JPS60100655A - Production of high cr-containing ni-base alloy member having excellent resistance to stress corrosion cracking - Google Patents

Production of high cr-containing ni-base alloy member having excellent resistance to stress corrosion cracking

Info

Publication number
JPS60100655A
JPS60100655A JP58207248A JP20724883A JPS60100655A JP S60100655 A JPS60100655 A JP S60100655A JP 58207248 A JP58207248 A JP 58207248A JP 20724883 A JP20724883 A JP 20724883A JP S60100655 A JPS60100655 A JP S60100655A
Authority
JP
Japan
Prior art keywords
hot working
working
corrosion cracking
stress corrosion
conditions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58207248A
Other languages
Japanese (ja)
Other versions
JPS6157390B2 (en
Inventor
Takeshi Yoshida
武司 吉田
Ichiro Sekine
一郎 関根
Masaaki Kato
公明 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP58207248A priority Critical patent/JPS60100655A/en
Publication of JPS60100655A publication Critical patent/JPS60100655A/en
Publication of JPS6157390B2 publication Critical patent/JPS6157390B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To produce the titled alloy member having excellent resistance to stress corrosion cracking by subjecting the alloy member to the first time and the 2nd and succeeding times of hot working after blooming respectively under specific temp. conditions then subjecting the member to a heat treatment for stress relieving and recrystallization at a specific temp. CONSTITUTION:A high Cr-contg. Ni-base alloy is bloomed and is then subjected to the first time of hot working at >=1,080 deg.C heating temp. to form a perfect solid soln. The end temp. of the working is made 700-800 deg.C to disperse and precipitate uniformly and finely M7C3 type carbide into the base. The 2nd and succeeding times of hot working is accomplished at 900-1,050 deg.C heating temp. and 700-800 deg.C end temp. of the working to prevent solutionization of the fine M7C3 type carbide. The alloy is further subjected to cold working if necessary, then to a heat treatment for stress relieving and recrystallization at 750-1,050 deg.C to prevent spoiling the uniform structure of the fine M7C3 type carbide. The member having excellent resistance to stress corrosion cracking and intergranular corrosion is thus obtd.

Description

【発明の詳細な説明】 この発明は、結晶粒界に析出して応力腐食割れ発生の原
因となる人/I2a Ca型炭化物の析出を抑制し、一
方熱間加工時には積極的に素地中にM、C,型炭化物を
均一微細に析出させるととによって耐応力腐食割ね性の
すぐれた高Cr含有Ni基合金部材を製造する方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention suppresses the precipitation of Ca/I2a type carbides that precipitate at grain boundaries and cause stress corrosion cracking, while actively inhibiting the formation of M in the substrate during hot working. The present invention relates to a method for producing a high Cr-containing Ni-based alloy member with excellent stress corrosion cracking resistance by uniformly and finely precipitating , C, type carbides.

従来、例えば高温高圧にさらされる軽水型原子炉の構造
部材などの製造には、耐食性向上成分としてのCr:1
3〜33%、および加工性向上成分としてのFe : 
5〜15%を含有し、さらに必要に応じて脱酸成分およ
び強度向上成分としてsi 、 Mn 、 Al +T
i 、 Zr 、 B 、 Nb 、 Ta 、 W 
、およびVなどのうちの1種または2種以上をそれぞれ
0.1〜1%含有し、かつ耐応力腐食割れ性を低下させ
る不可避不純物としてのC含有量を0.1%以下とし、
残りがNiとその他の不可避不純物からなる組成(以上
重量%)を有するNi基合金が使用されている。
Conventionally, for example, in the production of structural members of light water nuclear reactors exposed to high temperature and high pressure, Cr:1 was used as a corrosion resistance improving component.
3 to 33%, and Fe as a processability improving component:
5 to 15%, and further contains si, Mn, Al + T as a deoxidizing component and a strength improving component as necessary.
i, Zr, B, Nb, Ta, W
, V, etc., each containing 0.1 to 1% of one or more of V, and the C content as an unavoidable impurity that reduces stress corrosion cracking resistance is 0.1% or less,
A Ni-based alloy having a composition (weight %) of Ni and other unavoidable impurities is used.

