JPH0366368B2 - - Google Patents

Info

Publication number
JPH0366368B2
JPH0366368B2 JP60157447A JP15744785A JPH0366368B2 JP H0366368 B2 JPH0366368 B2 JP H0366368B2 JP 60157447 A JP60157447 A JP 60157447A JP 15744785 A JP15744785 A JP 15744785A JP H0366368 B2 JPH0366368 B2 JP H0366368B2
Authority
JP
Japan
Prior art keywords
rolling
temperature
time
passes
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60157447A
Other languages
Japanese (ja)
Other versions
JPS62124220A (en
Inventor
Masanori Ueda
Masamitsu Tsuchinaga
Ryosuke Takahashi
Hironori Yamamoto
Yoshiaki Fujita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15744785A priority Critical patent/JPS62124220A/en
Publication of JPS62124220A publication Critical patent/JPS62124220A/en
Publication of JPH0366368B2 publication Critical patent/JPH0366368B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はオーステナイト系ステンレス鋼および
2相系ステンレス鋼の厚鋼板の製造方法に関し、
特に製造工程を簡略化しうるステンレス厚鋼板の
製造方法に関するものである。 (従来の技術) 従来、18Cr−8Niステンレス鋼に代表されるCr
−Ni系、及びCr−Ni−Mo系を主とするオース
テナイトステンレス鋼や2相系ステンレス鋼は熱
間圧延後、常温から1000℃以上の温度に再加熱し
て保定する固溶化処理を行なつて、熱間加工組織
を再結晶させ、粒度調整を行なうと共に、炭化物
を再固溶させて粒界腐食抵抗を回復する方法で製
造されて来た。この方法による固溶化熱処理の目
的は、再結晶・粒度調整、炭化物の再固溶、
更に凝固偏析の残存部の拡散・消滅をはかり、
板の全長、全幅、板厚全体の材質や耐食性の均一
化をねらいとするものである。ところがこのよう
な目的を達成するためには1000℃以上に再加熱し
板全体を均一に加熱した後、さらに保定時間を長
く取る必要があり、現状で在炉時間としては合計
で20分から30分以上も取ることになり、エネルギ
ーの点でも又生産性の点からも大きな問題となつ
ている。このためこの工程の簡省略化が強く望ま
れて来た。 すでに特公昭57−38654号公報において、前記
と同様な目的のホツトコイル製造法として、ホツ
トストリツプ圧延において熱間圧延後、3〜10秒
間空冷されたあと急冷し、400〜600℃で巻取る方
法が開示され、また特公昭59−46287号公報にお
いて、850〜1150℃で累計圧下率が50%以上でか
つ仕上温度を850℃以上1150℃以下で熱間圧延を
行なつた後、引続いて850℃〜550℃の温度域をV
=C2×1000(ただしV:平均冷却速度(℃/秒)、
C:対象鋼の炭素含有量(%))で示す平均冷却
速度以上で急冷する方法で固溶化処理を省略する
方法が開示されている。 (発明が解決しようとする問題点) 本発明者等は特にステンレス厚鋼板において、
これらの従来方法を検討した結果、厚鋼板の特徴
から、板厚、板幅、板長さが多種類であり、これ
らのサイズによつて熱間圧延の方法が一方向圧
延、クロス圧延等々となり、又パス回数や圧下率
も様々である点でホツトストリツプの圧延とは異
なつている。したがつて板毎の温度や圧延時間も
様様であり、板の部位によつても温度は様々であ
る。このような厚板の固溶化熱処理を簡省略化し
て厚板の全長、全幅、及び板厚全面において均一
な材質を得るためには、従来技術に加うるに、更
に成分や熱間圧延法及び固溶化処理法の簡略化に
ついての改善が必要となることが判明した。すな
わちステンレス厚鋼板の最終熱処理である固溶化
熱処理を簡省略するには特に板厚全体にわたつ
て、再結晶や粒度調整を均一化して混粒発生を防
止し、炭化物の固溶化を均一化すると共に凝固偏
析に起因するδフエライトの消滅やNiのミクロ
偏析を均一化する必要があることが判明した。 (問題点を解決するための手段) このような本発明の課題を解決するためには、
出発鋼成分および加熱から熱間圧延にわたる各製
造工程を規制することが必要である。 出発鋼成分としては、凝固初期にδフエライト
相を経由して、ミクロ偏析の軽減、特にNiの均
一化を進めるためにδcal(%)=3(Cr+Mo+
1.5Si)−2.8(Ni+0.5Mn+0.5Cu)−84(C+N)−
19.8で決まるδcal(%)を−3%以上とすること
が望ましい。第1図は18Cr−8Ni系の製品厚板の
Niミクロ偏析に対するδcal(%)の影響を示した
もので、δcal(%)が−3%以上で偏析が軽減さ
れている。 すなわち、固溶化熱処理の省略の目的で
SUS304で大幅に成分を変更した供試材を1250℃
に20分加熱後、50mm→8mmまで熱間圧延し、圧延
終了温度を950℃としすぐ水冷して、再結晶を十
分させた材料について、鋼板におけるNiのミク
ロ偏析をEPMAにて調査した結果である。Niの
ミクロ偏析が大きいと、腐食パターンが発生しや
すく又電解研磨後の表面を著しく害する。こうし
てミクロ偏析に対しては成分の影響が大きく、
δcal(%)で決まり、δcal(%)が−3%未満で凝
固初期にオーステナイトが安定であるとミクロ偏
析が不良であり、δcal(%)が−3%以上では凝
固初期にδフエライトを経由して均一化され固溶
化処理省略後もミクロ偏析は少なくなつている。
こうして凝固の初期にδフエライト相を経由する
ことがミクロ偏析の軽減に大きな効果のあること
が判明した。 加熱炉においてこれらのδフエライトを消滅さ
せることが必要で1100〜1300℃に10分以上加熱す
る。1100℃未満ではδの消滅が長時間かけても進
まず1250℃で最も早く進行し10分の加熱で消滅が
進行し1300℃を超えると再びδフエライトが増加
する。 なお、本発明におけるオーステナイトステンレ
ス鋼の主要成分は通常、Cr:18.0〜22.0%、Ni:
6.0〜15.0%、Mo:0〜4.0%、Si:1.0%以下、
Cu:0〜2.0%、C:0.08%以下、N:0.4%以下
であり、又、2相ステンレス鋼の主要成分は、
Cr19〜27%、Ni4〜7%、Mo1.0〜3.5%、Cu:
0〜2%、Si:1.0%以下、C:0.08%以下、N:
0.4%以下である。 熱間圧延はホツトストリツプのようにタンデム
圧延される場合とは異なり、厚板圧延のようなリ
バース圧延においてはパス毎の圧下率や、パス間
の時間を適当に制御することが可能である。再結
晶化のためにはなるべく高温で大圧下圧延が有効
であるが、板厚全面にわたつて再結晶させ、混粒
の発生を防止し、粒度調整をはかりつつ、かつ凝
固偏析の残部であるδフエライトやNi偏析を均
一化するには、熱間圧延の温度、圧下率とパス間
時間を制御し、鋼板表面の復熱をはかりつつ圧延
を進めることが必要である。これらの詳細な検討
結果を次に述べる。 第2図はS304(Cr18.2%、Ni8.6%、C0.04%、
N0.04%)CC鋳片(厚み130mm)を1250℃に20分
加熱し、50mm厚まで熱間圧延し、一旦室温まで冷
却し、再度1200℃に加熱した後冷却して、1050
℃、1000℃、950℃より1パスで50%の圧下を与
えた後、ある時間空冷時間を取つた後に水冷を開
始した場合の再結晶組織を示している。すでに特
公昭57−38654号公報にも述べられているように、
再結晶化は空冷時間を長く取ることによつて進行
し、1050℃では3.2秒で、1000℃では18秒でほぼ
均一化することがわかる。こうして空冷時間の取
り方が均一再結晶化に重要であることが判明し
た。 第3図はSUS304CC鋳片(厚み130mm)を1250
℃に30分間加熱し、22mmまでリバース圧延し、30
秒空冷し、均一に再結晶化させた後、1050℃より
5パスのタンデム圧延でパス間時間をほとんど取
らずに累積86%の圧下を加えて988℃で仕上圧延
をしすぐ急冷した結果で、板厚表面部と板厚中心
部の再結晶組織を示している。このようにパス間
時間を取らないと表面部と板厚中心部での再結晶
やδフエライトの挙動に差を生じ不均一になつて
いる。 これに対して第4図はSUS304CC鋳片を1250℃
に30分間加熱した後、リバースの圧延をし、1050
℃から各パスにパス間時間を7〜15秒取りながら
7パスで累積86%の圧延をおこない、922℃で仕
上げ後すぐに水冷した組織で、板厚の表面部、1/
4厚部、中心部で均一再結晶粒が得られた。この
ようにして板厚断面の均一再結晶化には温度・圧
下率・パス間時間の組合せが重要であることが判
明した。すなわち、CC鋳片の熱間圧延と再結晶
においては圧延の初期から大圧下あるいは累積で
大圧下し、パス間の時間あるいは累積のパス間時
間を取つて圧延を進めることが必要である。再結
晶・粒成長のためには、高温域で大圧下し、パス
間時間を取ることが必要である。パス間時間が不
足すると、初期に再結晶が不均一化し、混粒の原
因になる。又パス間時間を取ることで、鋼板表面
が復熱して、鋼板断面の均一再結晶組織を得るこ
とが出来、更にδフエライトの消滅と偏析の拡散
消滅が進行する。 リバース圧延である厚板圧延では、各パスの圧
下率とパス間時間を選ぶことが出来る点が有利で
均一再結晶組織と偏析の少ない圧延組織を得るた
めには、熱間圧延において、全圧下パス数の少な
くとも半数以上に3秒〜40秒のパス間時間を取つ
て圧延することが上記の目的達成に必要な要件で
あることが判明した。パス間時間は3秒未満では
効果が小さく、長時間程望ましいが、温度降下の
逆作用が生じるので上限は40秒までとした。さら
