JPH0582453B2 - - Google Patents

Info

Publication number
JPH0582453B2
JPH0582453B2 JP61091065A JP9106586A JPH0582453B2 JP H0582453 B2 JPH0582453 B2 JP H0582453B2 JP 61091065 A JP61091065 A JP 61091065A JP 9106586 A JP9106586 A JP 9106586A JP H0582453 B2 JPH0582453 B2 JP H0582453B2
Authority
JP
Japan
Prior art keywords
rolling
temperature
hot
time
passes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61091065A
Other languages
Japanese (ja)
Other versions
JPS62247023A (en
Inventor
Masanori Ueda
Masamitsu Tsuchinaga
Ryosuke Takahashi
Hironori Yamamoto
Yoshiaki Fujita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9106586A priority Critical patent/JPS62247023A/en
Publication of JPS62247023A publication Critical patent/JPS62247023A/en
Publication of JPH0582453B2 publication Critical patent/JPH0582453B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はオーステナイト系ステンレス鋼および
2相系ステンレス鋼の厚鋼板の製造方法に関し、
特に製造工程を簡略化しうるステンレス厚鋼板の
製造方法に関するものである。 (従来の技術) 従来、18Cr−8Niステンレス鋼に代表されるCr
−Ni系、及びCr−Ni−Mo系を主とするオース
テナイトステンレス鋼や2相系ステンレス鋼は熱
間圧延後、常温から1000℃以上の温度に再加熱し
て保定をする固溶化処理を行なつて、熱間加工組
織を再結晶させ、粒度調整を行なうと共に、炭化
物を再固溶させて粒界腐食抵抗を回復する方法で
製造されて来た。この方法による固溶化熱処理の
目的は、再結晶・粒度調整、炭化物の再固
溶、更に凝固偏析の残存部の拡散・消滅をはか
り、板の全長、全幅、板厚全体の材質や耐食性の
均一化をねらいとするものである。ところがこの
ような目的を達成するためには1000℃以上に再加
熱し板全体を均一に加熱した後、さらに保定時間
を長くとる必要があり、現状で在炉時間としては
合計で20分から30分以上も取ることになり、エネ
ルギーの点でも又生産性の点からも大きな問題と
なつている。このためこの工程の簡省略化が強く
望まれて来た。 すでに特公昭57−38654号公報において、前記
と同様な目的のホツトコイル製造法としてホツト
ストリツプ圧延において熱間圧延後、3〜10秒間
空冷されたあと急冷し、400〜600℃で巻取る方法
が開示され、又特公昭59−46287号公報において、
850〜1150℃で累計圧下率が50%以上でかつ仕上
温度を850℃以上1150℃以下で熱間圧延を行なつ
た後、引続いて850〜550℃の温度域をV=C2×
1000(ただしV:平均冷却速度(℃/秒)、C:対
象鋼の炭素含有量(%))で示す平均冷却速度以
上で急冷する方法で固溶化処理を省略する方法が
開示されている。 更に特開昭52−131959号公報において、ホツト
ストリツプの圧延方法として仕上圧延を出た後
1000〜1150℃に再加熱後500℃まで冷却し、巻取
る方法も開示されている。しかし以上の方法はい
ずれもホツトコイルを対象としているため仕上圧
延は一方向圧延でかつきわめて高速でパス間時間
も短かい圧延であり、又圧延後は巻取りを前提と
したものである。こうしてリバース圧延で種々の
サイズを圧延する厚板圧延に関する固溶化処理の
簡省略化においては従来十分な検討がなされてい
なかつた。 (発明が解決しようとする課題) 本発明者等は特にステンレス厚鋼板において、
これらの従来方法を検討した結果、厚鋼板の特徴
から、板厚、板幅、板長さが多種類であり、これ
らのサイズによつて熱間圧延の方法が一方向圧
延、クロス圧延等々と異なり、又パス回数や圧下
率も様々である点でホツトストリツプの圧延とは
異なつている。したがつて板毎の温度や圧延時間
も様様であり、板の部位によつても温度は様々で
ある。このような厚板の固溶化熱処理を簡省略化
して厚板の全長、全幅、及び板厚全面において均
一な材質を得るためには、従来技術を加うるに、
更に成分や熱間圧延法及び固溶化処理法の省略化
についての改善が必要となることが判明した。す
なわちステンレス厚鋼板の最終熱処理である固溶
化熱処理を省略するには特に板厚全体にわたつ
て、再結晶や粒度調整を均一化して混粒発生を防
止し、炭化物の再固溶化を均一化すると共に凝固
偏析に起因するδフエライトの消滅やNiのミク
ロ偏析を均一化する必要があることが判明した。 (課題を解決するための手段) このような本発明の課題を解決するためには、
出発鋼成分および加熱から熱間圧延にわたる各製
造工程を規制することが必要である。 出発鋼成分としては、凝固初期にδフエライト
相を経由して、ミクロ偏析の軽減、特にNiの均
一化を進めるためにδcal(%)=3(Cr+Mo+
1.5Si)−2.8(Ni+0.5Mn+0.5Cu)−84(C+N)−
19.8で決まるδcal(%)を−3%以上とすること
が望ましい。第1図は18Cr−8Ni系の製品厚板の
Niミクロ偏析に対するδcal(%)の影響を示した
もので、δcal(%)が−3%以上で偏析が軽減さ
れている。 すなわち、固溶化熱処理の省略の目的で
SUS304で大幅に成分を変更した供試材を1250℃
に20分加熱後、50mm→8mmまで熱間圧延し、圧延
終了温度を950℃としてすぐ水冷して、再結晶を
十分させた材料について、鋼板におけるNiのミ
クロ偏析をEPMAにて調査した結果である。Ni
のミクロ偏析が大きいと、腐食パターンが発生し
やすく又電解研磨後の表面を著しく害する。こう
してミクロ偏析に対しては成分の影響が大きく、
δcal(%)で決まり、δcal(%)が−3%未満で凝
固初期にオーステナイトが安定であるとミクロ偏
析が不良であり、δcal(%)が−3%以上では凝
固初期にδフエライトを経由して均一化され固溶
化処理省略後もミクロ偏析は少なくなつている。
こうして凝固の初期にδフエライト相を経由する
ことがミクロ偏析の軽減に大きな効果のあること
が判明した。 加熱炉においてはこれらのδフエライトを消滅
させることが必要で1100〜1300℃に10分以上加熱
する。1100℃未満ではδの消滅が長時間かけても
進まず1250℃で最も早く進行し10分の加熱で消滅
が進行し1300℃を超えると再びδフエライトが増
加する。 なお、本発明におけるオーステナイトステンレ
ス鋼の主要成分は通常、Cr:18.0〜22.0%、Ni:
6.0〜15.0%、Mo:0〜4.0%、Si:1.0%以下、
Cu:0〜2.0%、C:0.08%以下、N:0.4%以下
であり、又2相ステンレス鋼の主要成分は、
Cr:19〜27%、Ni:4〜7%、Mo:1.0〜3.5%、
Cu:0〜2%、Si:1.0%以下、C:0.08%以下、
N:0.4%以下である。 熱間圧延はホツトストリツプのようにタンデム
圧延される場合とは異なり、厚板圧延のようなリ
バース圧延においてはパス毎の圧下率や、パス間