また、これらの高Cr含有Ni基合金部材は、通常、イ
ンゴットを、1150〜1250℃の温度で分塊鍛造し
た後、加熱温度: 1100〜1200℃、加工終了温
度二800℃以上の条件で熱間加工し、必要に応じて冷
間加工を施し、最終的に歪取シ、再結晶化、あるいは溶
体化のだめの熱処理を施すことによって製造されている
In addition, these high Cr-containing Ni-based alloy members are usually produced by blooming an ingot at a temperature of 1,150 to 1,250°C, and then heat treatment at a heating temperature of 1,100 to 1,200°C and a finishing temperature of 2,800°C or higher. It is manufactured by subjecting it to temporary processing, cold working if necessary, and finally heat treatment for strain relief, recrystallization, or solution treatment.

しかし、このような高Cr含有Ni基合金部材の製造法
においては、熱間加工あるいは熱処理時などの冷却過程
でM2S Ce型炭化物が結晶粒界に連続して析出する
のを避けることができず、この結果Cr欠乏層が形成し
、このCr欠乏層は応力腐食割れの原因となることから
、例えば特公昭58−17823号公報に記載されるよ
うな特別な条件での熱処理を施してCr欠乏層の消失を
はかつているが、これらの熱処理はいずれも長時間を要
し、かつ制御が面倒でちるなどの問題点がある。
However, in this method of manufacturing high Cr-containing Ni-based alloy members, it is impossible to avoid continuous precipitation of M2S Ce type carbides at grain boundaries during hot working or cooling during heat treatment. As a result, a Cr-depleted layer is formed, and since this Cr-depleted layer causes stress corrosion cracking, a heat treatment under special conditions as described in Japanese Patent Publication No. 58-17823 is performed to eliminate the Cr-depleted layer. Although the layer is on the verge of disappearing, all of these heat treatments require a long time and have problems such as being cumbersome and cumbersome to control.

そこで、本発明者等は、上述のような観点から、特別な
条件での熱処理を必要とすることなく、耐応力腐食割れ
性のすぐれた高Cr含有Ni基合金部材を製造すべく研
究を行なった結果、前記部材の熱間加工に際して、初回
の熱間加工における加熱温度を1080℃以上として完
全固溶体とし、かつ加工終了温度を700〜800℃と
してM2O,型炭化物が粒界および粒内を問わず、素地
中に積極的に均一微細に分散析出した組織を得るように
し、引続いての2回以降の熱間加工を、前記初回熱間加
工時に析出した微細なM2O,型炭化物を固溶させない
ために、加熱温度を900〜1050’Cとし、加工終
了温度を初回熱間加工の場合と同じ< 700〜800
°Cとした条件で行ない、さらに最終的に施される再結
晶化あるいは歪取りのだめの熱処理を、750〜105
0℃の温度で行なって、上記の熱間加工時に形成された
組織、すなわち微細なM、C,型炭化物が均一に分散析
出した組織が損表われないようにすると、この結果得ら
れた高Cr含有Ni基合金部材は、 Cr欠乏層発生の
原因となるM2S 0a型炭化物の連続した結晶粒界析
出がないことから、すぐれた耐応力腐食割れ性を具備す
るという知見を得たのである。
Therefore, from the above-mentioned viewpoint, the present inventors conducted research to produce a high Cr-containing Ni-based alloy member with excellent stress corrosion cracking resistance without requiring heat treatment under special conditions. As a result, when hot working the above-mentioned member, the heating temperature in the first hot working was set to 1080°C or higher to form a complete solid solution, and the processing end temperature was set to 700 to 800°C, so that M2O and type carbides were formed at the grain boundaries and inside the grains. First, actively obtain a structure that is uniformly and finely dispersed and precipitated in the base material, and in the subsequent hot workings, the fine M2O and type carbides precipitated during the first hot working are dissolved in solid solution. In order to prevent this, the heating temperature is set to 900-1050'C, and the finishing temperature is the same as the initial hot working <700-800'C.
°C, and the final heat treatment for recrystallization or strain relief is carried out at 750 to 105 °C.
If the process is carried out at a temperature of 0°C so that the structure formed during the above hot working, that is, the structure in which fine M, C, and type carbides are uniformly dispersed and precipitated, is not damaged, the resulting high It was found that Cr-containing Ni-based alloy members have excellent stress corrosion cracking resistance because there is no continuous grain boundary precipitation of M2S 0a type carbide, which causes the generation of Cr-depleted layers.