に各パスの圧下率は大きい方が好ましく、15%以
上が望ましい。 以上の通りの熱間圧延を行なつた場合の最終の
熱間圧延は再結晶や粒度調整のためには900℃以
上が望ましく、特に固溶化熱処理を省略するため
には板の各部位においても900℃以上で終了する
ことが必要である。 ところが厚板圧延において板厚の薄いものでは
熱間圧延が800℃程度になる場合も多い。いづれ
にしても熱間圧延後は、なるべく早く冷却して
700〜800℃にある炭化物の析出域を急冷して、炭
化物の析出、成長を防ぐことが必要である。 本発明者らはSUS304について熱間圧延後の冷
却中の炭化物の析出や成長及び再加熱時の析出・
成長、消滅の過程をくわしく検討した結果次の事
が判つた。第5図に示すとおり900℃以上の温度
で熱間圧延後鋼板表面温度が800℃以上で水冷を
開始し、3℃/sec以上の冷却速度で500℃以下ま
で冷却した場合には炭化物は全く析出しない。し
たがつて固溶化熱処理は不要である。 熱間圧延後800℃以下で水冷を開始した場合、
水冷開始温度が低温度(例えば700℃)炭化物の
析出がみられるが500℃まで急冷しておけば成長
を抑制することが出来る。650℃以下で水冷した
場合には、炭化物が成長してしまい効果が小さ
い。 熱間圧延後水冷をしないで通常通り空冷したも
のでは冷却中に炭化物が析出しかつ成長して、粒
界に連続的に析出する。 これら種々の程度の炭化物析出した材料を再加
熱していく際の昇温時の挙動を検討した。昇温ス
ピードは400〜600℃/分とした。昇温時800℃に
なると新たに炭化物が析出しはじめると共にすで
に析出していた炭化物は成長しはじめる。第6図
に示すように、900℃で成長が顕著で950℃になる
と炭化物は消滅しはじめ1000℃に達するとほとん
ど消滅する。ただ熱間圧延後空冷して、炭化物が
大きく成長したものでは昇温のみでは炭化物の完
全消滅は得られず保定時間を取ることが必要であ
る。 典型的な炭化物挙動を第7図に示した。第5図
および第6図の結果と考え合わせると少なくとも
鋼板表面温度が650℃以上で、水冷をした場合に
は、炭化物の成長が抑制されているので、固溶化
熱処理は鋼板を950℃以上に昇温することで達成
される。従つて、保定時間は組織の均一化に必要
な時間であればよく、高々5分以下で十分であ
る。なお、熱間圧延後の水冷開始温度が高ければ
より一層有効で板全体が800℃以上から冷却した
場合には固溶化処理を省略することが出来る。熱
間圧延後の冷却は500℃まででよく、かつ冷却速
度は800〜300℃間の平均冷却速度で3℃/sec以
上で十分である。もちろんこれらは前述した通り
の鋼板の偏析対策である成分コントロールや熱間
圧延法を採用したものについて成立し、この場合
でも熱間圧延・水冷後に、簡易熱処理を付加する
ことは更にこれらのミクロ偏析軽減に有効であ
る。この際付加すべき熱処理時間は短時間でよ
く、高々5分で十分である。5分以上は効果が飽
和する。 以上述べた簡易固溶化処理法、あるいは固溶化
熱処理の省略法によつて製造されたステンレス厚
鋼板には次のような付加的な利点が認められる。
すなわち従来のような1000℃以上で20分以上在炉
させる方法に比較して、本発明に従つて固溶化熱
処理を省略ないし5分以下の短時間とすること
で、この間のスケール成長が抑制される。このた
め鋼板表面の脱Cr層が薄くなり、製品の耐食性
に有利に作用する。又スケール厚さが薄くなり、
したがつてデスケール時間が短縮されるという利
点がある。 本発明は、18Cr−8Niを代表例とするオーステ
ナイト系ステンレス鋼は勿論、20〜25Cr−4〜
7Ni−1.0〜4Mo系を主成分とする2相ステンレ
ス鋼ついても適用されうるものである。 なおこれらの厚鋼板の製造において、固溶化熱
処理の簡省略化の判定の基準は圧延の仕上り温度
と水冷開始温度であることが確められ、これらの
値を知ることによつて次工程の固溶化熱処理の温
度、時間を判定出来、さらには省略して製造する
ことが出来ることが明らかになつた。 以下、本発明を実施例にもとづいて説明する。 (本発明の実施例) 実施例 1 通常のSUB304のCC鋳片(140t)を1250℃に30
分加熱し、抽出後1100℃からリバース圧延を開始
し、12パスで板厚20mmまで圧延した。圧延仕上が
り温度は970℃であつた。この間の12パス中7パ
スの圧下率は15%以上とした。これらの7パスの
パス間の時間は短かいもので8秒、長いもので34
秒であつた。熱間圧延終了後59秒後に表面温度、
880℃から水冷した。鋼板は板厚断面すべて均一
再結晶し炭化物も認められず、δフエライトや
Niのミクロ偏析も認められず、機械的性質も下
記の通りで良好であつた。
(Field of Industrial Application) The present invention relates to a method for manufacturing thick steel plates of austenitic stainless steel and duplex stainless steel.
In particular, the present invention relates to a method for manufacturing thick stainless steel plates that can simplify the manufacturing process. (Conventional technology) Conventionally, Cr as represented by 18Cr-8Ni stainless steel
- After hot rolling, austenitic stainless steels and duplex stainless steels mainly composed of Ni and Cr-Ni-Mo systems undergo solid solution treatment, which involves reheating and holding the steel from room temperature to a temperature of 1000℃ or higher. Therefore, the grain boundary corrosion resistance has been restored by recrystallizing the hot-worked structure, adjusting the grain size, and re-solidifying the carbide. The purpose of solution heat treatment using this method is to recrystallize, adjust particle size, re-dissolve carbides,
Furthermore, we aim to diffuse and eliminate the remaining parts of solidification segregation,
The aim is to make the material and corrosion resistance uniform across the entire length, width, and thickness of the plate. However, in order to achieve this goal, it is necessary to reheat the plate to over 1000°C, uniformly heat the entire plate, and then take a longer holding time.Currently, the total furnace time is 20 to 30 minutes. This has become a major problem in terms of energy and productivity. Therefore, there has been a strong desire to simplify this process. Japanese Patent Publication No. 57-38654 has already disclosed a method for producing hot coils for the same purpose as described above, in which hot strip rolling is performed, followed by air cooling for 3 to 10 seconds, rapid cooling, and coiling at 400 to 600°C. In addition, in Japanese Patent Publication No. 59-46287, hot rolling is carried out at 850 to 1150°C with a cumulative reduction rate of 50% or more and a finishing temperature of 850°C to 1150°C, followed by rolling at 850°C. ~550℃ temperature range V
= C 2 × 1000 (V: average cooling rate (°C/sec),
C: A method is disclosed in which the solution treatment is omitted by rapid cooling at a rate higher than the average cooling rate indicated by the carbon content (%) of the target steel. (Problems to be solved by the invention) In particular, the inventors have solved the problem in stainless steel plates.