の時間を適当に制御することが可能である。再結
晶化のためにはなるべく高温で大圧下圧延が有効
であるが、板厚全面にわたつて再結晶させ、混粒
の発生を防止し、粒度調整をはかりつつ、かつ凝
固偏析の残部であるδフエライトやNi偏析を均
一化するには、熱間圧延の温度、圧下率とパス間
時間を制御し、鋼板表面の復熱をはかりつつ圧延
を進めることが必要である。これらの詳細な検討
結果を次に述べる。 第2図はSUS304(Cr18.2%、Ni8.6%、C0.04
%、N0.04%)CC鋳片(厚み130mm)を1250℃に
20分加熱し、50mm厚まで熱間圧延し、一旦室温ま
で冷却し、再度1200℃に加熱した後冷却して、
1050℃、1000℃、950℃より1パスで50%の圧下
を与えた後、ある時間空冷時間を取つた後に水冷
を開始した場合の再結晶組織を示している。すで
に特公昭57−38654号公報にも述べられているよ
うに、再結晶化は空冷時間を長く取ることによつ
て進行し、1050℃では3.2秒で、1000℃では18秒
でほぼ均一化することがわかる。こうして空冷時
間の採り方が均一再結晶化に重要であることが判
明した。 第3図はSUS304CC鋳片(130mm)を1250℃に
30分間加熱し、22mmまでリバース圧延し、30秒空
冷し、均一に再結晶化させた後、1050℃より5パ
スのタンデム圧延でパス間時間をほとんど取らず
に累積86%の圧下を加えて988℃で仕上圧延をし
すぐ急冷した結果で、板厚表面部と板厚中心部の
再結晶組織を示している。このようにパス間時間
を取らないホツトコイル圧延においては表面部と
板厚中心部での再結晶やδフエライトの挙動に差
を生じ不均一になつている。 これに対して第4図はSUS304CC鋳片を1250℃
に30分間加熱した後、リバースの圧延をし、1050
℃から各パスにパス間時間を7〜15秒取りながら
7パスで累積86%の圧延をおこない、922℃で仕
上げ後すぐ水冷した組織で、板厚の表面部、1/4
厚部、中心部で均一再結晶粒が得られた。このよ
うにして板厚断面の均一再結晶化には温度・圧下
率・パス間時間の組合せが重要であることが判明
した。すなわち、CC鋳片の熱間圧延と再結晶に
おいては圧延の初期から大圧下あるいは累積で大
圧下し、パス間の時間あるいは累積のパス間時間
を取つて圧延を進めることが必要である。パス間
時間が不足すると、初期に再結晶が不均一化し、
混粒の原因になる。又パス間時間を取ることで、
鋼板表面が復熱して、鋼板断面の均一再結晶組織
を得ることが出来、更にδフエライトの消滅と偏
析の拡散消滅が進行する。 リバース圧延である厚板圧延では、各パスの圧
下率とパス間時間を選ぶことが出来る点が有利で
均一再結晶組織と偏析の少ない圧延組織を得るた
めには、熱間圧延において、全圧下パス数の少な
くとも半数以上の圧下のパス間時間を各々3秒〜
40秒取るようにして熱間圧延することが上記の目
的達成に必要な要件であることが判明した。 又鋼板表面復熱のためにもパス間時間が必要で
ある。3秒未満では効果が小さく、長時間程望ま
しいが、温度降下の逆作用が生じるので上限は40
秒までとした。 圧下率については望ましくは全圧下パス数の少
なくとも半数以上を圧下率15%以上で圧延するこ
とが有効である。 以上の通りの熱間圧延を行なつた場合の最終の
熱間圧延は再結晶や粒度調整のためには900℃以
上とすることが必要であり、特に固溶化熱処理を
省略するためには板の各部位においても900℃以
上で終了することが必要である。 熱間圧延後は、なるべく早く冷却して700〜800
℃にある炭化物の析出域を急冷して、炭化物の析
出、成長を防ぐことが必要である。本発明者らの
研究によると、第5図の通り、900℃以上の温度
で熱間圧延後鋼板表面温度が800℃以上で水冷を
開始し、3℃/sec以上の冷却速度で500℃以下ま
で冷却した場合には炭化物は全く析出しない。し
たがつて固溶化熱処理は不要である。 なお、熱間圧延後の水冷開始温度が高ければよ
り一層有効で板全体が800℃以上から冷却した場
合には固溶化処理を省略することが出来る。熱間
圧延後の急冷は500℃以下まででよく、かつ冷却
速度は800〜300℃間の平均冷却速度で3℃/sec
以上で十分である。 もちろんこれらは前述した通り鋼板の偏析対策
である成分コントロールや熱間圧延法を採用した
ものについて成立し、この場合でも熱間圧延・水
冷後に、簡易熱処理を付加することは更にこれら
のミクロ偏析軽減に有効である。この際付加すべ
き熱処理時間は短時間でよく、高々5分で十分で
ある。5分以上は効果が飽和する。 以上述べた固溶化熱処理の省略法によつて製造
されたステンレス厚鋼板には次のような付加的な
利点が認められる。すなわち従来のような1100℃
以上で20分以上在炉させる方法に比較して、本発
明に従つて固溶化熱処理を省略することで、この
間のスケール成長が抑制される。このため鋼板表
面の脱Cr層が薄くなり、製品の耐食性に有利に
作用する。又スケール厚さが薄くなり、したがつ
てデスケール時間が短縮されるという利点があ
る。 本発明は、18Cr−8Niを代表例とするオーステ
ナイト系ステンレス鋼は勿論、20〜25Cr−4〜
7Ni−1.0〜4Mo系を主成分とする2相ステンレ
ス鋼についても適用されうるものである。 以下、本発明を実施例にもとづいて説明する。 (実施例) 実施例 1 第1表に示す化学成分のSUS304のCC鋳片
(140t)を1250℃に30分加熱し、抽出後1100℃か
らリバース圧延を開始し、15パスで板厚15mmまで
圧延した。この間の15パス中9パス間のパスの時
間は短いもので8秒、長いもので34秒であつた。
熱間圧延中13パス後と15パス(最終パス)後に、
ライン上に設置した加熱装置で表面を復熱させ
て、圧延仕上り温度を980℃とした。 熱間圧延終了後59秒後に表面温度、880℃から
水冷した。炭化物は析出せず、鋼板は板厚断面す
べて均一再結晶化し、δフエライトやNiのミク
ロ偏析も認められず、機械的性質も下記第2表に
示す通り良好で固溶化熱処理を省略することが出
来る。
(Industrial Application Field) The present invention relates to a method for manufacturing thick steel plates of austenitic stainless steel and duplex stainless steel.
In particular, the present invention relates to a method for manufacturing thick stainless steel plates that can simplify the manufacturing process. (Conventional technology) Conventionally, Cr as represented by 18Cr-8Ni stainless steel
- After hot rolling, austenitic stainless steels and duplex stainless steels, which are mainly Ni-based and Cr-Ni-Mo-based, undergo solid solution treatment, which involves reheating from room temperature to a temperature of 1000°C or higher to maintain the temperature. Thus, it has been manufactured by a method of recrystallizing the hot-worked structure to adjust the grain size and redissolving the carbide into solid solution to restore intergranular corrosion resistance. The purpose of solution heat treatment using this method is to recrystallize and adjust grain size, redissolve carbides, and diffuse and eliminate residual solidification segregation to ensure uniform material quality and corrosion resistance throughout the entire length, width, and thickness of the plate. The aim is to However, in order to achieve this goal, it is necessary to reheat the plate to over 1000°C, uniformly heat the entire plate, and then take a longer holding time.Currently, the total furnace time is 20 to 30 minutes. This has become a major problem in terms of energy and productivity. Therefore, there has been a strong desire to simplify this process. Japanese Patent Publication No. 57-38654 has already disclosed a method for producing hot coils for the same purpose as described above, in which hot strip rolling is performed, followed by air cooling for 3 to 10 seconds, rapid cooling, and coiling at 400 to 600°C. , and in Special Publication No. 59-46287,
After hot rolling at 850 to 1150°C with a cumulative reduction rate of 50% or more and a finishing temperature of 850°C to 1150°C, the temperature range of 850 to 550°C is V = C 2 ×
1000 (where V: average cooling rate (° C./sec), C: carbon content (%) of the target steel) A method of omitting the solution treatment is disclosed. Furthermore, in Japanese Patent Application Laid-open No. 52-131959, a method of rolling hot strips after finish rolling is disclosed.
A method of reheating to 1000 to 1150°C, cooling to 500°C, and winding it up is also disclosed. However, since all of the above methods are intended for hot coils, the finish rolling is unidirectional rolling at extremely high speed and short interpass time, and is also premised on winding after rolling. Thus, no sufficient studies have been made in the past on simplifying the solution treatment for rolling thick plates of various sizes by reverse rolling. (Problems to be Solved by the Invention) The present inventors have particularly focused on stainless steel plates.
As a result of examining these conventional methods, we found that due to the characteristics of thick steel plates, there are many types of plate thickness, plate width, and plate length, and depending on these sizes, hot rolling methods may vary, such as unidirectional rolling, cross rolling, etc. It also differs from hot strip rolling in that the number of passes and rolling reduction ratios vary. Therefore, the temperature and rolling time of each plate are different, and the temperature also varies depending on the part of the plate. In order to simplify the solution heat treatment of thick plates and obtain uniform material quality over the entire length, width, and thickness of the thick plates, in addition to conventional techniques,
Furthermore, it was found that improvements were needed in omitting the components, hot rolling method, and solution treatment method. In other words, in order to omit solution heat treatment, which is the final heat treatment for stainless steel sheets, recrystallization and grain size adjustment must be made uniform throughout the sheet thickness to prevent the generation of mixed grains, and the re-solution of carbides must be made uniform. At the same time, it was found that it was necessary to eliminate δ ferrite caused by solidification segregation and to uniformize Ni microsegregation. (Means for Solving the Problems) In order to solve the problems of the present invention,
It is necessary to control the starting steel composition and each manufacturing process from heating to hot rolling. The starting steel components include δcal (%) = 3 (Cr + Mo +
1.5Si)−2.8(Ni+0.5Mn+0.5Cu)−84(C+N)−
It is desirable that δcal (%) determined by 19.8 be -3% or more. Figure 1 shows the 18Cr-8Ni product plate.
This figure shows the influence of δcal (%) on Ni microsegregation, and segregation is reduced when δcal (%) is -3% or more. In other words, for the purpose of omitting solution heat treatment.
Test material of SUS304 with significantly changed composition was heated to 1250℃.
This is the result of an EPMA investigation of Ni microsegregation in steel sheets for materials that were heated for 20 minutes, then hot-rolled from 50mm to 8mm, and immediately water-cooled to a rolling finish temperature of 950°C to allow sufficient recrystallization. be. Ni
If the micro-segregation is large, corrosion patterns are likely to occur and the surface after electrolytic polishing will be seriously damaged. In this way, the influence of ingredients on micro-segregation is large;
Determined by δcal (%), if δcal (%) is less than -3% and austenite is stable in the early stage of solidification, micro-segregation is poor, and if δcal (%) is -3% or more, it passes through δ ferrite in the early stage of solidification. The micro-segregation is reduced even after the solution treatment is omitted.
Thus, it was found that passing through the δ-ferrite phase at the early stage of solidification has a great effect on reducing microsegregation. In a heating furnace, it is necessary to eliminate these δ ferrites by heating to 1100 to 1300°C for 10 minutes or more. Below 1100°C, δ does not disappear even over a long period of time, and it progresses fastest at 1250°C, disappearing after 10 minutes of heating, and when the temperature exceeds 1300°C, δ ferrite increases again. The main components of the austenitic stainless steel in the present invention are usually Cr: 18.0 to 22.0%, Ni:
6.0-15.0%, Mo: 0-4.0%, Si: 1.0% or less,
Cu: 0 to 2.0%, C: 0.08% or less, N: 0.4% or less, and the main components of duplex stainless steel are:
Cr: 19-27%, Ni: 4-7%, Mo: 1.0-3.5%,
Cu: 0 to 2%, Si: 1.0% or less, C: 0.08% or less,
N: 0.4% or less. Unlike hot rolling, which is tandem rolling such as hot strip rolling, in reverse rolling such as thick plate rolling, it is possible to appropriately control the reduction rate for each pass and the time between passes. For recrystallization, rolling with large reductions at as high a temperature as possible is effective, but recrystallization is performed over the entire thickness of the plate to prevent the generation of mixed grains, adjust the grain size, and remove residual solidification segregation. In order to make δ ferrite and Ni segregation uniform, it is necessary to control the hot rolling temperature, reduction rate, and interpass time, and to proceed with rolling while recuperating heat on the steel sheet surface. The detailed results of these studies are described below. Figure 2 shows SUS304 (Cr18.2%, Ni8.6%, C0.04
%, N0.04%) CC slab (thickness 130mm) at 1250℃
Heated for 20 minutes, hot rolled to a thickness of 50mm, cooled to room temperature, heated again to 1200℃, cooled,
The recrystallized structure is shown when water cooling is started after a 50% reduction is applied in one pass from 1050°C, 1000°C, and 950°C, and after a certain period of air cooling time. As already stated in Japanese Patent Publication No. 57-38654, recrystallization progresses by increasing the air cooling time, and becomes almost uniform in 3.2 seconds at 1050℃ and 18 seconds at 1000℃. I understand that. In this way, it was found that how to determine the air cooling time is important for uniform recrystallization. Figure 3 shows SUS304CC slab (130mm) heated to 1250℃.
After heating for 30 minutes, reverse rolling to 22 mm, air cooling for 30 seconds, and uniformly recrystallizing, the material was tandem rolled in 5 passes from 1050°C with almost no time between passes, and a cumulative reduction of 86% was applied. This is the result of finishing rolling at 988°C and then quenching, showing the recrystallized structure at the surface and center of the thickness. As described above, in hot coil rolling which does not take time between passes, there is a difference in the behavior of recrystallization and δ ferrite between the surface area and the thickness center area, resulting in non-uniformity. On the other hand, Figure 4 shows the SUS304CC slab at 1250°C.
After heating for 30 minutes, reverse rolling to 1050
℃ to 7 passes with an inter-pass time of 7 to 15 seconds for a cumulative 86% rolling, and the structure was water-cooled immediately after finishing at 922℃, and the surface part of the plate thickness was 1/4
Uniform recrystallized grains were obtained in the thick part and center. In this way, it was found that the combination of temperature, rolling reduction, and interpass time is important for uniform recrystallization of the plate thickness cross section. That is, in hot rolling and recrystallization of CC slabs, it is necessary to apply a large reduction or cumulative reduction from the initial stage of rolling, and to advance the rolling by taking the time between passes or the cumulative interpass time. If the time between passes is insufficient, recrystallization becomes non-uniform at the beginning,
It causes mixed grains. Also, by taking the time between passes,
The surface of the steel sheet recuperates, a uniform recrystallized structure can be obtained in the cross section of the steel sheet, and further, the disappearance of δ ferrite and the diffusion disappearance of segregation proceed. In plate rolling, which is reverse rolling, it is advantageous to be able to select the rolling reduction ratio of each pass and the time between passes.In order to obtain a uniform recrystallized structure and a rolled structure with less segregation, it is necessary to The time between passes for at least half of the number of passes is 3 seconds or more.
It was found that hot rolling for 40 seconds was a necessary requirement to achieve the above objective. Also, time between passes is necessary for reheating the surface of the steel plate. If it is less than 3 seconds, the effect will be small, and the longer the time, the better, but the adverse effect of temperature drop will occur, so the upper limit is 40
It was up to seconds. Regarding the rolling reduction rate, it is effective to preferably roll at least half of the total number of rolling passes at a rolling reduction rate of 15% or more. When hot rolling is carried out as described above, the final hot rolling temperature must be 900°C or higher for recrystallization and grain size adjustment. It is also necessary to finish the process at 900°C or higher in each part. After hot rolling, cool down as quickly as possible to 700~800
It is necessary to rapidly cool the carbide precipitation region at ℃ to prevent carbide precipitation and growth. According to the research conducted by the present inventors, as shown in Figure 5, after hot rolling at a temperature of 900°C or higher, water cooling is started when the surface temperature of the steel sheet is 800°C or higher, and at a cooling rate of 3°C/sec or higher, water cooling is lower than 500°C. No carbide precipitates when cooled to Therefore, solution heat treatment is not necessary. Note that it is more effective if the water cooling start temperature after hot rolling is high, and the solution treatment can be omitted when the entire plate is cooled from 800°C or higher. Rapid cooling after hot rolling can be done up to 500℃ or less, and the cooling rate is 3℃/sec at the average cooling rate between 800 and 300℃.
The above is sufficient. Of course, as mentioned above, these are valid for steel sheets that use component control and hot rolling methods to prevent segregation, and even in this case, adding simple heat treatment after hot rolling and water cooling can further reduce these micro-segregations. It is effective for The heat treatment time to be added at this time may be short, and 5 minutes at most is sufficient. The effect is saturated for more than 5 minutes. The stainless steel plate manufactured by the method of omitting the solution heat treatment described above has the following additional advantages. In other words, 1100℃ like conventional
Compared to the above method of leaving the reactor in the furnace for 20 minutes or more, by omitting the solution heat treatment according to the present invention, scale growth during this period is suppressed. Therefore, the Cr-free layer on the surface of the steel sheet becomes thinner, which has an advantageous effect on the corrosion resistance of the product. There is also the advantage that the scale thickness is reduced and therefore the descaling time is shortened. The present invention applies not only to austenitic stainless steels of which 18Cr-8Ni is a typical example, but also to 20~25Cr-4~
It can also be applied to duplex stainless steels whose main components are 7Ni-1.0 to 4Mo. Hereinafter, the present invention will be explained based on examples. (Example) Example 1 A CC slab (140t) of SUS304 with the chemical composition shown in Table 1 was heated to 1250℃ for 30 minutes, and after extraction, reverse rolling was started at 1100℃, and the plate thickness was reached to 15mm in 15 passes. Rolled. The time between nine of the 15 passes during this period was 8 seconds at the shortest and 34 seconds at the longest.
After 13 passes and 15 passes (final pass) during hot rolling,
The surface was reheated using a heating device installed on the line to achieve a finishing rolling temperature of 980°C. 59 seconds after the end of hot rolling, the surface temperature was 880°C and then water-cooled. No carbides were precipitated, the steel plate uniformly recrystallized throughout the thickness section, no micro-segregation of δ ferrite or Ni was observed, and the mechanical properties were good as shown in Table 2 below, making it possible to omit solution heat treatment. I can do it.

【表】【table】

【表】 (発明の効果) 本発明はステンレス厚鋼板の製造法に関するも
ので、特に熱間圧延法との関連で、固溶化処理の
省略化をねらいにしたものである。本発明により
従来1100℃以上に20分以上加熱する方式が5分以
下に短縮されることから、エネルギーコストはも
ちろん、生産性の点でも大きな利点を有してい
る。
[Table] (Effects of the Invention) The present invention relates to a method for manufacturing stainless steel plates, and is aimed at omitting solution treatment, particularly in relation to hot rolling. According to the present invention, the conventional heating method of 20 minutes or more at 1100° C. or higher can be shortened to 5 minutes or less, so it has great advantages not only in terms of energy cost but also in terms of productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明製品のNiミクロ偏析に対する
δcal(%)の影響を示す図、第2図はSUS304
(Cr:18.2%、Ni:8.6%、C:0.04%、N:0.04
%)CC鋳片(厚み130mm)を1250℃に20分加熱
し、50mm厚まで熱間圧延し、一旦室温まで冷却
し、再度1200℃に加熱した後冷却して、1050℃、
1000℃、950℃より1パスで50%圧下を与えた後、
ある時間空冷時間を取つた後に水冷を開始した場
合の再結晶組織を示す金属顕微鏡組織写真、第3
図は従来法によるタンデム圧延材の表面と中心部
の金属組織を示す顕微鏡組織写真、第4図は本発
明法によるリバース圧延材の表面と中心部の金属
組織を示す顕微鏡組織写真、第5図はSUS304鋼
の熱間圧延後の水冷開始温度の例を示す図、第6
図は第5図の各水冷開始温度に対応する昇温時の
炭化物の析出、成長、溶解挙動例を示す図であ
る。
Figure 1 shows the influence of δcal (%) on Ni microsegregation of products of the present invention, and Figure 2 shows the effect of SUS304.
(Cr: 18.2%, Ni: 8.6%, C: 0.04%, N: 0.04
%) CC slab (thickness 130mm) was heated to 1250℃ for 20 minutes, hot rolled to 50mm thickness, cooled to room temperature, heated again to 1200℃ and then cooled to 1050℃,
After applying 50% pressure reduction in one pass from 1000℃ and 950℃,
Metallic microscopic structure photograph showing the recrystallized structure when water cooling is started after a certain period of air cooling time, No. 3
The figure is a micrograph showing the metallographic structure of the surface and center of a tandem-rolled material obtained by the conventional method. Figure 4 is a microscopic photo showing the metallographic structure of the surface and center of a reverse-rolled material obtained by the method of the present invention. Figure 5 Figure 6 shows an example of water cooling start temperature after hot rolling of SUS304 steel.
The figure is a diagram showing examples of precipitation, growth, and dissolution behavior of carbides during temperature rise corresponding to each water-cooling start temperature in FIG. 5.

Claims (1)

【特許請求の範囲】 1 オーステナイト系及び2相系ステンレス鋼に
おいて、 δcal(%)=3(Cr+Mo+1.5Si)−2.8(Ni+
0.5Mn+0.5Cu)−84(C+N)−19.8で決まるδcal
(%)を−3%以上となるような成分系とした連
鋳鋳片(以下CC鋳片という)又は分塊圧延を経
た鋼片を、加熱温度1100〜1300℃に10分以上加熱
し、熱間圧延において全圧下パス数の少なくとも
半数以上に3〜40秒のパス間時間を取つて圧延
し、且つ圧延仕上温度を900℃以上となるように、
圧延途中ないしは圧延終了後に圧延ライン上で加
熱昇温し、熱間圧延終了後、鋼板温度が800℃以
上から水冷を開始し、800〜300℃間の平均冷却速
度を3℃/sec以上で500℃以下の温度まで急冷す
ることを特徴とするステンレス厚鋼板の製造方
法。
[Claims] 1. In austenitic and duplex stainless steels, δcal (%) = 3 (Cr + Mo + 1.5Si) - 2.8 (Ni +
δcal determined by 0.5Mn+0.5Cu)-84(C+N)-19.8
Continuously cast slabs (hereinafter referred to as CC slabs) or slabs that have undergone blooming rolling are heated to a heating temperature of 1100 to 1300°C for 10 minutes or more, In hot rolling, at least half of the total number of rolling passes are rolled with an interpass time of 3 to 40 seconds, and the finishing temperature of rolling is 900 ° C. or higher,
The temperature is raised on the rolling line during or after rolling, and after hot rolling, water cooling is started when the steel plate temperature is 800℃ or higher, and the average cooling rate between 800 and 300℃ is 500℃ at 3℃/sec or higher. A method for manufacturing thick stainless steel plates characterized by rapid cooling to a temperature below ℃.
JP9106586A 1986-04-19 1986-04-19 Production of thick stainless steel plate Granted JPS62247023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9106586A JPS62247023A (en) 1986-04-19 1986-04-19 Production of thick stainless steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9106586A JPS62247023A (en) 1986-04-19 1986-04-19 Production of thick stainless steel plate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP10332493A Division JPH0819463B2 (en) 1993-04-28 1993-04-28 Manufacturing method of stainless steel plate

Publications (2)

Publication Number Publication Date
JPS62247023A JPS62247023A (en) 1987-10-28
JPH0582453B2 true JPH0582453B2 (en) 1993-11-19

Family

ID=14016099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9106586A Granted JPS62247023A (en) 1986-04-19 1986-04-19 Production of thick stainless steel plate

Country Status (1)

Country Link
JP (1) JPS62247023A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8613818B2 (en) 2010-09-15 2013-12-24 Ati Properties, Inc. Processing routes for titanium and titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
US8652400B2 (en) 2011-06-01 2014-02-18 Ati Properties, Inc. Thermo-mechanical processing of nickel-base alloys
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60197817A (en) * 1984-03-19 1985-10-07 Nippon Kokan Kk <Nkk> Manufacture of austenitic stainless steel material having high yield strength and superior corrosion resistance
JPS60197824A (en) * 1984-03-16 1985-10-07 Sumitomo Metal Ind Ltd Production of hot rolled two-phase stainless steel strip having high toughness
JPS61270356A (en) * 1985-05-24 1986-11-29 Kobe Steel Ltd Austenitic stainless steels plate having high strength and high toughness at very low temperature
JPS624825A (en) * 1985-07-01 1987-01-10 Kawasaki Steel Corp Manufacture of austenitic stainless thick steel plate
JPH0366368A (en) * 1989-08-03 1991-03-22 Morita Tokyo Seisakusho:Kk Film viewer device of dental treatment unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60197824A (en) * 1984-03-16 1985-10-07 Sumitomo Metal Ind Ltd Production of hot rolled two-phase stainless steel strip having high toughness
JPS60197817A (en) * 1984-03-19 1985-10-07 Nippon Kokan Kk <Nkk> Manufacture of austenitic stainless steel material having high yield strength and superior corrosion resistance
JPS61270356A (en) * 1985-05-24 1986-11-29 Kobe Steel Ltd Austenitic stainless steels plate having high strength and high toughness at very low temperature
JPS624825A (en) * 1985-07-01 1987-01-10 Kawasaki Steel Corp Manufacture of austenitic stainless thick steel plate
JPH0366368A (en) * 1989-08-03 1991-03-22 Morita Tokyo Seisakusho:Kk Film viewer device of dental treatment unit

Also Published As

Publication number Publication date
JPS62247023A (en) 1987-10-28

Similar Documents

Publication Publication Date Title
RU2463359C1 (en) Method to produce thick-sheet low-alloyed strip
US20150218684A1 (en) Cold-Rolled Flat Steel Product and Method for the Production Thereof
JPS5946287B2 (en) Solution treatment method for austenitic stainless steel
JPH0582453B2 (en)
JPH0366368B2 (en)
JP2009091640A (en) Method for manufacturing steel raw sheet for can
JPH04358022A (en) Production of high strength steel
GB1592274A (en) Method for producing continuously cast steel slabs
KR101362388B1 (en) Method for producing a cold-rolled strip with a ferritic structure
JP2005226081A (en) Method of producing high strength hot rolled steel sheet having uniform mechanical property
JPH0819463B2 (en) Manufacturing method of stainless steel plate
JP2512650B2 (en) Method for producing Cr-Ni type stainless steel thin plate excellent in material and surface quality
JP3849146B2 (en) Method for producing unidirectional silicon steel sheet
JP3917320B2 (en) Method for producing ferritic stainless steel sheet with excellent ridging resistance
JPH02166233A (en) Manufacture of cr-series stainless steel thin sheet using thin casting method
JP3222057B2 (en) Method for producing Cr-Ni stainless steel hot-rolled steel sheet and cold-rolled steel sheet excellent in surface quality and workability
JPH07331330A (en) Manufacture of chromium-nickel stainless steel sheet excellent in surface quality and manufacturing equipment for cast strip
JPS6176616A (en) Manufacture of thick steel plate superior in toughness
JPS5941508B2 (en) Manufacturing method of titanium hot rolled sheet
JP3273597B2 (en) Cr-Ni stainless steel sheet having excellent surface quality and workability and method for producing the same
JPH02415B2 (en)
JP2633743B2 (en) Manufacturing method of thick steel plate with fine grain size
JPH0369967B2 (en)
JPH07113128B2 (en) Method for manufacturing silicon steel sheet
JPH07242939A (en) Production of high strength steel plate having excellent low temperature toughness

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees