boundaries, so the upper limit was made 0.04%. Ni is an essential element as an austenite forming element, and is a ferrite forming element Cr.
The necessary amount for forming an austenite structure in terms of component equilibrium with respect to the amount is in the range of 6 to 16%. Cr is an element that improves the corrosion resistance, and for that purpose 15% or more is required, but if it exceeds 22%, embrittlement due to high temperature heating such as repeated welding occurs, so the upper limit was made 22%.

【0012】NはCとともにオーステナイト系ステンレ
ス鋼の強化元素である。NはCに比べ溶解度が大きいこ
とから、熱処理後の冷却中あるいは溶接時にも固溶状態
で安定して存在できる。したがって、Nを溶解度の範囲
内で使用すれば強化作用が期待でき、かつ窒化物による
粒界脆化等も生じないことになる。このような観点から
N量の上限を0.15%とした。なお、下限を設けない
理由は、用途に応じてN量を変化させて強度を制御する
ためであるが、通常の工業規模溶製でのレベル0.01
%が強いていえば下限となる。Moは耐食性を高める作
用のある元素であるが、3.0%を超えて添加すると熱
間変形抵抗を高めるため圧延あるいは鍛造が困難にな
る。したがって、含有量は3.0%以下とした。
N, together with C, is a strengthening element for austenitic stainless steel. Since N has a higher solubility than C, it can stably exist in a solid solution state during cooling after heat treatment or during welding. Therefore, if N is used within the range of solubility, a strengthening effect can be expected and grain boundary embrittlement due to nitride does not occur. From such a viewpoint, the upper limit of the amount of N is set to 0.15%. The reason for not setting the lower limit is to control the strength by changing the amount of N according to the application, but the level of 0.01 in normal industrial scale melting is used.
The lower the percentage, the lower limit. Mo is an element having an action of enhancing corrosion resistance, but if it is added in an amount exceeding 3.0%, rolling or forging becomes difficult because it increases the resistance to hot deformation. Therefore, the content is set to 3.0% or less.

【0013】以上の化学成分範囲の鋼の鋼片を圧延ある
いは鍛造する前に、高温で加熱することによりCr等の
成分偏析を軽減する必要がある。このために必要な熱処
理は図1に示したように1100℃以下では十分な拡散
効果が得られないため1100℃を下限とした。一方、
1300℃を超える温度での加熱はデルタフェライト相
の増加を招き、かえって成分変動を拡大させることにな
るため1300℃を上限とした。また、必要な加熱時間
は温度により変化し、高温になるほど短時間で均質化が
達成される。その必要な最小時間・tは温度の関数とし
て式1で規定されるものである。
Before rolling or forging a steel slab having a chemical composition within the above range, it is necessary to reduce the segregation of the components such as Cr by heating it at a high temperature. The heat treatment required for this purpose, as shown in FIG. 1, is 1100 ° C. or lower, so that a sufficient diffusion effect cannot be obtained. on the other hand,
Heating at a temperature over 1300 ° C causes an increase in the delta ferrite phase, and rather expands the component variation, so 1300 ° C was made the upper limit. Also, the required heating time varies depending on the temperature, and the higher the temperature, the shorter the homogenization is achieved. The required minimum time, t, is defined by equation 1 as a function of temperature.

【0014】以上の如き化学組成ならびに製造方法に基
づく本発明鋼は、各種電気炉等による製鋼を行った後、
通常の造塊あるいは連続鋳造により鋼塊あるいは鋳片と
し、鋼塊は圧延あるいは鍛造により鋼片としまた鋳片は
直接あるいは圧延により鋼片とし、ついで標記の加熱処
理を行った後、圧延あるいは鍛造により各種形状の鋼材
として使用に供されるものである。以下に本発明の効果
を実施例に基づいてさらに具体的に示す。
The steel of the present invention based on the chemical composition and the manufacturing method as described above is manufactured by various electric furnaces,
Ordinary ingot or continuous casting is used to make steel ingots or ingots, steel ingots are made into steel ingots by rolling or forging, and ingots are made directly or by rolling into steel ingots. Is used as a steel material of various shapes. The effects of the present invention will be described more specifically below based on examples.

【0015】[0015]

【実施例】表1に本発明鋼と比較鋼の化学成分および鋼
片加熱条件を示す。これらの試料から平行部直径:3m
m、標点間距離:20mmの低速度引張試験片を採取し、
300℃の高温水中で試験した。表2はこれらの試験結
果を示したものである。これらの特性調査結果から明ら
かなように、本発明鋼は比較鋼に比べ耐粒界応力腐食割
れ性が優れたものである。これに対し、比較鋼において
は、例えば合金番号8は加熱温度が低いため粒界割れが
発生し、また、合金番号9は1200℃加熱ではあるが
加熱時間が短いためやはり粒界割れを生じている。
EXAMPLES Table 1 shows the chemical composition of the steel of the present invention and the comparative steel and the heating conditions of the billet. Parallel part diameter from these samples: 3 m
m, gage length: 20mm low speed tensile test piece
Tested in hot water at 300 ° C. Table 2 shows the results of these tests. As is clear from the results of these characteristic investigations, the steel of the present invention is superior in intergranular stress corrosion cracking resistance to the comparative steel. On the other hand, in the comparative steel, for example, alloy No. 8 has a low heating temperature and thus grain boundary cracking occurs, and alloy No. 9 has 1200 ° C. heating, but the heating time is short, so that the grain boundary cracking still occurs. There is.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【発明の効果】以上述べた如く、本発明鋼は低C化およ
び鋼片の加熱処理により優れた耐粒界応力腐食割れ性を
有する材料となっており、高温水中等で使用される耐食
材料として工業的に極めて有効なものである。
As described above, the steel of the present invention is a material having excellent intergranular stress corrosion cracking resistance due to the low carbon content and the heat treatment of the billet, and the corrosion resistant material used in high temperature water or the like. Is industrially extremely effective.

【図面の簡単な説明】[Brief description of drawings]

【図1】粒界応力腐食割れ性に及ぼす鋼片の加熱温度と
加熱時間の影響を示す図である。
FIG. 1 is a diagram showing the influence of heating temperature and heating time of a steel piece on intergranular stress corrosion cracking resistance.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/58 C22C 38/58 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication C22C 38/58 C22C 38/58

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.030%以下、 Si:2.0%以下、 Mn:3.0%以下、 P :0.04%以下、 N :0.15%以下、 Ni:6〜16%、 Cr:15〜22%を含有し、残部がFeおよび不可避
不純物からなる鋼の鋼片を1100〜1300℃の範囲
で式1で規定されるt時間以上加熱した後、圧延あるい
は鍛造することを特徴とする耐粒界応力腐食割れ性に優
れたオーステナイト系ステンレス鋼の製造方法。 t=1/25(1300−T)+2 ‥‥‥(1) 但し、T:温度(℃)
1. By weight%, C: 0.030% or less, Si: 2.0% or less, Mn: 3.0% or less, P: 0.04% or less, N: 0.15% or less, Ni : 6 to 16%, Cr: 15 to 22%, the balance consisting of Fe and inevitable impurities is heated in the range of 1100 to 1300 ° C for at least t hours and then rolled. Alternatively, a method for producing an austenitic stainless steel excellent in intergranular stress corrosion cracking resistance, characterized by forging. t = 1/25 (1300-T) +2 (1) where T: temperature (° C)
【請求項2】 請求項1記載の成分に、さらにMo:
3.0%以下を含有する鋼を用いることを特徴とする請
求項1記載の耐粒界応力腐食割れ性に優れたオーステナ
イト系ステンレス鋼の製造方法。
2. The component according to claim 1, further comprising Mo:
The method for producing an austenitic stainless steel excellent in intergranular stress corrosion cracking resistance according to claim 1, characterized in that steel containing 3.0% or less is used.
JP7685495A 1995-03-31 1995-03-31 Production of austenitic stainless steel excellent in intergranular stress corrosion cracking resistance Withdrawn JPH08269550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7685495A JPH08269550A (en) 1995-03-31 1995-03-31 Production of austenitic stainless steel excellent in intergranular stress corrosion cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7685495A JPH08269550A (en) 1995-03-31 1995-03-31 Production of austenitic stainless steel excellent in intergranular stress corrosion cracking resistance

Publications (1)

Publication Number Publication Date
JPH08269550A true JPH08269550A (en) 1996-10-15

Family

ID=13617247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7685495A Withdrawn JPH08269550A (en) 1995-03-31 1995-03-31 Production of austenitic stainless steel excellent in intergranular stress corrosion cracking resistance

Country Status (1)

Country Link
JP (1) JPH08269550A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152343A (en) * 2004-11-26 2006-06-15 Nippon Steel & Sumikin Stainless Steel Corp Austenitic stainless steel having superior corrosion resistance at weld zone
WO2008136354A1 (en) 2007-04-27 2008-11-13 Japan Atomic Energy Agency Austenitic stainless steel excellent in intergranular corrosion resistance and stress corrosion cracking resistance, and method for producing austenitic stainless steel
EP2112237A1 (en) 2008-04-21 2009-10-28 Secretary, Department Of Atomic Energy Development of a very high resistance to sensitization in austenitic stainless steel through special heat treatment resulting in grain boundary microstructural modification
WO2011067979A1 (en) 2009-12-01 2011-06-09 新日鐵住金ステンレス株式会社 Fine grained austenitic stainless steel sheet exhibiting excellent stress corrosion cracking resistance and processability
JP2020079438A (en) * 2018-11-14 2020-05-28 日鉄ステンレス株式会社 Method for manufacturing hot-rolled austenitic stainless steel sheet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152343A (en) * 2004-11-26 2006-06-15 Nippon Steel & Sumikin Stainless Steel Corp Austenitic stainless steel having superior corrosion resistance at weld zone
JP4498897B2 (en) * 2004-11-26 2010-07-07 新日鐵住金ステンレス株式会社 Austenitic stainless steel with excellent weld corrosion resistance
WO2008136354A1 (en) 2007-04-27 2008-11-13 Japan Atomic Energy Agency Austenitic stainless steel excellent in intergranular corrosion resistance and stress corrosion cracking resistance, and method for producing austenitic stainless steel
EP2112237A1 (en) 2008-04-21 2009-10-28 Secretary, Department Of Atomic Energy Development of a very high resistance to sensitization in austenitic stainless steel through special heat treatment resulting in grain boundary microstructural modification
WO2011067979A1 (en) 2009-12-01 2011-06-09 新日鐵住金ステンレス株式会社 Fine grained austenitic stainless steel sheet exhibiting excellent stress corrosion cracking resistance and processability
JP2020079438A (en) * 2018-11-14 2020-05-28 日鉄ステンレス株式会社 Method for manufacturing hot-rolled austenitic stainless steel sheet

Similar Documents

Publication Publication Date Title
KR102267129B1 (en) Nb-containing ferritic stainless hot-rolled steel sheet and manufacturing method thereof, Nb-containing ferritic stainless cold-rolled stainless steel sheet and manufacturing method thereof
EP0306578B1 (en) Ferritic stainless steel and process for producing
JP3233188B2 (en) Oil-tempered wire for high toughness spring and method of manufacturing the same
KR20120137520A (en) Austenitic stainless steel
KR20130060290A (en) Heat-resistant ferrite-type stainless steel plate having excellent oxidation resistance
JP6842257B2 (en) Fe-Ni-Cr-Mo alloy and its manufacturing method
JP2020023736A (en) Two-phase stainless steel having excellent low-temperature toughness
JPH09249940A (en) High strength steel excellent insulfide stress cracking resistance and its production
JPH08269550A (en) Production of austenitic stainless steel excellent in intergranular stress corrosion cracking resistance
JP2022045505A (en) Ferritic stainless steel sheet, manufacturing method thereof, and member for gas exhaust system
JP3542239B2 (en) High-strength stainless wire with excellent resistance to longitudinal cracking and its wire
JPH07188819A (en) Electrothermal alloy
JPH10317104A (en) Austenitic stainless steel excellent in intergranular stress corrosion crack resistance ant its production
JP2688392B2 (en) Method for producing martensitic stainless steel with low cracking susceptibility
JP3574903B2 (en) High alloy austenitic stainless steel with excellent hot workability
JP6420494B1 (en) Ferritic stainless steel, manufacturing method thereof, and ferritic stainless steel for automobile exhaust gas path member
JPH0698499B2 (en) Stainless steel welding method and stainless steel welded body
JP6911174B2 (en) Nickel-based alloy
JP2562740B2 (en) Ferrite stainless steel with excellent intergranular corrosion resistance, pipe forming property and high temperature strength
JP2664499B2 (en) Ni-Cr austenitic stainless steel with excellent creep rupture characteristics
JP3678321B2 (en) Ferritic stainless steel pipe for engine exhaust gas passage members with excellent high-temperature strength
JP2811255B2 (en) Method for producing austenitic stainless steel with excellent high temperature creep rupture properties
US20230357879A1 (en) Highly corrosion-resistant austenite stainless steel and method for producing the same
JPH1161345A (en) Stainless steel superior in high temperature strength and hot workability
JPH10298719A (en) Austenitic stainless steel excellent in high temperature long time creep rupture characteristic, and its production

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020604