この発明は、上記知見にもとづいてなされたものであっ
て、高Cr含有Ni基合金部材の製造法において、初回
の熱間加工条件を、加熱温度: 1080℃以上、加工
終了温度ニア00〜800℃とし、2回以降の熱間加工
条件を、加熱温度:900〜10500G、加工終了温
度=700〜800℃とした条件で熱間加工を行ない、
さらに前記の熱間加工、あるいは前記の熱間加工および
通常の条件での冷間加工後の部材に対して、750〜1
050℃の温度で歪取シあるいは再結晶化のための熱処
理を施すことによって、耐応力腐食割れ性のすぐ九た高
Cr含有Ni基合金部材を製造する方法に特徴を有する
ものである。
This invention has been made based on the above knowledge, and in a method for manufacturing a high Cr-containing Ni-based alloy member, the initial hot working conditions are heating temperature: 1080°C or higher, working end temperature near 00 to 800°C. ℃, and the hot working conditions from the second time onwards were heating temperature: 900 to 10500G, processing end temperature = 700 to 800℃,
Furthermore, 750 to 1
The present invention is characterized by a method for producing a highly Cr-containing Ni-based alloy member with excellent stress corrosion cracking resistance by subjecting it to heat treatment for strain relief or recrystallization at a temperature of 0.050°C.

つぎに、この発明の高Cr含有Ni基合金部材の製造法
において、熱間加工条件および熱処理条件を上記の通シ
に限定した理由を説明する。
Next, the reason why the hot working conditions and heat treatment conditions are limited to the above-mentioned conditions in the method of manufacturing a high Cr-containing Ni-based alloy member of the present invention will be explained.

(a) 初回熱間加工め加熱温度 その加熱温度がI 080℃未満では、前工程の分塊鍛
造あるいは熱間鍛造で析出したM2S C6型炭化物を
完全に固溶させることができないので、1080℃以上
の温度に加熱しなければならないが、 1200℃を越
えると結晶粒が粗大化するようになるので、1200℃
を越えて加熱することは望ましくない。
(a) Heating temperature for initial hot working If the heating temperature is less than 1080°C, it is impossible to completely dissolve the M2S C6 type carbide precipitated in the previous step of blooming or hot forging. It is necessary to heat the product to a temperature higher than 1200°C, but if it exceeds 1200°C, the crystal grains will become coarse.
It is undesirable to heat the product beyond this point.

(b) 初回熱間加工の加工終了温度 初回の熱間加工に際しては、耐応力腐食割れ住方化の原
因となるM2S 06型炭化物を析出させることなく、
耐応力腐食割れ性に何らの悪影響も及ぼさない微細なM
TC1l型炭化物全炭化物せるようにするものであるた
め、その加工終了温度をM7C3型炭化物の析出速度が
最も速い温度域である700〜800℃とすることによ
ってM、C3型炭化物を積極的に析出させるようにする
のである。したがって、加工終了温度が800℃を越え
た高温であるとM7C3型炭化物の析出が緩慢となって
望ましくなく、一方その加工終了温度が700℃未満に
なるとM2S C6型炭化物が析出するようになるので
あって、かかる理由から、その加工終了温度を700〜
800℃と定めた。
(b) Processing end temperature of first hot working During the first hot working, M2S06 type carbide, which causes stress corrosion cracking, is not precipitated.
Fine M that has no adverse effect on stress corrosion cracking resistance
Since all of the TC1l type carbides are to be formed, M and C3 type carbides are actively precipitated by setting the processing end temperature to 700 to 800°C, which is the temperature range in which the precipitation rate of M7C3 type carbides is the fastest. Let them do it. Therefore, if the machining end temperature is high enough to exceed 800°C, the precipitation of M7C3 type carbide will become slow, which is undesirable, whereas if the machining end temperature is less than 700°C, M2S C6 type carbide will precipitate. For this reason, the processing end temperature is set at 700~
The temperature was set at 800°C.

(c)2回以降の熱間加工における加熱温度その加熱温
度が1050℃を越えると、初回熱間加工で折角析出さ
せた微細なM7C3型炭化物が再び固溶するようになシ
、一方、その加熱温度が、9000C未満になると熱間
加工を工業的に実施することが困難になることから、そ
の加熱温度を900〜1050℃と定めた。
(c) Heating temperature in second and subsequent hot workings If the heating temperature exceeds 1050°C, the fine M7C3 type carbides that were painstakingly precipitated in the first hot working will become solid solution again. If the heating temperature is less than 9000C, it will be difficult to carry out hot working industrially, so the heating temperature was set at 900 to 1050C.

(d)2回以降の熱間加工における加工終了温度2回以
降の熱間加工における加工終了温度も初回熱間加工にお
けると同じ理由によって定めたのであって、M、C3型
炭化物の析出速度の速い700〜800℃の温度域で熱
間加工を終了するようにしたのでちる。
(d) Processing end temperature for the second and subsequent hot workings The processing end temperature for the second and subsequent hot workings was determined for the same reason as for the first hot working, and the precipitation rate of M and C3 type carbides. Hot working is finished in a fast temperature range of 700 to 800°C.

なお、M7C3型炭化物の析出は、熱間加工におけるJ
加熱当9の力P工率が20%以上になると一段と促進さ
れるようになる。また、冷間加工に際して、中間焼鈍を
行なう必要がある場合、その加熱温度が上記の2回以降
の熱間加工における加熱温度と同じ900〜1050℃
となるとどけ勿論である。
Note that the precipitation of M7C3 type carbides is caused by J during hot working.
When the power P power rate of the heating element 9 becomes 20% or more, it will be further accelerated. In addition, if it is necessary to perform intermediate annealing during cold working, the heating temperature should be 900 to 1050°C, which is the same as the heating temperature in the second and subsequent hot workings mentioned above.
Of course, that's the case.

つぎに、この発明の高Cr含有Nl基合金部材の製造法
を実施例により説明する。
Next, the method for manufacturing a high Cr-containing Nl-based alloy member of the present invention will be explained using examples.

実施例 通常の溶解法により、第1表に示される成分組成をもっ
た高Cr含有Ni基合金を溶製し、直径:300 mF
Aφ×長さ: 1000m+iの寸法をもったインゴッ
トに鋳造した後、いずれも1200℃に加熱して分塊鍛
造を施し、それぞれ第1表に示される厚さのスラブとし
、ついで同じく第1表に示される条件にて初回熱間圧延
を施し、引続いて同じく第1表に示される条件にて2回
以降の熱間ff延を行ない、最終的に同じく第1表に示
される条件にて再結晶化のだめの熱処理(熱処理後の冷
却はいずれも急冷)を施すことによって本発明法1〜5
および比較法1〜7をそれぞれ実施した。なお、比較法
1〜7は、いずれも熱間加工条件および熱処理条件のう
ちのいずれかの条件(第1表に※印を付したもの)がこ
の発明の範囲から外わた条件で実施したものである。
Example A high Cr-containing Ni-based alloy having the composition shown in Table 1 was melted using a conventional melting method, and a diameter: 300 mF was prepared.
Aφ x length: After casting into ingots with dimensions of 1000 m + i, they were heated to 1200°C and subjected to blooming forging to form slabs with the thickness shown in Table 1. The first hot rolling was carried out under the conditions shown in Table 1, followed by the second hot FF rolling under the conditions shown in Table 1, and the final hot rolling was carried out again under the conditions shown in Table 1. Methods 1 to 5 of the present invention can be obtained by heat treatment (cooling after heat treatment is rapid) to prevent crystallization.
and Comparative Methods 1 to 7 were carried out, respectively. In addition, Comparative Methods 1 to 7 were all conducted under conditions in which any of the hot working conditions and heat treatment conditions (those marked with * in Table 1) were outside the scope of this invention. It is.

ついで、上記本発明法1〜5および比較法1〜7によっ
て得られた板材について、応力腐食割れ試験および粒界
腐食試験を行なった。応力腐食割れ試験は、幅”、15
mmX長さ:100龍×厚さ=2mmの板材を2枚重ね
てU字型に曲げた、いわゆる2重U字曲げ試験片を用い
、この試験片を、500ppmのC/?イオンを含有し
、かつ脱気しない300’Cの高温水中に1000時間
浸漬の条件で行ない、試験後、最大応力腐食割れ深さを
測定I7た。また、粒界腐食試験は、ASTM−028
にもとづき、硫酸・硫酸第2鉄溶液中における粒界腐食
速度を測定することにより行なった。これらの測定結果
を第1表に合せて示した。
Next, a stress corrosion cracking test and an intergranular corrosion test were conducted on the plate materials obtained by the above-mentioned methods 1 to 5 of the present invention and comparative methods 1 to 7. Stress corrosion cracking test
mm x length: 100 mm x thickness = 2 mm A so-called double U-shaped bending test piece was used, which was made by stacking two plates and bending them into a U-shape. The test was carried out under conditions of 1000 hours of immersion in 300'C high temperature water containing ions and without degassing, and after the test, the maximum stress corrosion cracking depth was measured I7. In addition, the intergranular corrosion test is performed using ASTM-028
Based on this, the intergranular corrosion rate was measured in a sulfuric acid/ferric sulfate solution. These measurement results are also shown in Table 1.

第1表に示される結果から、本発明法1〜5によって製
造された高Cr含有Ni基合金部材においては、結晶粒
界にM2j Ce型炭化物の析出がなく、シたがってC
r欠乏層の形成がないことから、すぐれた耐応力腐食割
れ性を示し、かつ粒界腐食速度も遅く、すぐれた耐粒界
腐食性を示すことが明らかである。これに対して、比較
法1〜7によって製造された高Cr含有Ni基合金板材
に見られるように、熱間加工条件および熱処理条件のう
ちのいずれかの条件でもこの発明の範囲から外ねると、
耐応力腐食割れ性および耐粒界腐食性のすぐれた高Cr
含有Ni基合金部材を得ることができないことが明らか
である。
From the results shown in Table 1, in the high Cr-containing Ni-based alloy members manufactured by methods 1 to 5 of the present invention, there is no precipitation of M2j Ce-type carbides at grain boundaries, and therefore C
Since there is no formation of an r-deficient layer, it is clear that the material exhibits excellent stress corrosion cracking resistance, and the intergranular corrosion rate is also slow, indicating excellent intergranular corrosion resistance. On the other hand, as seen in the high Cr-containing Ni-based alloy sheet materials manufactured by Comparative Methods 1 to 7, any of the hot working conditions and heat treatment conditions are outside the scope of the present invention. ,
High Cr with excellent stress corrosion cracking resistance and intergranular corrosion resistance
It is clear that it is not possible to obtain a containing Ni-based alloy member.

上述のように、この発明の方法によれば、特別な熱処理
条件を必要とすることなく、単に熱間加工における加熱
温度および加工終了温度、並びに出願人 三菱金属株式
会社 代理人 富 1)和 夫 外1名
As described above, according to the method of the present invention, there is no need for special heat treatment conditions, and the heating temperature and processing end temperature in hot working are simply controlled, and the applicant Mitsubishi Metals Co., Ltd. Agent Tomi 1) Kazuo 1 other person

Claims (1)

【特許請求の範囲】[Claims] 高Cr含有Ni基合金部材の製造法において、分塊鍛造
後の初回の熱間加工条件を、加熱温度: 1080℃以
上、加工終了温度ニア00〜800℃とし、2回以降の
熱間加工条件を、加熱温度=900〜1050℃、加工
終了温度ニア00〜800℃とした条件で熱間加工を行
ない、さらに前記の熱間加工、あるいは前記の熱間加工
および通常の条件での冷間加工後の部材に対して、75
0〜1050℃の温度で歪取シおよび再結晶化のだめの
熱処理を施すことを特徴とする耐応力腐食割ね性のすぐ
れた高Cr含有Ni基合金部材の製造法。
In the method for manufacturing a high Cr-containing Ni-based alloy member, the first hot working conditions after blooming forging are heating temperature: 1080°C or higher, working end temperature near 00 to 800°C, and the second and subsequent hot working conditions. is hot worked under the conditions of heating temperature = 900 to 1050°C and processing end temperature near 00 to 800°C, and further hot working as described above, or hot working as described above and cold working under normal conditions. For the latter part, 75
A method for manufacturing a high Cr-containing Ni-based alloy member having excellent stress corrosion cracking resistance, which comprises performing heat treatment for strain relief and recrystallization at a temperature of 0 to 1050°C.
JP58207248A 1983-11-04 1983-11-04 Production of high cr-containing ni-base alloy member having excellent resistance to stress corrosion cracking Granted JPS60100655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58207248A JPS60100655A (en) 1983-11-04 1983-11-04 Production of high cr-containing ni-base alloy member having excellent resistance to stress corrosion cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58207248A JPS60100655A (en) 1983-11-04 1983-11-04 Production of high cr-containing ni-base alloy member having excellent resistance to stress corrosion cracking

Publications (2)

Publication Number Publication Date
JPS60100655A true JPS60100655A (en) 1985-06-04
JPS6157390B2 JPS6157390B2 (en) 1986-12-06

Family

ID=16536661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58207248A Granted JPS60100655A (en) 1983-11-04 1983-11-04 Production of high cr-containing ni-base alloy member having excellent resistance to stress corrosion cracking

Country Status (1)

Country Link
JP (1) JPS60100655A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5019179A (en) * 1989-03-20 1991-05-28 Mitsubishi Metal Corporation Method for plastic-working ingots of heat-resistant alloy containing boron
JP2011162819A (en) * 2010-02-05 2011-08-25 Mitsubishi Materials Corp Ni-BASED ALLOY, AND METHOD FOR PRODUCING Ni-BASED ALLOY
WO2012166295A3 (en) * 2011-06-01 2013-01-24 Ati Properties, Inc. Thermo-mechanical processing of nickel-base alloys
US8834653B2 (en) 2010-07-28 2014-09-16 Ati Properties, Inc. Hot stretch straightening of high strength age hardened metallic form and straightened age hardened metallic form
US9050647B2 (en) 2013-03-15 2015-06-09 Ati Properties, Inc. Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
US9255316B2 (en) 2010-07-19 2016-02-09 Ati Properties, Inc. Processing of α+β titanium alloys
US9523137B2 (en) 2004-05-21 2016-12-20 Ati Properties Llc Metastable β-titanium alloys and methods of processing the same by direct aging
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US9796005B2 (en) 2003-05-09 2017-10-24 Ati Properties Llc Processing of titanium-aluminum-vanadium alloys and products made thereby
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
US10435775B2 (en) 2010-09-15 2019-10-08 Ati Properties Llc Processing routes for titanium and titanium alloys
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864364A (en) * 1981-10-14 1983-04-16 Sumitomo Metal Ind Ltd Manufacture of ni-cr alloy with superior corrosion resistance
JPS5867854A (en) * 1981-10-16 1983-04-22 Sumitomo Metal Ind Ltd Preparation of nickel base high chromium alloy excellent in stress, corrosion cracking resistance
JPS58153763A (en) * 1982-03-05 1983-09-12 Sumitomo Metal Ind Ltd Preparation of nickel-chromium alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864364A (en) * 1981-10-14 1983-04-16 Sumitomo Metal Ind Ltd Manufacture of ni-cr alloy with superior corrosion resistance
JPS5867854A (en) * 1981-10-16 1983-04-22 Sumitomo Metal Ind Ltd Preparation of nickel base high chromium alloy excellent in stress, corrosion cracking resistance
JPS58153763A (en) * 1982-03-05 1983-09-12 Sumitomo Metal Ind Ltd Preparation of nickel-chromium alloy

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5019179A (en) * 1989-03-20 1991-05-28 Mitsubishi Metal Corporation Method for plastic-working ingots of heat-resistant alloy containing boron
US9796005B2 (en) 2003-05-09 2017-10-24 Ati Properties Llc Processing of titanium-aluminum-vanadium alloys and products made thereby
US10422027B2 (en) 2004-05-21 2019-09-24 Ati Properties Llc Metastable beta-titanium alloys and methods of processing the same by direct aging
US9523137B2 (en) 2004-05-21 2016-12-20 Ati Properties Llc Metastable β-titanium alloys and methods of processing the same by direct aging
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
JP2011162819A (en) * 2010-02-05 2011-08-25 Mitsubishi Materials Corp Ni-BASED ALLOY, AND METHOD FOR PRODUCING Ni-BASED ALLOY
US9255316B2 (en) 2010-07-19 2016-02-09 Ati Properties, Inc. Processing of α+β titanium alloys
US9765420B2 (en) 2010-07-19 2017-09-19 Ati Properties Llc Processing of α/β titanium alloys
US10144999B2 (en) 2010-07-19 2018-12-04 Ati Properties Llc Processing of alpha/beta titanium alloys
US8834653B2 (en) 2010-07-28 2014-09-16 Ati Properties, Inc. Hot stretch straightening of high strength age hardened metallic form and straightened age hardened metallic form
US10435775B2 (en) 2010-09-15 2019-10-08 Ati Properties Llc Processing routes for titanium and titanium alloys
US9624567B2 (en) 2010-09-15 2017-04-18 Ati Properties Llc Methods for processing titanium alloys
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
CN103597105A (en) * 2011-06-01 2014-02-19 Ati资产公司 Thermo-mechanical processing of nickel-base alloys
JP2014520206A (en) * 2011-06-01 2014-08-21 エイティーアイ・プロパティーズ・インコーポレーテッド Thermomechanical processing of nickel-based alloys
CN107254606A (en) * 2011-06-01 2017-10-17 冶联科技地产有限责任公司 Nickel-based alloy, article comprising the alloy and thermomechanical processing of the alloy
US10287655B2 (en) 2011-06-01 2019-05-14 Ati Properties Llc Nickel-base alloy and articles
WO2012166295A3 (en) * 2011-06-01 2013-01-24 Ati Properties, Inc. Thermo-mechanical processing of nickel-base alloys
US9616480B2 (en) 2011-06-01 2017-04-11 Ati Properties Llc Thermo-mechanical processing of nickel-base alloys
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US10570469B2 (en) 2013-02-26 2020-02-25 Ati Properties Llc Methods for processing alloys
US10337093B2 (en) 2013-03-11 2019-07-02 Ati Properties Llc Non-magnetic alloy forgings
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US10370751B2 (en) 2013-03-15 2019-08-06 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US9050647B2 (en) 2013-03-15 2015-06-09 Ati Properties, Inc. Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
US11851734B2 (en) 2015-01-12 2023-12-26 Ati Properties Llc Titanium alloy
US10619226B2 (en) 2015-01-12 2020-04-14 Ati Properties Llc Titanium alloy
US10808298B2 (en) 2015-01-12 2020-10-20 Ati Properties Llc Titanium alloy
US11319616B2 (en) 2015-01-12 2022-05-03 Ati Properties Llc Titanium alloy
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys

Also Published As

Publication number Publication date
JPS6157390B2 (en) 1986-12-06

Similar Documents

Publication Publication Date Title
JPS60100655A (en) Production of high cr-containing ni-base alloy member having excellent resistance to stress corrosion cracking
KR100260111B1 (en) Thermomechanical processing of metallic materials
GB2160894A (en) Processing aluminium alloy sheet for good formability
JP2002146497A (en) METHOD FOR MANUFACTURING Ni-BASED ALLOY
KR101630403B1 (en) Manufacture method of nuclear fuel component made of zirconium applied multi-stage cold rolling
JPS5850299B2 (en) Manufacturing method for precipitation-strengthened high-strength cold-rolled steel sheets
US2799602A (en) Process for producing stainless steel
JPS60197817A (en) Manufacture of austenitic stainless steel material having high yield strength and superior corrosion resistance
JPS5953347B2 (en) Manufacturing method of aircraft stringer material
JPS6389649A (en) Manufacture of al-mg-zn alloy material having superior formability
JP2738130B2 (en) High strength Cu alloy continuous casting mold material having high cooling capacity and method for producing the same
US4435231A (en) Cold worked ferritic alloys and components
JP4414588B2 (en) Ni-based alloy with excellent surface quality and method for producing the same
JPH0461057B2 (en)
JPS604884B2 (en) Manufacturing method of super strong Kamalage steel
JPS6123862B2 (en)
KR20150105343A (en) Treatment process for a zirconium alloy, zirconium alloy resulting from this process and parts of nuclear reactors made of this alloy
JPH08239739A (en) Heat tratment for ni-base alloy excellent in corrosion resistance
JPS6324062B2 (en)
JPH03130351A (en) Production of titanium and titanium alloy having fine and equiaxial structure
JPH05202444A (en) Steel plate excellent in toughness at low temperature and its production
JPH11335803A (en) Production of near beta type titanium alloy coil
JPS5873754A (en) Manufacture of ni-cr alloy with superior corrosion resistance and strength
JPS6240336A (en) Ni-fe-cr alloy sheet material superior in cold formability and its manufacture
JPS61159563A (en) Production of industrial pure titanium forging stock excellent in mechanical strength