As a result of examining these conventional methods, we found that due to the characteristics of thick steel plates, there are many types of plate thickness, plate width, and plate length, and depending on these sizes, hot rolling methods include unidirectional rolling, cross rolling, etc. It also differs from hot strip rolling in that the number of passes and rolling reduction ratio vary. Therefore, the temperature and rolling time of each plate are different, and the temperature also varies depending on the part of the plate. In order to simplify the solution heat treatment of such thick plates and obtain uniform material properties over the entire length, width, and thickness of the plate, in addition to conventional techniques, we must further improve the composition, hot rolling method, and It was found that improvements were needed to simplify the solution treatment method. In other words, in order to simplify and omit solution heat treatment, which is the final heat treatment for stainless steel plates, it is necessary to uniformize recrystallization and grain size adjustment over the entire thickness of the plate, prevent the generation of mixed grains, and make the solution of carbides uniform. At the same time, it was found that it was necessary to eliminate δ ferrite caused by solidification segregation and to uniformize Ni microsegregation. (Means for solving the problems) In order to solve the problems of the present invention,
It is necessary to control the starting steel composition and each manufacturing process from heating to hot rolling. The starting steel components include δcal (%) = 3 (Cr + Mo +
1.5Si)−2.8(Ni+0.5Mn+0.5Cu)−84(C+N)−
It is desirable that δcal (%) determined by 19.8 be -3% or more. Figure 1 shows the 18Cr-8Ni product plate.
This figure shows the influence of δcal (%) on Ni microsegregation, and segregation is reduced when δcal (%) is -3% or more. In other words, for the purpose of omitting solution heat treatment.
Test material of SUS304 with significantly changed composition was heated to 1250℃.
After heating for 20 minutes, the material was hot-rolled from 50mm to 8mm, the rolling end temperature was set at 950℃, and immediately water-cooled to allow sufficient recrystallization.The results of an EPMA investigation of Ni microsegregation in steel sheets. be. If the micro-segregation of Ni is large, corrosion patterns are likely to occur and the surface after electrolytic polishing will be seriously damaged. In this way, the influence of ingredients on micro-segregation is large;
Determined by δcal (%), if δcal (%) is less than -3% and austenite is stable in the early stage of solidification, micro-segregation is poor, and if δcal (%) is -3% or more, it passes through δ ferrite in the early stage of solidification. The micro-segregation is reduced even after the solution treatment is omitted.
Thus, it was found that passing through the δ-ferrite phase at the early stage of solidification has a great effect on reducing microsegregation. It is necessary to eliminate these δ ferrites in a heating furnace, which is heated to 1100 to 1300°C for 10 minutes or more. Below 1100°C, δ does not disappear even over a long period of time, and it progresses fastest at 1250°C, disappearing after 10 minutes of heating, and when the temperature exceeds 1300°C, δ ferrite increases again. The main components of the austenitic stainless steel in the present invention are usually Cr: 18.0 to 22.0%, Ni:
6.0-15.0%, Mo: 0-4.0%, Si: 1.0% or less,
Cu: 0 to 2.0%, C: 0.08% or less, N: 0.4% or less, and the main components of duplex stainless steel are:
Cr19~27%, Ni4~7%, Mo1.0~3.5%, Cu:
0 to 2%, Si: 1.0% or less, C: 0.08% or less, N:
It is 0.4% or less. Unlike hot rolling, which is tandem rolling such as hot strip rolling, in reverse rolling such as thick plate rolling, it is possible to appropriately control the reduction rate for each pass and the time between passes. For recrystallization, rolling with large reductions at as high a temperature as possible is effective, but recrystallization is performed over the entire thickness of the plate to prevent the generation of mixed grains, adjust the grain size, and remove residual solidification segregation. In order to make δ ferrite and Ni segregation uniform, it is necessary to control the hot rolling temperature, reduction rate, and interpass time, and to proceed with rolling while recuperating heat on the steel sheet surface. The detailed results of these studies are described below. Figure 2 shows S304 (Cr18.2%, Ni8.6%, C0.04%,
N0.04%) CC slab (thickness 130mm) was heated to 1250℃ for 20 minutes, hot rolled to 50mm thickness, cooled to room temperature, heated again to 1200℃ and then cooled to 1050℃.
The recrystallized structure is shown when water cooling is started after a certain period of air cooling time after applying a 50% reduction in one pass from °C, 1000 °C, and 950 °C. As already stated in Special Publication No. 57-38654,
It can be seen that recrystallization progresses by increasing the air cooling time, and becomes almost uniform in 3.2 seconds at 1050°C and 18 seconds at 1000°C. It was thus revealed that how to take the air cooling time is important for uniform recrystallization. Figure 3 shows SUS304CC slab (thickness 130mm) of 1250mm.
Heat to 30°C for 30 minutes and reverse roll to 22mm.
After being air-cooled for a few seconds and recrystallized uniformly, the result was tandem rolling from 1050°C in 5 passes with a cumulative reduction of 86% with little time between passes, finish rolling at 988°C, and immediately quenching. , shows the recrystallized structure at the surface of the plate and at the center of the plate. If the time between passes is not taken in this way, there will be a difference in the behavior of recrystallization and δ ferrite between the surface area and the thickness center area, resulting in non-uniformity. On the other hand, Figure 4 shows the SUS304CC slab at 1250°C.
After heating for 30 minutes, reverse rolling to 1050
℃ to 7 passes with an inter-pass time of 7 to 15 seconds, and the structure was water-cooled immediately after finishing at 922℃.
Uniform recrystallized grains were obtained in the center of the 4th thick part. In this way, it was found that the combination of temperature, rolling reduction, and interpass time is important for uniform recrystallization of the plate thickness cross section. That is, in hot rolling and recrystallization of CC slabs, it is necessary to apply a large reduction or cumulative reduction from the initial stage of rolling, and to advance the rolling by taking the time between passes or the cumulative interpass time. For recrystallization and grain growth, it is necessary to apply a large pressure reduction in a high temperature range and take time between passes. If the time between passes is insufficient, recrystallization becomes non-uniform in the initial stage, causing mixed grains. Furthermore, by taking the time between passes, the surface of the steel sheet recuperates, a uniform recrystallized structure can be obtained in the cross section of the steel sheet, and furthermore, the disappearance of δ ferrite and the diffusion disappearance of segregation proceed. In plate rolling, which is reverse rolling, it is advantageous to be able to select the rolling reduction ratio of each pass and the time between passes.In order to obtain a uniform recrystallized structure and a rolled structure with less segregation, it is necessary to It has been found that rolling with an inter-pass time of 3 seconds to 40 seconds for at least half of the number of passes is a necessary requirement to achieve the above objective. If the interpass time is less than 3 seconds, the effect will be small, and a longer time is preferable, but since the adverse effect of temperature drop occurs, the upper limit is set to 40 seconds. Furthermore, the rolling reduction ratio of each pass is preferably large, and preferably 15% or more. When hot rolling is carried out as described above, the final hot rolling temperature is preferably 900°C or higher for recrystallization and grain size adjustment, and in particular, in order to omit solution heat treatment, it is desirable to It is necessary to finish at 900℃ or higher. However, in the case of thin plate rolling, the hot rolling temperature is often around 800°C. In any case, after hot rolling, cool it down as quickly as possible.
It is necessary to rapidly cool the carbide precipitation region at 700 to 800°C to prevent carbide precipitation and growth. The present inventors investigated the precipitation and growth of carbides during cooling after hot rolling, and the precipitation and growth during reheating of SUS304.
As a result of a detailed study of the growth and extinction processes, we found the following. As shown in Figure 5, after hot rolling at a temperature of 900°C or higher, water cooling is started when the surface temperature of the steel sheet is 800°C or higher, and if the cooling rate is 3°C/sec or higher to 500°C or lower, no carbides will be present. Does not precipitate. Therefore, solution heat treatment is not necessary. If water cooling is started at 800℃ or less after hot rolling,
If the water cooling start temperature is low (for example, 700°C), carbide precipitation is observed, but if the water cooling is rapidly cooled to 500°C, the growth can be suppressed. If water-cooled at a temperature below 650°C, carbides will grow and the effect will be small. If the hot rolled steel sheet is air cooled as usual without water cooling, carbides precipitate and grow during cooling, and are continuously deposited at the grain boundaries. We investigated the behavior of materials with various degrees of carbide precipitation when the temperature was increased during reheating. The temperature increase speed was 400 to 600°C/min. When the temperature reaches 800°C, new carbides begin to precipitate, and carbides that have already precipitated begin to grow. As shown in Figure 6, the growth is noticeable at 900°C, and when the temperature reaches 950°C, the carbide begins to disappear, and when it reaches 1000°C, it almost disappears. However, in the case where carbides have grown significantly due to air cooling after hot rolling, complete disappearance of carbides cannot be achieved by heating alone, and a holding time is required. Typical carbide behavior is shown in Figure 7. Considering the results in Figures 5 and 6, the growth of carbides is suppressed at least when the steel plate surface temperature is 650°C or higher and water cooling is performed, so solution heat treatment is effective at heating the steel plate to 950°C or higher. This is achieved by increasing the temperature. Therefore, the retention time may be any time necessary to homogenize the tissue, and 5 minutes or less is sufficient. Note that it is more effective if the water cooling start temperature after hot rolling is high, and the solution treatment can be omitted when the entire plate is cooled from 800°C or higher. Cooling after hot rolling may be up to 500°C, and an average cooling rate of 3°C/sec or more between 800 and 300°C is sufficient. Of course, these are valid for steel sheets that use component control and hot rolling methods to prevent segregation as described above, and even in this case, adding simple heat treatment after hot rolling and water cooling will further prevent these micro-segregation. Effective for mitigation. The heat treatment time to be added at this time may be short, and 5 minutes at most is sufficient. The effect is saturated for more than 5 minutes. The stainless steel plate manufactured by the above-described simple solution treatment method or the method omitting the solution treatment has the following additional advantages.
In other words, compared to the conventional method of leaving the product in a furnace at 1000°C or higher for 20 minutes or more, according to the present invention, by omitting the solution heat treatment or by shortening it to 5 minutes or less, scale growth during this period is suppressed. Ru. Therefore, the Cr-free layer on the surface of the steel sheet becomes thinner, which has an advantageous effect on the corrosion resistance of the product. Also, the scale thickness becomes thinner,
Therefore, there is an advantage that the descaling time is shortened. The present invention applies not only to austenitic stainless steels of which 18Cr-8Ni is a typical example, but also to 20~25Cr-4~
It can also be applied to duplex stainless steel whose main component is 7Ni-1.0 to 4Mo. In the production of these thick steel plates, it has been confirmed that the criteria for determining the simplification of solution heat treatment are the finishing temperature of rolling and the starting temperature of water cooling, and by knowing these values, it is possible to It has become clear that the temperature and time of solution heat treatment can be determined, and furthermore, that it can be omitted in production. Hereinafter, the present invention will be explained based on examples. (Example of the present invention) Example 1 A normal SUB304 CC slab (140t) was heated to 1250℃ for 30 minutes.
After extraction, reverse rolling was started at 1100°C and rolled to a thickness of 20 mm in 12 passes. The finishing temperature of rolling was 970°C. During this period, the rolling reduction ratio in 7 out of 12 passes was 15% or more. The time between these 7 passes is as short as 8 seconds and as long as 34 seconds.
It was hot in seconds. Surface temperature after 59 seconds after hot rolling,
It was water cooled from 880℃. The steel plate is uniformly recrystallized throughout the thickness section, with no carbides observed, and δ ferrite and
No Ni microsegregation was observed, and the mechanical properties were good as shown below.

【表】【table】

【表】 実施例 2 通常のSUS304のCC鋳片(140t)を1200℃に20
分以上加熱し、抽出後、1070℃からリバース圧延
を開始し、10パスで40mm厚板、12パスで10mm厚板
を製造した。それぞれの仕上り温度は980℃と860
℃であつた。この間それぞれ7パス及び8パスを
15%以上の圧下率で圧延し、短かいもので8秒、
長いもので32秒のパス間時間を取つて圧延を完了
した。水冷開始は40mm厚板で890℃、10mm厚板は
730℃であつた。 その後鋼板を500℃/minの昇温スピードで熱
処理炉で昇温し、40mm厚板は1040℃到達後、1分
後に水冷した。又10mm厚板は1100℃到達後、1分
後に水冷した。これら厚板の試験結果は板厚断面
で再結晶粒度も均一であり炭化物を認められずま
たNiのミクロ偏析も認められず機械的性質も良
好であつた。
[Table] Example 2 A normal SUS304 CC slab (140t) was heated to 1200℃ for 20 minutes.
After heating for more than a minute and extracting, reverse rolling was started at 1070°C to produce a 40 mm thick plate in 10 passes and a 10 mm thick plate in 12 passes. The respective finishing temperatures are 980℃ and 860℃
It was warm at ℃. During this period, 7 passes and 8 passes were made respectively.
Rolling at a reduction rate of 15% or more, 8 seconds for short rolls,
The long one took 32 seconds between passes to complete rolling. Water cooling starts at 890℃ for 40mm thick plates, and for 10mm thick plates.
It was 730℃. Thereafter, the steel plate was heated in a heat treatment furnace at a heating rate of 500°C/min, and the 40mm thick plate was cooled with water one minute after reaching 1040°C. The 10 mm thick plate was water cooled 1 minute after reaching 1100°C. The test results of these thick plates showed that the recrystallized grain size was uniform in the cross section of the plate, no carbides were observed, no micro-segregation of Ni was observed, and the mechanical properties were good.

【表】【table】

【表】 (発明の効果) 本発明はステンレス厚鋼板の製造法に関するも
ので、特に熱間圧延法との関連で、固溶化処理の
簡省略化をねらいにしたものである。本発明によ
り従来1000℃以上に20分以上加熱する方式が5分
以下に短縮されることから、エネルギーコストは
もちろん、生産性の点でも大きな利点を有してい
る。
[Table] (Effects of the Invention) The present invention relates to a method for manufacturing stainless steel plates, and is aimed at simplifying solution treatment, particularly in relation to hot rolling. The present invention shortens the conventional heating method of 20 minutes or more to 1000° C. or higher to 5 minutes or less, which has great advantages not only in terms of energy cost but also in terms of productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明製品のNiミクロ偏析に対する
δcal(%)の影響を示す図、第2図はSUS304
(Cr18.2%、Ni8.6%、C0.04%、N0.04%)CC鋳
片(厚み130mm)を1250℃に20分加熱し、50mm厚
まで熱間圧延し、一旦室温まで冷却して、1050
℃、1000℃、950℃より1パスで50%の圧下を与
えた後、或る時間空冷時間を取つた後に水冷を開
始した場合の再結晶組織を示す金属顕微鏡組織写
真、第3図は従来法によるタンデム圧延材の表面
と中心部の金属組織を示す顕微鏡組織写真、第4
図は本発明法によるリバース圧延材の表面と中心
部の金属組織を示す金属顕微鏡組織写真、第5図
はSUS304鋼の熱間圧延後の水冷開始温度の例を
示す図、第6図は第5図の各水冷開始温度に対応
する昇温時の炭化物の析出、成長、溶解挙動例を
示す図、第7図は冷却開始温度と昇温時の炭化物
挙動並びに再結晶挙動との関係を示す金属顕微鏡
組織写真である。
Figure 1 shows the influence of δcal (%) on Ni microsegregation of the product of the present invention, and Figure 2 shows the influence of δcal (%) on the Ni microsegregation of the product of the present invention.
(Cr18.2%, Ni8.6%, C0.04%, N0.04%) CC slab (thickness 130mm) was heated to 1250℃ for 20 minutes, hot rolled to 50mm thickness, and once cooled to room temperature. 1050
℃, 1000℃, and 950℃ after applying a 50% reduction in one pass, allowing air cooling for a certain period of time, and then starting water cooling. Microscopic structure photograph showing the metal structure of the surface and center of the tandem rolled material by the method, No. 4
The figure is a metallurgical microscopic photograph showing the metallographic structure of the surface and center of a reverse-rolled material produced by the method of the present invention. Figure 5 is a diagram showing an example of the water cooling start temperature after hot rolling of SUS304 steel. Figure 5 shows examples of carbide precipitation, growth, and dissolution behavior during temperature rise corresponding to each water cooling start temperature in Figure 5. Figure 7 shows the relationship between cooling start temperature and carbide behavior and recrystallization behavior during temperature rise. It is a metal microscopic structure photograph.

Claims (1)

【特許請求の範囲】 1 オーステナイト系及び2相系ステンレス鋼に
おいて、 δcal(%)=3(Cr+Mo+1.5Si)−2.8(Ni+
0.5Mn+0.5Cu)−84(C+N)−19.8で決まるδcal
(%)を−3%以上となるような成分系とした連
鋳鋳片(以下CC鋳片という)又は分塊圧延を経
た鋼片を、加熱温度1100〜1300℃に10分以上加熱
し、熱間圧延において全圧下パス数の少なくとも
半数以上に15%以上の圧下率を適用するとともに
3〜40秒のパス間時間を取つて圧延を施し、且つ
圧延仕上温度を900℃以上となし、熱間圧延後、
鋼板温度が800℃以上から水冷を開始し、800〜
300℃間の平均冷却速度を3℃/sec以上で任意の
温度まで急冷することを特徴とするステンレス厚
鋼板の製造方法。 2 オーステナイト系及び2相系ステンレス鋼に
おいて、 δcal(%)=3(Cr+Mo+1.5Si)−2.8(Ni+
0.5Mn+0.5Cu)−84(C+N)−19.8で決まるδcal
(%)を−3%以上となるような成分系とした連
鋳鋳片(以下CC鋳片という)又は分塊圧延を経
た鋼片を、加熱温度1100〜1300℃に10分以上加熱
し、熱間圧延において全圧下パス数の少なくとも
半数以上に15%以上の圧下率を適用するとともに
3〜40秒のパス間時間を取つて圧延を施し、この
熱間圧延後、鋼板温度が650℃以上から水冷を開
始し、800〜300℃間の平均冷却速度を3℃/sec
以上で任意の温度まで急冷し、引続き950℃以上
に加熱して保定時間を5分以下とし、その後急冷
することを特徴とするステンレス厚鋼板の製造方
法。
[Claims] 1. In austenitic and duplex stainless steels, δcal (%) = 3 (Cr + Mo + 1.5Si) - 2.8 (Ni +
δcal determined by 0.5Mn+0.5Cu)-84(C+N)-19.8
Continuously cast slabs (hereinafter referred to as CC slabs) or slabs that have undergone blooming rolling are heated to a heating temperature of 1100 to 1300°C for 10 minutes or more, In hot rolling, a reduction rate of 15% or more is applied to at least half of the total number of rolling passes, rolling is performed with a time between passes of 3 to 40 seconds, and the finishing temperature of rolling is 900°C or higher. After rolling,
Water cooling starts when the steel plate temperature is over 800℃, and
A method for manufacturing a thick stainless steel plate, characterized by rapidly cooling to a desired temperature at an average cooling rate of 3°C/sec or more over a period of 300°C. 2 In austenitic and duplex stainless steels, δcal (%) = 3 (Cr + Mo + 1.5Si) - 2.8 (Ni +
δcal determined by 0.5Mn+0.5Cu)-84(C+N)-19.8
Continuously cast slabs (hereinafter referred to as CC slabs) or slabs that have undergone blooming rolling are heated to a heating temperature of 1100 to 1300°C for 10 minutes or more, During hot rolling, a reduction rate of 15% or more is applied to at least half of the total number of reduction passes, and rolling is performed with an interpass time of 3 to 40 seconds, and after this hot rolling, the steel plate temperature is 650℃ or higher. Start water cooling from , and increase the average cooling rate between 800 and 300℃ to 3℃/sec.
A method for producing a thick stainless steel plate, characterized by rapidly cooling the above to a desired temperature, then heating to 950°C or higher for a holding time of 5 minutes or less, and then rapidly cooling.
JP15744785A 1985-07-17 1985-07-17 Manufacture of stainless steel plate Granted JPS62124220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15744785A JPS62124220A (en) 1985-07-17 1985-07-17 Manufacture of stainless steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15744785A JPS62124220A (en) 1985-07-17 1985-07-17 Manufacture of stainless steel plate

Publications (2)

Publication Number Publication Date
JPS62124220A JPS62124220A (en) 1987-06-05
JPH0366368B2 true JPH0366368B2 (en) 1991-10-17

Family

ID=15649856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15744785A Granted JPS62124220A (en) 1985-07-17 1985-07-17 Manufacture of stainless steel plate

Country Status (1)

Country Link
JP (1) JPS62124220A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62267419A (en) * 1986-05-13 1987-11-20 Kawasaki Steel Corp Manufacture of austenitic stainless steel plate
JPS62267418A (en) * 1986-05-14 1987-11-20 Kawasaki Steel Corp Manufacture of high strength austenitic stainless steel
JPS63143219A (en) * 1986-12-04 1988-06-15 Kawasaki Steel Corp Production of austenitic stainless steel
JPH0730407B2 (en) * 1988-07-08 1995-04-05 新日本製鐵株式会社 Method for producing Cr-Ni type stainless steel thin plate with excellent surface quality
EP0378705B2 (en) * 1988-07-08 1999-09-15 Nippon Steel Corporation PROCESS FOR PRODUCING THIN Cr-Ni STAINLESS STEEL SHEET EXCELLENT IN BOTH SURFACE QUALITY AND QUALITY OF MATERIAL
JPH0796684B2 (en) * 1989-04-05 1995-10-18 新日本製鐵株式会社 Method for producing Cr-Ni type stainless steel thin plate with excellent surface quality
JPH0762171B2 (en) * 1989-07-28 1995-07-05 新日本製鐵株式会社 Method for producing austenitic stainless steel excellent in wire drawability and cold rollability

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624825A (en) * 1985-07-01 1987-01-10 Kawasaki Steel Corp Manufacture of austenitic stainless thick steel plate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624825A (en) * 1985-07-01 1987-01-10 Kawasaki Steel Corp Manufacture of austenitic stainless thick steel plate

Also Published As

Publication number Publication date
JPS62124220A (en) 1987-06-05

Similar Documents

Publication Publication Date Title
BRPI0614379B1 (en) METHOD FOR PRODUCTION OF MAGNETIC STEEL STRIP OF ORIENTED GRAIN
JP4697841B2 (en) Method for producing grain-oriented electrical steel sheet
JP2004526862A5 (en)
JPH0582453B2 (en)
JPH0366368B2 (en)
KR19990077215A (en) Process suitable for hot rolling of steel bands
KR950005320B1 (en) Process for producing thin sheet of cr-ni based stainless steel having excellent surface quality and workability
KR101362388B1 (en) Method for producing a cold-rolled strip with a ferritic structure
JPH0730406B2 (en) Method for producing Cr-Ni stainless steel sheet with excellent surface quality and material
JPH04358023A (en) Production of high strength steel
JPH0819463B2 (en) Manufacturing method of stainless steel plate
JPH09201654A (en) Thin sheet continuous casting method
US5030296A (en) Process for production of Cr-Ni type stainless steel sheet having excellent surface properties and material quality
JP3849146B2 (en) Method for producing unidirectional silicon steel sheet
JP2512650B2 (en) Method for producing Cr-Ni type stainless steel thin plate excellent in material and surface quality
JPH0559447A (en) Production of cr-ni stainless steel sheet excellent in surface quality and workability
EP0378705A1 (en) PROCESS FOR PRODUCING THIN Cr-Ni STAINLESS STEEL SHEET EXCELLENT IN BOTH SURFACE QUALITY AND QUALITY OF MATERIAL
JP3222057B2 (en) Method for producing Cr-Ni stainless steel hot-rolled steel sheet and cold-rolled steel sheet excellent in surface quality and workability
JP3917320B2 (en) Method for producing ferritic stainless steel sheet with excellent ridging resistance
JPH02166233A (en) Manufacture of cr-series stainless steel thin sheet using thin casting method
JPS6176616A (en) Manufacture of thick steel plate superior in toughness
JPH07113128B2 (en) Method for manufacturing silicon steel sheet
KR930000089B1 (en) Process for production of cr-ni type stainless sheet having excellent surface properties and material quality
JPH08311557A (en) Production of ferritic stainless steel sheet free from ridging
JPH0421723A (en) Production of cold rolled steel sheet from thin cast slab

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees