JPS60197817A - Manufacture of austenitic stainless steel material having high yield strength and superior corrosion resistance - Google Patents

Manufacture of austenitic stainless steel material having high yield strength and superior corrosion resistance

Info

Publication number
JPS60197817A
JPS60197817A JP5123384A JP5123384A JPS60197817A JP S60197817 A JPS60197817 A JP S60197817A JP 5123384 A JP5123384 A JP 5123384A JP 5123384 A JP5123384 A JP 5123384A JP S60197817 A JPS60197817 A JP S60197817A
Authority
JP
Japan
Prior art keywords
stainless steel
austenitic stainless
yield strength
corrosion resistance
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5123384A
Other languages
Japanese (ja)
Other versions
JPH0365408B2 (en
Inventor
Toru Izawa
伊沢 徹
Kenji Hirabe
平部 謙二
Shigeyasu Matsumoto
松本 重康
Kazuhiko Oo
大尾 和彦
Kazuaki Matsumoto
和明 松本
Sadahiro Yamamoto
山本 定弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP5123384A priority Critical patent/JPS60197817A/en
Publication of JPS60197817A publication Critical patent/JPS60197817A/en
Publication of JPH0365408B2 publication Critical patent/JPH0365408B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To manufacture a stainless steel plate having superior yield strength and corrosion resistance at a low cost by subjecting austenitic stainless steel to heat treatment, reduction and rapid cooling each under specified conditions. CONSTITUTION:Austenitic Ni-Cr stainless steel is heated to >=1,050 deg.C to solubilize Cr carbide in the matrix, and it is rolled down at >=30% total draft in the temp. range of 850-950 deg.C so as to prevent deterioration in the corrosion resistance due to the precipitation of Cr carbide caused by a strain. The resulting austenitic stainless steel is acceleratedly cooled to at least 550 deg.C at >=2 deg.C/sec average cooling rate. Even in case of austenitic stainless steel having about 0.1% C content, the yield strength and corrosion resistance are improved without adding an expensive element such as Nb.

Description

【発明の詳細な説明】 この発明は、耐食性に優れた高降伏強度オーステナイト
・ステンレス鋼材の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a high yield strength austenitic stainless steel material with excellent corrosion resistance.

オーステナイト・ステンレス鋼材(以下、鋼材として銅
板を例にとって説明する。)に熱処理。
Heat treatment of austenitic stainless steel material (hereinafter, copper plate will be explained as an example of steel material).

即ち、溶体化処理または固溶化処理を施す目的は、炭素
鋼や低合金鋼の場合と異なり、Or炭化物をマトリック
スに固溶させて耐食性を向上させることにあるので、一
般に鋼板を1000℃以上の高温度に加熱する。このた
めにオーステナイト粒が粗大化して、降伏強度が著しく
低下する。従って、オーステナイト・ステンレス鋼板は
高強度を要求される一部の構遺物用鋼板として不適当で
ある。
That is, the purpose of solution treatment or solid solution treatment is to improve corrosion resistance by dissolving Or carbide in the matrix, unlike in the case of carbon steel or low alloy steel. Heat to high temperature. This causes the austenite grains to become coarse and the yield strength to drop significantly. Therefore, austenitic stainless steel sheets are unsuitable as steel sheets for some structures that require high strength.

上述した問題点の解決法の1つに、オーステナイト・ス
テンレス鋼中の背素含有量を高める方法がある。しかし
、この方法を採っても降伏強度は5〜6に9/−程度上
昇するにすぎず、しかも、このように窒素含有量を高め
ると、オーステナイト・ステンレス鋼板の欠点の1つで
ある耐応力腐食割れが更に劣化するので好ましい方法で
はない。
One solution to the above-mentioned problems is to increase the backbone content in austenitic stainless steel. However, even if this method is adopted, the yield strength will only increase by about 9/- to 5-6, and furthermore, increasing the nitrogen content in this way will reduce the stress resistance, which is one of the drawbacks of austenitic stainless steel sheets. This is not a preferred method as it further deteriorates corrosion cracking.

別の方法として、オーステナイト・ステンレス鋼片に制
御圧延を施す、即ち、オーステナイト・ステンレス鋼片
を熱間圧延する際に、オーステナイトの未再結晶域で累
積圧下を施すことによって、降伏強度を上昇させる方法
がある。し−かじ、この方法には次のような問題がある
。即ち、熱間圧延前にオーステナイト・ステンレス鋼片
をCr炭化物が十分に固溶する温度に加熱しても、熱間
圧延によって鋼板中に生じる歪によりCr炭化物が析出
して(Cr炭化物の歪誘起析出と云う)鋼板の面J食性
が劣化する。まだ、溶体化処理を施すにはCr炭化物を
固溶させた後、冷却途中でCr炭化物が再度析出しない
ような冷却速度で冷却する必要があるが、制御圧延にお
いては圧延後の冷却は空冷となるだめにCr炭化物の析
出防止の点から見ると、前記方法を適用し得る材料は制
限される。即ち、組成としてはCjlr、がo、o1%
以下のものに制限され、板厚としては6mm以下の薄物
に限定される。
Another method is to increase the yield strength by subjecting the austenitic stainless steel billet to controlled rolling, that is, by applying cumulative reduction in the non-recrystallized region of the austenite during hot rolling of the austenitic stainless steel billet. There is a way. However, this method has the following problems. That is, even if an austenitic stainless steel piece is heated to a temperature at which Cr carbide is sufficiently dissolved in solid solution before hot rolling, Cr carbide precipitates due to the strain generated in the steel sheet by hot rolling (strain-induced Cr carbide (referred to as precipitation), the surface corrosion of the steel sheet deteriorates. However, in order to perform solution treatment, it is necessary to dissolve the Cr carbide and then cool it at a cooling rate that prevents the Cr carbide from precipitating again during cooling, but in controlled rolling, cooling after rolling is performed by air cooling. From the viewpoint of preventing the precipitation of Cr carbides, the materials to which the above method can be applied are limited. That is, the composition is Cjlr, o, o1%
The material is limited to the following, and the plate thickness is limited to a thin material of 6 mm or less.

オーステナイト・ステンレス鋼は一般に変形抵抗が大き
いことから1バスで大きな圧下をとることは困難である
。従って、薄物の場合には特にバス回数が増加し、Cr
炭化物の歪誘起析出を防止するだめの850℃以上の高
温仕上げは困難である。
Since austenitic stainless steel generally has high deformation resistance, it is difficult to apply a large reduction in one bath. Therefore, the number of baths increases especially in the case of thin materials, and Cr
It is difficult to finish at a high temperature of 850° C. or higher to prevent strain-induced precipitation of carbides.

また、オーステナイト・ステンレス鋼は炭素鋼や低合金
鋼と比較すると熱伝導度が1/2程度小さいので、制御
圧延後の空冷時における冷却速度は増々遅くなつ(Cr
炭化物は析出し易くなる。
Also, since the thermal conductivity of austenitic stainless steel is about 1/2 lower than that of carbon steel or low alloy steel, the cooling rate during air cooling after controlled rolling becomes increasingly slower (Cr
Carbides tend to precipitate.

以上の説明から明らかなように、降伏強度が高く、しか
も耐食性に優れたオーステナイト・ステンレス鋼板の製
造法は未だ椰立されていない。
As is clear from the above explanation, a method for manufacturing an austenitic stainless steel sheet that has high yield strength and excellent corrosion resistance has not yet been developed.

なお、降伏強度を高めることは別として、溶体化処理を
施すには、オーステナイト・ステンレス鋼片を前述のよ
うな高温度に加熱するだめの莫大な熱エネルギーを要す
るばかりか、このような高温度に耐えるハースロール等
を備えた加熱炉を設置する必要があり、溶体化処理を独
立した工程によって実施することは合理的な方法ではな
い。
Apart from increasing the yield strength, solution annealing not only requires a huge amount of thermal energy to heat the austenitic stainless steel piece to the high temperature mentioned above, but also It is necessary to install a heating furnace equipped with hearth rolls, etc. that can withstand high temperatures, and it is not a rational method to carry out solution treatment as an independent process.

この発明は、上述のような観点から、降伏強度が高く、
しかも耐食性に優れたオーステナイト・ステンレス鋼板
を安価に製造することができる方法を提供するものであ
って、 オーステナイト・ステンレス鋼片を1050℃以上の温
度に加熱し、この後、加熱した前記鋼片に850〜95
0℃の温度域で30係以上の累積圧下f施し1次いで、
このようにして得られだオーステナイト・ステンレス鋼
板を2℃/ Sec以上の平均冷却速1.t、!’、で
少なくとも550℃の温度まで加速冷却することに特゛
1敷を有する。
From the above-mentioned viewpoints, this invention has high yield strength,
Moreover, the present invention provides a method for manufacturing an austenitic stainless steel plate with excellent corrosion resistance at a low cost. 850-95
Apply cumulative pressure f of 30 coefficients or more in a temperature range of 0 ° C. 1st time,
The austenitic stainless steel plate thus obtained was cooled at an average cooling rate of 2°C/Sec or more. T,! ', has a special feature of accelerated cooling to a temperature of at least 550°C.

この発明の詳細な説明する。This invention will be explained in detail.

この発明に使用されるオーステナイト・ステンレス鋼は
、通常、俗体化処理を必要とする全てのオーステナイト
 ステンレス鋼であり、具体的にはc:o、1%以下、
Mn : 5%以下、Si :2 %以下、Ni:6−
50%、Cr :l O−30%、Ae:1%以下、残
7’il(;鉄及び小町避不純物(以上重量係)を基本
元素とし、更に必要に応じて、これらの基本元素にT1
: 2%以下、Nb : 2%以下、Cu : 4 %
以下、Mo : 10%以下の1神捷たは2種以上の付
加的元素を含有するものである。
The austenitic stainless steel used in this invention is any austenitic stainless steel that normally requires a generalization treatment, specifically c:o, 1% or less,
Mn: 5% or less, Si: 2% or less, Ni: 6-
50%, Cr: l O-30%, Ae: 1% or less, remaining 7'il (; Iron and Komachi impurities (weight ratio) are the basic elements, and if necessary, T1 is added to these basic elements.
: 2% or less, Nb: 2% or less, Cu: 4%
Hereinafter, Mo: Contains 10% or less of one element or two or more additional elements.

この発明に紛いて、上記元素を肩するオーステナイト・
ステンレス鋼片を1050℃以上の温度に加熱するのは
、Cr炭化物をマトリックスに十分に固溶させるためで
ある。前記鋼片の加熱温度が1050℃未満の場合には
Cr炭化物がマトリックスに十分に固溶しないだめに、
耐食性に優れたオーステナイト・ステンレス鋼板を製造
することができない。
Confused with this invention, austenite, which supports the above elements,
The reason why the stainless steel piece is heated to a temperature of 1050° C. or higher is to sufficiently dissolve Cr carbide in the matrix. If the heating temperature of the steel piece is less than 1050°C, Cr carbide is not sufficiently dissolved in the matrix;
It is not possible to manufacture austenitic stainless steel sheets with excellent corrosion resistance.

次に、加熱された前記鋼片に、850〜950℃の温度
域で30%以上の県債圧下を施す理由について説明する
。まず、加熱温匣の下限値であるが、850℃未満の温
度域で圧下を施すと、Cr炭化物の歪誘起析出により耐
食性が劣化する。従って、加熱温度の下限値を850℃
に限定した。次に、那熱温度の上限値であるが、850
〜950℃の轍度域においてはオーステナイトの未B結
晶域となる。従って、前記未再結晶の温度域において累
積圧下を施せば、これによって前記鋼片中に導入された
歪は解放されることなく累積されて変形帯密度が上昇し
、これによって製造された鋼板の降伏強度が上昇する。
Next, the reason why the heated steel billet is subjected to prefectural bond reduction of 30% or more in the temperature range of 850 to 950°C will be explained. First, if rolling is performed in a temperature range of less than 850° C., which is the lower limit of the heating temperature range, the corrosion resistance will deteriorate due to strain-induced precipitation of Cr carbides. Therefore, the lower limit of heating temperature is 850℃.
limited to. Next, the upper limit of the nathermal temperature is 850
In the rutting degree range of ~950°C, it becomes an austenite non-B crystallized area. Therefore, if cumulative reduction is applied in the non-recrystallized temperature range, the strain introduced into the steel billet will be accumulated without being released, and the deformation band density will increase. Yield strength increases.

一方、950℃を超える温度域においてはオーステナイ
トの再結晶域となる。
On the other hand, in a temperature range exceeding 950° C., the austenite recrystallization region occurs.

従って、前記再結晶の温度域において大きな累積圧下を
施しても前記垂片中に導入された歪は前記再結晶により
解放され、これによって前記鋼板の降伏強度は上昇しな
い。従って、加熱温度の上限値を950℃に限定し/こ
。寸/こ、850〜950℃の温度域における累積圧下
率が30%未満では前記変形帯密度の上昇が不十分であ
るので、所期の降伏強度の上昇が得られない。従って、
累積圧下率を30係未4jνに限定した。
Therefore, even if a large cumulative reduction is applied in the recrystallization temperature range, the strain introduced into the vertical piece is released by the recrystallization, and the yield strength of the steel plate does not increase. Therefore, the upper limit of the heating temperature is limited to 950°C. If the cumulative rolling reduction in the temperature range of 850 to 950° C. is less than 30%, the deformation band density will not increase sufficiently, and the yield strength will not increase as expected. Therefore,
The cumulative rolling reduction rate was limited to 30 times less than 4jν.

この発明において、950℃を超える温度域における圧
Fにし任意である。即ち、いかなる条件で圧下を施して
も、1だは全く圧下を施さなくても良い。
In this invention, the pressure F in a temperature range exceeding 950°C is optional. That is, no matter what conditions the rolling is performed, it is not necessary to apply rolling at all.

圧延仕上り温度は850〜950℃の温朋域の任意の温
度で良いが、鋼板の降伏強度の向上を図る上でなるべく
低い方が良い。
The finishing temperature of rolling may be any temperature in the mild range of 850 to 950°C, but it is better to keep it as low as possible in order to improve the yield strength of the steel plate.

次に、圧延後の前記鋼板の冷却条件でおるが、圧延後の
冷却速度が2℃/ sec未満の場合、または550℃
を超える1黒度域で2℃/ sec未満の冷却速度で冷
却すると、冷却途中でOr炭化物およびσ相が析出して
耐食性が劣化する。従って、この発明でに圧延後の前記
鋼板を2℃/sec以上の平均冷却速度で少なくとも5
50℃の温度まで加速冷却するのである。
Next, regarding the cooling conditions for the steel plate after rolling, if the cooling rate after rolling is less than 2°C/sec, or 550°C
If it is cooled at a cooling rate of less than 2°C/sec in a blackness range exceeding 1°C, Or carbide and σ phase will precipitate during cooling, resulting in deterioration of corrosion resistance. Therefore, in the present invention, the steel plate after rolling is cooled at an average cooling rate of 2°C/sec or more for at least 5°C.
It is acceleratedly cooled to a temperature of 50°C.

次に、この発明の実施例について説明する。Next, embodiments of the invention will be described.

第1表に示す元素を含有するS U S 304鋼(A
SUS 304 steel (A
.

BおよびC)を第1図、第2図および第3図に示す温度
曲線を有するプロセスト■に従って熱処理した。第1図
に示す温度曲線を有するプロセス1は、溶体化→処理を
行うもので熱間圧延においてはオーステナイトの再結晶
域のみで圧下を施す。
B and C) were heat treated according to process method 3 having the temperature curves shown in FIGS. 1, 2 and 3. Process 1, which has the temperature curve shown in FIG. 1, is a process in which solution treatment is performed, and in hot rolling, rolling is performed only in the austenite recrystallization region.

第2図に示す温度曲線を有するプロセス■は、オーステ
ナイトの再結晶域で圧下を施し、更に、降伏強度の向上
をねらってオーステナイトの未再結晶域でも圧下を施す
、所謂、制御圧延を行うものであり、圧延後は空冷する
。第3図に示す温度曲線を有するプロセスIIIは、第
2図に示しだプロセスUと同様、オーステナイトの再結
晶域および未再結晶域で圧下を施した後、直ちに加速冷
却を行う。なお、第1〜第3図のプロセスI〜IU K
 オイて、圧延前のオーステナイト・ステンレス鋼片は
、何れもOr炭化物を十分にマトリックスに固溶させる
ために1200℃μ上の温度で加熱した。
Process (2), which has the temperature curve shown in Figure 2, involves rolling in the recrystallized region of austenite and further rolling in the non-recrystallized region of austenite in order to improve the yield strength, which is called controlled rolling. After rolling, it is air cooled. Process III, which has the temperature curve shown in FIG. 3, is similar to process U shown in FIG. 2, in which accelerated cooling is performed immediately after applying pressure in the austenite recrystallized region and non-recrystallized region. In addition, processes I to IUK in FIGS. 1 to 3
The austenitic stainless steel pieces before rolling were all heated at a temperature of 1200° C. or higher in order to sufficiently dissolve the Or carbide in the matrix.

第2表に前記各プロセスト1■にお−ける条件、得られ
たオーステナイト・ステンレス鋼板1〜13(比較鋼板
]〜5および10〜13、本発明鋼板6〜9)の引張試
験結果および腐食試験結果を合せて示す。第2表中スト
ラウス試験は、沸騰した硫酸と硫酸銅との混合液中に試
験片を浸漬した後、試験片を折曲げて腐食状態を評価し
たものであり、○印は割れがないことを、×印は全面に
粒界腐食が生じたことを、Δ印は一部に粒界腐食が生じ
たことをそれぞれ示す。Uベンド試験は試験片を20係
の食塩水に1000時間浸漬した後、試験片を折曲げて
腐食割れ状態を評価したものであり、○印に、割れが発
生しないことを、x印は割れが発生したことをそれぞれ
示す。
Table 2 shows the conditions for each process 1), the tensile test results and corrosion of the obtained austenitic stainless steel plates 1 to 13 (comparative steel plates) to 5 and 10 to 13, and the invention steel plates 6 to 9. Test results are also shown. The Strauss test in Table 2 evaluates the corrosion state by immersing a test piece in a mixture of boiling sulfuric acid and copper sulfate and then bending the test piece. , × indicates that intergranular corrosion occurred on the entire surface, and Δ indicates that intergranular corrosion occurred in a part. In the U-bend test, a test piece is immersed in a saline solution of 20% strength for 1000 hours, and then the test piece is bent to evaluate the state of corrosion cracking. Each indicates that a has occurred.

第2表から明らかなように、比較鋼板1は耐食性(制粒
界腐食性および耐腐食割れ性)は良好であるが降伏強度
は21 Kg / nrlとJISに規定された値の下
j51りであり余り高くない。比軟鋼板2は降伏強度を
上昇させるために窒素含有量を増加させたものであるが
、降伏強度の上昇は5 Kp / mA程度にすぎず、
1制応力Iff食割れ性も悪い。
As is clear from Table 2, comparative steel sheet 1 has good corrosion resistance (intergranular corrosion resistance and corrosion cracking resistance), but the yield strength is 21 Kg/nrl, which is less than the value specified by JIS. It's not too expensive. Specific mild steel plate 2 has increased nitrogen content to increase yield strength, but the increase in yield strength is only about 5 Kp/mA,
1. Restraining force Iff corrosion resistance is also poor.

比較鋼板5へ・5は、第2図に示したプロセスHにより
天命しノξものであり、そのうち比較rt+ l: ?
、を製造したプロセスII’は、オーステナイトの未再
結晶域において圧下を施さない点を除いてプロセス11
と同様のプロセスである。オーステナイトの未呵結晶域
においてIf下を施さない比較鋼板3は降伏強度が低い
のに勾して、オーステナイトの未再結晶域において50
係の累積圧下を旋した比戟賞板4および5(は、降伏強
度が上昇している。しかし、比M’j”)4 :jfj
、a−および5は圧延終了後の冷却か空冷であるので、
C−十の多少(lc力・かわらすil+i4食性、q#
に馴粒界属食性が悪い。
Comparative steel plate 5. 5 is a product made by the process H shown in Fig. 2, and the comparison rt+l: ?
Process II', which produced
It is a similar process. Comparative steel plate 3, which was not subjected to If lowering in the austenite un-crystallized region, had a low yield strength, whereas in the austenite un-recrystallized region, the
Rigid plates 4 and 5 (the yield strength has increased.However, the ratio M'j'') 4: jfj
, a- and 5 are cooled after rolling or air cooled, so
C-some of ten (lc power, kawarusu il + i4 eating habits, q#
Grain boundary genus has poor feeding properties.

本発明鋼板6〜っは、降伏強度が比較鋼板1〜3と比べ
て板厚20藺で55〜56 Kq / mA、板厚50
藺で50 K7 /−と大幅に高く、かつ、耐食性も優
れている。
The steel plates 6 to 6 of the present invention have a yield strength of 55 to 56 Kq/mA at a thickness of 20 mm compared to comparative steel plates 1 to 3, and a thickness of 50 mm.
It has a significantly higher corrosion resistance of 50 K7/- and also has excellent corrosion resistance.

比較鋼板10〜13は本発明鋼板と同じプロセスによっ
て製造したものであるが、圧延条件または冷却条件が本
発明の範囲外である。比較鋼板10は冷却速度か本発明
の場合に1bべて遅いために降伏強度は本発明鋼板8と
同程度であるが、耐粒界腐食性が良くない。比l殴鋼板
11〜13は冷却速度が本発明の範囲内であるが、オー
ステナイトの未再結晶域における圧下を850℃未満の
温度に至るまで施したので、Or炭化物の歪誘起析出が
生じて11Ii−1粒界腐食性に劣る。
Comparative steel plates 10 to 13 were manufactured by the same process as the steel plates of the present invention, but the rolling conditions or cooling conditions were outside the scope of the present invention. Comparative steel plate 10 has a yield strength comparable to that of steel plate 8 of the present invention because the cooling rate is slow compared to that of the present invention, but its intergranular corrosion resistance is not good. Although the cooling rate of the comparatively beaten steel plates 11 to 13 is within the range of the present invention, since the reduction in the non-recrystallized region of austenite was applied to a temperature of less than 850 ° C., strain-induced precipitation of Or carbides occurred. 11Ii-1 Poor intergranular corrosion.

以上の説明はオーステナイト・ステンレス尋引板を製造
する場合であるが、他の調料を製造する場合にもこの発
明を適用することができること&:l:勿論である。
The above explanation is for the production of austenitic stainless steel cross-sectional plates, but it goes without saying that the present invention can also be applied to the production of other preparations.

以上説明したように、この発明によれば、溶体住処1皿
を施す場合のように重加熱炉を必貿とせず、耐食性に優
れ、かつ神伏強度の高いオーステナイト・ステンレス鉢
・・1利テ製造することができるといった極めて有用な
効果がもたらされる。
As explained above, according to the present invention, it is possible to use an austenitic stainless steel pot with excellent corrosion resistance and high strength, without requiring a heavy heating furnace unlike when applying a single solution pot. This brings about extremely useful effects such as being able to be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および81!2図は、従来のオーステナイト・ス
テンレス鋼板の製造方法における温度曲線を示すグラフ
、第31ン1ば、この発明の方法によってオーステナイ
ト・ステンレス鋼板を製造する場合の温度曲線を示すグ
ラフである。 出願人 日本銅管株式会社 代理人 潮 谷 奈津夫(他2名) 苑1図 時間 児2図 時間 苑3図 時間
Figures 1 and 81!2 are graphs showing temperature curves in the conventional method for producing an austenitic stainless steel plate, and Figures 31 and 11 are graphs showing a temperature curve in the case of producing an austenitic stainless steel plate by the method of the present invention. It is a graph. Applicant Nippon Dokan Co., Ltd. Agent Natsuo Shioya (and 2 others) Soon 1 Figure Time Child 2 Figure 3 Time

Claims (1)

【特許請求の範囲】[Claims] オーステナイト・ステンレス鋼片を1050℃以上の温
度に加賀シし、この後、加熱した前記鋼片に850〜9
50℃の温度域で30%以上の累積圧下を施し、次いで
、このようにして得られたオーステナイト・ステンレス
鋼板を2℃/Sec以上の平均冷却速度で少なくとも5
50℃の温度まで加速冷却することを特徴上する、鎮I
J食性に優れた高降伏強度オーステナイト・ステンレス
沖i材の製造方法。
An austenitic stainless steel piece is heated to a temperature of 1050°C or higher, and then heated to a temperature of 850 to 90°C.
A cumulative reduction of 30% or more is applied in a temperature range of 50°C, and then the austenitic stainless steel sheet thus obtained is subjected to an average cooling rate of at least 5°C/Sec.
Chin I, characterized by accelerated cooling to a temperature of 50°C
A method for producing high-yield strength austenitic stainless steel material with excellent J-erodibility.
JP5123384A 1984-03-19 1984-03-19 Manufacture of austenitic stainless steel material having high yield strength and superior corrosion resistance Granted JPS60197817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5123384A JPS60197817A (en) 1984-03-19 1984-03-19 Manufacture of austenitic stainless steel material having high yield strength and superior corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5123384A JPS60197817A (en) 1984-03-19 1984-03-19 Manufacture of austenitic stainless steel material having high yield strength and superior corrosion resistance

Publications (2)

Publication Number Publication Date
JPS60197817A true JPS60197817A (en) 1985-10-07
JPH0365408B2 JPH0365408B2 (en) 1991-10-11

Family

ID=12881224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5123384A Granted JPS60197817A (en) 1984-03-19 1984-03-19 Manufacture of austenitic stainless steel material having high yield strength and superior corrosion resistance

Country Status (1)

Country Link
JP (1) JPS60197817A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2582673A1 (en) * 1985-05-29 1986-12-05 Nippon Kokan Kk PRODUCTION OF AUSTENITIC STAINLESS STEEL SHEET
WO1987002388A1 (en) * 1985-10-15 1987-04-23 Aichi Steel Works Ltd. High strength stainless steel, and process for its production
JPS62247023A (en) * 1986-04-19 1987-10-28 Nippon Steel Corp Production of thick stainless steel plate
JPS62267419A (en) * 1986-05-13 1987-11-20 Kawasaki Steel Corp Manufacture of austenitic stainless steel plate
JPS62267418A (en) * 1986-05-14 1987-11-20 Kawasaki Steel Corp Manufacture of high strength austenitic stainless steel
JPH0310017A (en) * 1989-06-06 1991-01-17 Nippon Steel Corp Production of austenitic stainless steel plate reduced in yield strength
JPH04165014A (en) * 1990-10-26 1992-06-10 Sumitomo Metal Ind Ltd Manufacture of high-yield strength stainless shape steel
JP2016047952A (en) * 2014-08-28 2016-04-07 Jfeスチール株式会社 Method for producing high strength austenitic stainless steel thick plate
CN113584382A (en) * 2021-07-06 2021-11-02 广东省科学院新材料研究所 Iron-based ceramic composite material and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55107729A (en) * 1979-02-13 1980-08-19 Sumitomo Metal Ind Ltd Solution-treating method for austenitic stainless steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55107729A (en) * 1979-02-13 1980-08-19 Sumitomo Metal Ind Ltd Solution-treating method for austenitic stainless steel

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2582673A1 (en) * 1985-05-29 1986-12-05 Nippon Kokan Kk PRODUCTION OF AUSTENITIC STAINLESS STEEL SHEET
WO1987002388A1 (en) * 1985-10-15 1987-04-23 Aichi Steel Works Ltd. High strength stainless steel, and process for its production
JPS62247023A (en) * 1986-04-19 1987-10-28 Nippon Steel Corp Production of thick stainless steel plate
JPH0582453B2 (en) * 1986-04-19 1993-11-19 Nippon Steel Corp
JPS62267419A (en) * 1986-05-13 1987-11-20 Kawasaki Steel Corp Manufacture of austenitic stainless steel plate
JPS62267418A (en) * 1986-05-14 1987-11-20 Kawasaki Steel Corp Manufacture of high strength austenitic stainless steel
JPH0310017A (en) * 1989-06-06 1991-01-17 Nippon Steel Corp Production of austenitic stainless steel plate reduced in yield strength
JPH04165014A (en) * 1990-10-26 1992-06-10 Sumitomo Metal Ind Ltd Manufacture of high-yield strength stainless shape steel
JPH0726149B2 (en) * 1990-10-26 1995-03-22 住友金属工業株式会社 Method for manufacturing high-strength stainless steel section
JP2016047952A (en) * 2014-08-28 2016-04-07 Jfeスチール株式会社 Method for producing high strength austenitic stainless steel thick plate
CN113584382A (en) * 2021-07-06 2021-11-02 广东省科学院新材料研究所 Iron-based ceramic composite material and preparation method and application thereof

Also Published As

Publication number Publication date
JPH0365408B2 (en) 1991-10-11

Similar Documents

Publication Publication Date Title
JPH01259124A (en) Manufacture of high-strength oil well tube excellent in corrosion resistance
JPS60100655A (en) Production of high cr-containing ni-base alloy member having excellent resistance to stress corrosion cracking
JPS60197817A (en) Manufacture of austenitic stainless steel material having high yield strength and superior corrosion resistance
JPS61272317A (en) Manufacture of high strength austenitic stainless steel material at normal and high temperature range superior in corrosion resistance
JPS6267113A (en) Production of heat resisting steel having excellent creep rupture resistance characteristic
JPH0733551B2 (en) Method for producing high strength steel sheet having excellent formability
JPH029647B2 (en)
JPS58107416A (en) Method of directly softening steel wire or rod steel useful for mechanical construction
JPH0114991B2 (en)
JPH0257634A (en) Manufacture of high-strength steel plate and heat treatment for worked product of same
JPH04276042A (en) Austenitic stainless steel and its production
KR960005222B1 (en) Making method of high nitrogen austenite stainless cold steel sheet
US2230531A (en) Heat treatment of copper-chromium alloy steels
JPS6156268A (en) High toughness and high tensile steel and its manufacture
JP2680424B2 (en) Method for producing low yield strength austenitic stainless steel sheet
JP2815028B2 (en) Method for producing steel pipe having yield point elongation, low yield ratio and excellent low temperature toughness
JPH0215145A (en) Working and heating hardened hot rolled steel plate
JPH05202444A (en) Steel plate excellent in toughness at low temperature and its production
JPS5845318A (en) Production of high tensile steel having weldability and >=50kg/mm2 strength
JPS5819725B2 (en) Manufacturing method of ferritic stainless steel sheet
JP2578599B2 (en) Manufacturing method of low yield ratio steel with excellent sulfide stress corrosion cracking resistance
JPS5873754A (en) Manufacture of ni-cr alloy with superior corrosion resistance and strength
JPS62139816A (en) Manufacture of high tension and toughness steel plate
JPS5945729B2 (en) Manufacturing method of hot rolled steel for warm working
JPS6324062B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term