JPH0730406B2 - Method for producing Cr-Ni stainless steel sheet with excellent surface quality and material - Google Patents

Method for producing Cr-Ni stainless steel sheet with excellent surface quality and material

Info

Publication number
JPH0730406B2
JPH0730406B2 JP22147188A JP22147188A JPH0730406B2 JP H0730406 B2 JPH0730406 B2 JP H0730406B2 JP 22147188 A JP22147188 A JP 22147188A JP 22147188 A JP22147188 A JP 22147188A JP H0730406 B2 JPH0730406 B2 JP H0730406B2
Authority
JP
Japan
Prior art keywords
slab
less
cooling rate
temperature
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22147188A
Other languages
Japanese (ja)
Other versions
JPH02133528A (en
Inventor
全紀 上田
阿部  雅之
秀彦 住友
利行 末広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to KR1019900700496A priority Critical patent/KR930000089B1/en
Priority to EP89908266A priority patent/EP0378705B2/en
Priority to US07/474,772 priority patent/US5030296A/en
Priority to PCT/JP1989/000692 priority patent/WO1990000454A1/en
Priority to DE68925578T priority patent/DE68925578T3/en
Priority to ES8903028A priority patent/ES2016153A6/en
Priority to KR1019900700496A priority patent/KR900701434A/en
Publication of JPH02133528A publication Critical patent/JPH02133528A/en
Publication of JPH0730406B2 publication Critical patent/JPH0730406B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、鋳片と鋳型内壁面間に相対速度差のない、所
謂同期式連続鋳造プロセスによって鋳片厚さを製品厚さ
に近いサイズとしてCr−Ni系ステンレス鋼薄板を製造す
る方法において、鋳片段階から組織を微細化して優れた
表面品質と材質を有するCr−Ni系ステンレス薄鋼板を製
造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention uses a so-called synchronous continuous casting process in which there is no relative speed difference between a slab and an inner wall surface of a mold, and the slab thickness is close to the product thickness. The present invention also relates to a method for producing a Cr-Ni-based stainless steel thin plate, which comprises refining the structure from the cast piece stage to produce a Cr-Ni-based stainless steel sheet having excellent surface quality and material.

(従来の技術) 従来、連続鋳造法を用いてステンレス鋼薄板を製造する
には、鋳型を製造方法に振動させながら厚さ100mm以上
の鋳片に鋳造し、得られた鋳片の表面手入れを行い、加
熱炉において1000℃以上に加熱した後、粗圧延機および
仕上圧延機列からなるホットストリップミルによって熱
間圧延を施し、厚さ数mmのホットストリップとしてい
た。
(Prior Art) Conventionally, in order to produce a stainless steel thin plate using a continuous casting method, casting is performed on a slab with a thickness of 100 mm or more while vibrating the mold according to the production method, and surface treatment of the obtained slab is performed. After heating to 1000 ° C. or higher in a heating furnace, hot rolling was performed using a hot strip mill consisting of a rough rolling mill and a finishing rolling mill row to obtain a hot strip having a thickness of several mm.

こうして得られたホットストリップを冷間圧延するに際
しては、最終製品に要求される形状(平坦さ)、材質、
表面性状を確保するために、強い熱間加工を受けたホッ
トストリップを軟化させるための熱延板焼鈍を行うとと
もに、表面のスケール等を酸洗工程の後に研削によって
除去していた。この従来のプロセスにおいては、長大な
熱間圧延設備で、材料の加熱および加工のために多大の
エネルギを必要とし、生産性の面でも優れた製造プロセ
スとは言い難かった。また、最終製品は、100mm以上の
厚さの鋳片から多くの加工が加えられ製造されるために
集合組織が発達し、製品に、ユーザーにおいてプレス加
工等を加えるときはその異方性を考慮することが必要と
なる等使用上の制約も多かった。
When cold-rolling the hot strip thus obtained, the shape (flatness), material,
In order to secure the surface texture, hot-rolled sheet annealing is performed to soften the hot strip that has undergone strong hot working, and the surface scale and the like are removed by grinding after the pickling step. This conventional process requires a large amount of energy for heating and processing the material in a long hot rolling facility, and it is difficult to say that the manufacturing process is excellent in terms of productivity. Also, the final product develops a texture because many processes are made from a slab with a thickness of 100 mm or more, and the anisotropy is taken into consideration when the product is pressed by the user. There were also many restrictions on usage such as the necessity to do so.

処で、100mm以上の厚さの鋳片をホットストリップに圧
延するために、長大な熱間圧延設備と多大なエネルギ、
圧延動力を必要とするという問題を解決すべく、最近、
連続鋳造の過程でホットストリップと同等か或はそれに
近い厚さの鋳片(薄帯)を得るプロセスの研究が進めら
れている。たとえば、「鉄と鋼」'85、A197〜'85、A256
において特集された論文に、ホットストリップを連続鋳
造によって直接的に得るプロセスが開示されている。こ
のような連続鋳造プロセスにあっては、得ようとする鋳
片(ストリップ)のゲージが1〜10mmの水準であるとき
はツインドラム方式が、また、鋳片のゲージが20〜50mm
の水準であるときはツインベルト方式が検討されてい
る。
In order to roll a slab with a thickness of 100 mm or more into a hot strip, a long hot rolling facility and a large amount of energy,
Recently, in order to solve the problem of requiring rolling power,
Research on a process for obtaining a slab (thin band) having a thickness equal to or close to that of a hot strip in the process of continuous casting is under way. For example, "Iron and Steel"'85, A197 to '85, A256
In the article featured in, a process for directly obtaining hot strip by continuous casting is disclosed. In such a continuous casting process, the twin drum system is used when the gauge of the slab (strip) to be obtained is in the level of 1 to 10 mm, and the gauge of the slab is 20 to 50 mm.
The twin-belt method is being considered when the level is.

しかしながら、これらの連続鋳造プロセスにおいては鋳
造段階にも未だ問題があるとされ、製品の材質や表面性
状に関して問題が解決したという段階には至っていな
い。
However, it is said that there is still a problem in the casting stage in these continuous casting processes, and it has not reached the stage where the problem regarding the material and surface properties of the product has been solved.

(発明が解決しようとする課題) 新しいプロセスとして開発が進められている、ホットス
トリップと同等か或はそれに近い厚さの鋳片(薄帯)を
連続鋳造によって得ることを前提とするプロセスにおい
ては、鋳造から製品までの工程が簡略化されるために、
ステンレス鋼製品の表面特性が、鋳片性状に敏感に影響
されることになる。即ち、優れた表面性状を有する製品
を得るためには、優れた鋳片を得る必要がある。
(Problems to be Solved by the Invention) In a process that is being developed as a new process and is premised on obtaining a slab (thin band) having a thickness equal to or close to that of a hot strip by continuous casting, Since the process from casting to product is simplified,
The surface characteristics of stainless steel products will be sensitively affected by the slab properties. That is, in order to obtain a product having excellent surface properties, it is necessary to obtain an excellent slab.

本発明は、ステンレス鋼薄板製品に特有の光沢むらやロ
ーピング現象と呼ばれる表面欠陥のないCr−Ni系ステン
レス鋼薄板を得ることができる簡潔な製造プロセスを提
供することを目的としてなされた。
The present invention has been made for the purpose of providing a simple manufacturing process capable of obtaining a Cr-Ni-based stainless steel sheet free from surface defects called uneven luster and roping phenomenon peculiar to stainless steel sheet products.

(課題を解決するための手段) 本発明の特徴とする処は、下記のとおりである。(Means for Solving the Problems) The features of the present invention are as follows.

(1) 18%Cr−8%Ni鋼に代表されるCr−Ni系ステン
レス鋼を、鋳型壁面が鋳片に同期して移動する連続鋳造
機によって、凝固時の冷却速度を100℃/s以上として厚
さ10mm以下の薄帯状鋳片に連続鋳造し、900℃以上の温
度域で60%以下の熱間加工を施して、該鋳片内部の再結
晶を進めてγ粒を微細化し平均γ粒径を50μm以下とし
たのち、900℃から550℃の範囲を50℃/s以上の冷却速度
で冷却し、650℃以下の温度域で巻取り、以後常法によ
り冷延板とすることを特徴とする表面品質と材質が優れ
たCr−Ni系ステンレス薄鋼板の製造法。
(1) The cooling rate during solidification of Cr-Ni stainless steel represented by 18% Cr-8% Ni steel is 100 ℃ / s or more by the continuous casting machine in which the mold wall surface moves in synchronization with the slab. As a continuous casting to a strip-shaped slab having a thickness of 10 mm or less, hot working of 60% or less in a temperature range of 900 ° C. or more is performed, and γ grains are refined to average γ by promoting recrystallization inside the slab. After making the particle size 50 μm or less, cool it in the range of 900 ℃ to 550 ℃ at a cooling rate of 50 ℃ / s or more, and wind it in the temperature range of 650 ℃ or less, and then make a cold rolled sheet by the usual method. A method for manufacturing Cr-Ni stainless steel sheet with excellent surface quality and material.

(2) 18%Cr−8%Ni鋼に代表されるCr−Ni系ステン
レス鋼を、鋳型壁面が鋳片に同期して移動する連続鋳造
機によって、凝固時の冷却速度を100℃/s以上として厚
さ10mm以下の薄帯状鋳片に連続鋳造し、凝固後は該鋳片
の復熱を起こさせず可及的に高温域から冷却を開始して
1100℃までの平均冷却速度を鋳片表面温度で100℃/s以
上としてγ粒の成長を抑制しつつ鋳片表面部と内部間に
温度差の存する鋳造後10秒間以内に900℃以上の温度域
で60%以下の熱間加工を施して、鋳片内部の再結晶を進
めて鋳片のγ粒を微細化し平均γ粒径を50μm以下とし
たのち、900℃から550℃の範囲を50℃/s以上の冷却速度
で冷却し、650℃以下の温度域で巻取り、以後常法によ
り冷延板とすることを特徴とする表面品質と材質が優れ
たCr−Ni系ステンレス薄鋼板の製造法。
(2) The cooling rate during solidification of Cr-Ni stainless steel represented by 18% Cr-8% Ni steel is 100 ℃ / s or more by the continuous casting machine in which the mold wall surface moves in synchronization with the slab. As a continuous casting into a strip-shaped slab with a thickness of 10 mm or less, after solidification, start cooling from the high temperature range as much as possible without causing reheating of the slab
The average cooling rate up to 1100 ° C is set to 100 ° C / s or more at the slab surface temperature and the temperature of 900 ° C or more within 10 seconds after casting where there is a temperature difference between the slab surface part and the inside while suppressing the growth of γ grains. After 60% or less hot working in the region, the recrystallization inside the slab is promoted to refine the γ grains of the slab to an average γ grain size of 50 μm or less, and then the range of 900 ℃ to 550 ℃ is 50 Cooled at a cooling rate of ℃ / s or more, wound in the temperature range of 650 ℃ or less, and then cold-rolled by a conventional method. Manufacturing method.

(3) 18%Cr−8%Ni鋼に代表されるCr−Ni系ステン
レス鋼を、鋳型壁面が鋳片に同期して移動する連続鋳造
機によって、凝固時の冷却速度を100℃/s以上として厚
さ10mm以下の薄帯状鋳片に連続鋳造し、δ−Fe.cal
(%)=3(Cr+1.5Si+Mo+Nb+Ti)−2.8(Ni+0.5M
n+0.5Cu)−84(C+N)−19.8で定義されるδ−Fe.c
al(%)を−2〜10%として凝固の初晶をδ相とすると
ともにγ相の晶出や変態の開始温度を低くして凝固途中
からのγ粒の成長を制御し、凝固後は該鋳片の復熱を起
こさぜず可及的に高温域から冷却を開始して1100℃まで
の平均冷却速度を鋳片表面温度で100℃/s以上としてγ
粒の成長を抑制しつつ鋳片表面部と内部間に温度差の存
する鋳造後10秒間以内に900℃以上の温度域で60%以下
の熱間加工を施して、鋳片内部の再結晶を進めて鋳片の
γ粒を微細化し平均γ粒径を50μm以下としたのち、90
0℃から550℃の範囲を50℃/s以上の冷却速度で冷却し、
650℃以下の温度域で巻取り、以後常法により冷延板と
することを特徴とする表面品質と材質が優れたCr−Ni系
ステンレス薄鋼板の製造法。
(3) The cooling rate during solidification is 100 ℃ / s or more for Cr-Ni stainless steel represented by 18% Cr-8% Ni steel by a continuous casting machine in which the mold wall surface moves in synchronization with the slab. As a continuous casting to a strip-shaped slab with a thickness of 10 mm or less, δ-Fe.cal
(%) = 3 (Cr + 1.5Si + Mo + Nb + Ti) -2.8 (Ni + 0.5M
n + 0.5Cu) -84 (C + N) -19.8 defined as δ-Fe.c
al (%) is set to -2 to 10% to set the primary crystal of solidification as the δ phase, and the crystallization of the γ phase and the start temperature of transformation are lowered to control the growth of γ grains during the solidification. The average cooling rate up to 1100 ° C by starting the cooling from the highest possible temperature range without causing reheating of the slab and the average slab surface temperature of 100 ° C / s or more γ
There is a temperature difference between the surface of the slab and the inside of the slab, while suppressing the growth of grains. Within 10 seconds after casting, 60% or less hot working is performed in the temperature range of 900 ° C or more to recrystallize the inside of the slab. We proceeded to refine the γ grains of the cast slab to make the average γ grain size 50 μm or less, then 90
Cool in the range of 0 ℃ to 550 ℃ at a cooling rate of 50 ℃ / s or more,
A method for producing a Cr-Ni-based stainless steel sheet having excellent surface quality and material, which is characterized by rolling in a temperature range of 650 ° C or less and then forming a cold-rolled sheet by a conventional method.

(4) 18%Cr−8%Ni鋼に代表されるCr−Ni系ステン
レス鋼を、鋳型壁面が鋳片に同期して移動する連続鋳造
機によって、凝固時の冷却速度を100℃/s以上として厚
さ10mm以下の薄帯状鋳片に連続鋳造し、900℃以上の温
度域で60%以下の熱間加工を施し、次いで900℃から550
℃の範囲を50℃/s以上の冷却速度で冷却し、650℃以下
の温度域で巻取った後、平均γ粒径が50μm以下となる
ように950℃以上で温度と時間を制御する熱延板焼鈍を
施し、次いで10℃/s以上の冷角速度で冷却し、以後常法
により冷延板とすることを特徴とする表面品質と材質が
優れたCr−Ni系ステンレス薄鋼板の製造法。
(4) The cooling rate during solidification of Cr-Ni stainless steel represented by 18% Cr-8% Ni steel is 100 ℃ / s or more by the continuous casting machine in which the mold wall surface moves in synchronization with the slab. As a continuous casting to a strip-shaped slab with a thickness of 10 mm or less, hot working 60% or less in the temperature range of 900 ℃ or more, then 900 ℃ to 550
After controlling the temperature in the range of ℃ at a cooling rate of 50 ℃ / s or more and winding it in the temperature range of 650 ℃ or less, heat that controls the temperature and time at 950 ℃ or more so that the average γ particle size is 50 μm or less. A method for producing a Cr-Ni-based stainless steel sheet with excellent surface quality and material, characterized by performing annealing of a rolled sheet, then cooling at a cold angular velocity of 10 ° C / s or more, and then forming a cold rolled sheet by a conventional method. .

(5) 18%Cr−8%Ni鋼に代表されるCr−Ni系ステン
レス鋼を、鋳型壁面が鋳片に同期して移動する連続鋳造
機によって、凝固時の冷却速度を100℃/s以上として厚
さ10mm以下の薄帯状鋳片に連続鋳造し、凝固後は該鋳片
の復熱を起こさせず可及的に高温域から冷却を開始して
1100℃までの平均冷却速度を鋳片表面温度で100℃/s以
上としてγ粒の成長を抑制しつつ鋳片表面部と内部間に
温度差の存する鋳造後10秒間以内に900℃以上の温度域
で60%以下の熱間加工を施し、次いで900℃から550℃の
範囲を50℃/s以上の冷却速度で冷却し、650℃以下の温
度域で巻取った後、平均γ粒径が50μm以下となるよう
に950℃以上で温度と時間を抑制する熱延板焼鈍を施
し、次いで10℃/s以上の冷却速度で冷却し、以後常法に
より冷延板とすることを特徴とする表面品質と材質が優
れたCr−Ni系ステンレス薄鋼板の製造法。
(5) The cooling rate during solidification of Cr-Ni stainless steel represented by 18% Cr-8% Ni steel is 100 ℃ / s or more by a continuous casting machine in which the mold wall surface moves in synchronization with the slab. As a continuous casting into a strip-shaped slab with a thickness of 10 mm or less, after solidification, start cooling from the high temperature range as much as possible without causing reheating of the slab
The average cooling rate up to 1100 ° C is set to 100 ° C / s or more at the slab surface temperature and the temperature of 900 ° C or more within 10 seconds after casting where there is a temperature difference between the slab surface part and the inside while suppressing the growth of γ grains. After hot working 60% or less in the temperature range, then cooling in the range of 900 ℃ to 550 ℃ at a cooling rate of 50 ℃ / s or more, and winding in the temperature range of 650 ℃ or less The hot rolled sheet is annealed at a temperature of 950 ° C. or higher to suppress the temperature and time to 50 μm or less, then cooled at a cooling rate of 10 ° C./s or higher, and then a cold rolled sheet is prepared by a conventional method. A method for manufacturing Cr-Ni stainless steel sheet with excellent surface quality and material.

(6) 18%Cr−8%Ni鋼に代表されるCr−Ni系ステン
レス鋼を、鋳型壁面が鋳片に同期して移動する連続鋳造
機によって、凝固時の冷却速度を100℃/s以上として厚
さ10mm以下の薄帯状鋳片に連続鋳造し、δ−Fe.cal
(%)=3(Cr+1.5Si+Mo+Nb+Ti)−2.8(Ni+0.5M
n+0.5Cu)−84(C+N)−19.8で定義されるδ−Fe.c
al(%)を−2〜10%として凝固の初晶をδ相とすると
ともにγ相の晶出や変態の開始温度を低くして凝固途中
からのγ粒の成長を抑制し、凝固後は該鋳片の復熱を起
こさず可及的に高温域から冷却を開始して1100℃までの
平均冷却速度を鋳片表面温度で100℃/s以上としてγ粒
の成長を抑制しつつ鋳片表面部と内部間に温度差の存す
る鋳造後10秒間以内に900℃以上の温度域で60%以下の
熱間加工を施し、次いで900℃から550℃の範囲を50℃/s
以上の冷却速度で冷却し、650℃以下の温度域で巻取っ
た後、平均γ粒径が50μm以下となるように950℃以上
で温度と時間を制御する熱延板焼鈍を施し、次いで10℃
/s以上の冷却速度で冷却し、以後常法により冷延板とす
ることを特徴とする表面品質と材質が優れたCr−Ni系ス
テンレス薄鋼板の製造法。
(6) The cooling rate during solidification of Cr-Ni stainless steel represented by 18% Cr-8% Ni steel is 100 ℃ / s or more by the continuous casting machine in which the mold wall surface moves in synchronization with the slab. As a continuous casting to a strip-shaped slab with a thickness of 10 mm or less, δ-Fe.cal
(%) = 3 (Cr + 1.5Si + Mo + Nb + Ti) -2.8 (Ni + 0.5M
n + 0.5Cu) -84 (C + N) -19.8 defined as δ-Fe.c
al (%) is set to -2 to 10% to set the primary crystal of solidification as the δ phase, and the crystallization of the γ phase and the start temperature of transformation are lowered to suppress the growth of γ grains during solidification, and after solidification, A slab that suppresses γ grain growth by starting cooling from the highest possible temperature range without causing reheating of the slab and setting the average cooling rate up to 1100 ° C at a slab surface temperature of 100 ° C / s or more Within 10 seconds after casting, where there is a temperature difference between the surface and the inside, 60% or less hot working is performed in the temperature range of 900 ℃ or more, and then the range of 900 ℃ to 550 ℃ is 50 ℃ / s.
After cooling at the above cooling rate and winding in a temperature range of 650 ° C or lower, hot-rolled sheet annealing in which the temperature and time are controlled at 950 ° C or higher so that the average γ grain size is 50 μm or lower, and then 10 ℃
A method for producing a Cr-Ni-based stainless steel sheet having excellent surface quality and material, which is characterized by cooling at a cooling rate of / s or more and then forming a cold-rolled sheet by a conventional method.

以下に、本発明を詳細に説明する。The present invention will be described in detail below.

SUS304鋼を基本成分とする溶鋼を、内部水冷方式の双ロ
ール(ツインドラム)連続鋳造試験機によって鋳造して
2〜4mm厚さの薄帯とし、冷却して巻き取った。
Molten steel containing SUS304 steel as a basic component was cast by an internal water-cooling twin roll (twin drum) continuous casting tester into a ribbon having a thickness of 2 to 4 mm, cooled and wound.

こうして得られた鋳片(薄帯)を、デスケーリングした
後直接冷間圧延し、最終焼鈍し、酸洗して2B製品を得
た。これらの製品の表面性状を、従来の、溶鋼を連続鋳
造して100mm以上の厚さを有する鋳片とし、これを再加
熱後、ホットスリップミルによって熱間圧延し、冷間圧
延して得られた製品の表面性状と詳細に比較検討した。
The cast piece (thin band) thus obtained was descaled, then directly cold-rolled, finally annealed, and pickled to obtain a 2B product. The surface texture of these products was obtained by continuously casting molten steel into a slab with a thickness of 100 mm or more, reheating it, hot rolling it with a hot slip mill, and cold rolling. The surface properties of the products were compared and examined in detail.

その結果、溶鋼を、内部水冷方式の双ロール(ツインド
ラム)連続鋳造試験機によって鋳造して2〜4mm厚さの
薄帯とし、冷却して巻き取ったものをデスケーリング後
冷間圧延し、最終焼鈍し、酸洗して2B製品としたもの
は、次のような表面欠陥が発生する可能性があることが
判明した。
As a result, molten steel was cast by an internal water-cooled twin roll (twin drum) continuous casting tester into a ribbon of 2 to 4 mm in thickness, which was cooled and wound, followed by descaling and cold rolling, It was found that the following surface defects may occur in the 2B product obtained by final annealing and pickling.

(1) ローピングやオレンジピール…冷延時または製
品加工時に表面に微細な凹凸を生じる。
(1) Roping or orange peel ... Fine irregularities are generated on the surface during cold rolling or during product processing.

(2)光沢むら…鋳片(薄帯)巻取り中の材料の組織鋭
敏化や粒界酸化またはγ粒粗大化による光沢むらが発生
する。
(2) Uneven gloss: Uneven luster occurs due to sensitization of the structure of the material during winding of the cast slab (thin band), oxidation of grain boundaries or coarsening of γ grains.

これらの製品の表面性状に関する問題は、従来のプロセ
スではみられない、薄鋳片(薄帯)を直接、連続鋳造に
よって得る過程を含むプロセス固有の問題である。
The problem regarding the surface texture of these products is a process-specific problem that includes a process of directly obtaining a thin ingot (strip) by continuous casting, which is not found in a conventional process.

発明者等は、これらの表面欠陥の原因を詳細に検討した
結果、冷間圧延前の材料のγ粒径が大きい場合や、鋳片
のCr炭化物析出温度域の冷却不充分の場合にこれらの表
面欠陥が顕著に生じることを解明した。
The inventors, as a result of detailed examination of the causes of these surface defects, when the γ grain size of the material before cold rolling is large, or when the cooling of the Cr carbide precipitation temperature range of the slab is insufficient, these It was clarified that the surface defects are remarkable.

こうして、ローピング対策としては、冷間圧延前の材料
のγ粒径を粒度No.6以上、即ち50μm以下とすること
が、また光沢むら対策としては、鋳片の高温域における
冷却を制御することが、薄鋳片を直接、連続鋳造によっ
て得る過程を含むプロセスを採るときに、望ましいこと
を明らかにした。
Thus, as a roping measure, the γ grain size of the material before cold rolling is set to a grain size No. 6 or more, that is, 50 μm or less, and as a measure for uneven gloss, control the cooling of the slab in the high temperature range. Have found that it is desirable when taking a process including a process of directly obtaining a thin slab by continuous casting.

以下、之等の対策について詳細に説明する。Hereinafter, these measures will be described in detail.

冷間圧延用の材料として、γ粒径が50μm以下の材料と
するための手段として、次のような種々の考え方があ
る。即ち、 1)薄鋳片そのもののγ粒を小さくする、 2)薄鋳片を、鋳造に引続き熱間加工して、再結晶細粒
化する、 3)薄鋳片を、冷間加工し、焼鈍して、再結晶細粒化す
る、 等である。勿論、1)、2)および3)それぞれ単独で
も有効であるが、1)、2)および3)を相互に組合せ
ると、格段に効果が大きくなることが判明した。
As a material for cold rolling, there are various ideas as follows as means for making the material having a γ particle diameter of 50 μm or less. That is, 1) reduce the γ grain of the thin slab itself, 2) subject the thin slab to hot work following casting to recrystallize the fine grain, 3) cold work the thin slab, Annealing to recrystallize the grains, and so on. Of course, 1), 2) and 3) are also effective respectively, but it has been found that the combination of 1), 2) and 3) significantly increases the effect.

本発明においては、特に上記1)薄鋳片そのもののγ粒
を小さくする、と2)薄鋳片を、鋳造に引続き熱間加工
して、再結晶細粒化する、の両手段を用いてステンレス
鋼薄板表面に生じるローピングを防止し、併せて表面光
沢むらのない、表面性状に優れた製品を得るように構成
している。
In the present invention, in particular, both of the above-mentioned 1) reducing the γ grains of the thin slab itself, and 2) subjecting the thin slab to hot working subsequent to casting to recrystallize the fine slab are used. It is configured to prevent roping that occurs on the surface of a stainless steel thin plate, and also to obtain a product with excellent surface properties without uneven surface gloss.

先ず、双ロール(ツインドラム)法等の、鋳型壁面が鋳
片と同期して移動する形式の連続鋳造プロセスによって
薄鋳片を得るときに、薄鋳片のγ粒を小さくするには、
鋳片におけるγ粒の生成時から小さくするとともに、そ
の後の成長を抑えるために高温域から鋳片を冷却するこ
とが肝要である。また、鋳造直後の鋳片に熱間圧延を施
し、再結晶させてγ粒を微細化することが重要である。
First, when obtaining a thin cast piece by a continuous casting process in which the mold wall surface moves in synchronization with the cast piece, such as a twin roll (twin drum) method, in order to reduce the γ grain of the thin cast piece,
It is important to reduce the γ grains in the slab from the time of generation and to cool the slab from a high temperature range in order to suppress subsequent growth. In addition, it is important to hot-roll the slab immediately after casting and recrystallize it to refine the γ grains.

このような考え方に従って、発明者等は、各種の組成の
18Cr−8Ni鋼を、実験室の小型双ロール連続鋳造機で鋳
造し、鋳造直後の急冷や熱間圧延、冷間圧延における条
件を変えて、ステンレス鋼薄板を製造し、製品の表面性
状特に、表面のうねりとなるローピングに注目してその
防止法を検討した。その結果、先に述べたように、冷間
圧延前の材料のγ粒径を、γ粒の平均粒度No.で、6以
上、即ち50μm以下の粒径とすることが望ましいことが
明らかとなった。
According to such an idea, the inventors have
18Cr-8Ni steel is cast by a small twin-roll continuous casting machine in a laboratory, and the conditions of quenching immediately after casting, hot rolling, and cold rolling are changed to produce a stainless steel thin plate, and the surface texture of the product, in particular, The prevention method was investigated by paying attention to roping which causes undulations on the surface. As a result, as described above, it became clear that it is desirable that the γ grain size of the material before cold rolling is 6 or more, that is, 50 μm or less in the average grain size No. of the γ grain. It was

第1図に、双ロール法によって溶鋼を連続鋳造して巻取
るまでの鋳片の温度履歴を示す。
FIG. 1 shows the temperature history of the slab until the molten steel is continuously cast by the twin roll method and wound up.

第1図においてケース(3)は材料を鋳造後空冷した場
合であり、鋳造機においては材料は鋳造ドラムによって
急冷されるけれども、鋳造機をでると復熱して昇温しド
ラム直下からの冷却を行わない場合に比べ冷却は緩慢で
あり、そのまま巻取ると巻取り後の冷却中にγ粒の成長
が進むことになり、ローピングや冷却中のCr炭化物析出
による鋭敏化、粒界酸化による表面特性上問題が生じ
る。
In FIG. 1, the case (3) is the case where the material is air-cooled after being cast, and in the casting machine, the material is rapidly cooled by the casting drum, but when it leaves the casting machine, it reheats and rises in temperature to cool from directly below the drum. Cooling is slower than in the case of not performing it, and if wound as it is, the growth of γ grains will proceed during cooling after winding, and sensitization by Cr carbide precipitation during roping and cooling, surface characteristics due to grain boundary oxidation The above problem occurs.

第1図においてケース(1)は鋳造後熱間圧延を行い、
鋳片に再結晶を起こさせγ粒を細かくさせたものであ
り、熱間圧延後はCr炭化物の析出による鋭敏化を防止す
るために急冷するプロセスを示したものである。
In FIG. 1, case (1) is hot-rolled after casting,
This is a product in which the slab is recrystallized to make the γ grains fine, and a process of quenching after hot rolling to prevent sensitization due to precipitation of Cr carbide is shown.

同じくケース(2)は、ケース(1)より鋳片の細粒化
を進めるために鋳造後急冷を行いその後熱間加工を行う
もので、鋳造後のγ粒がケース(1)より微細になるた
め熱延再結晶を行った場合非常に細かいγ粒を得ること
ができ、熱間圧延後はCr炭化物の析出による鋭敏化を防
止するために急冷するプロセスを示したものである。
Similarly, in case (2), in order to further reduce the grain size of the slab from case (1), rapid cooling is performed after casting and then hot working is performed, and the γ grains after casting become finer than in case (1). Therefore, when hot rolling recrystallization is performed, very fine γ grains can be obtained, and after hot rolling, a quenching process is shown to prevent sensitization due to precipitation of Cr carbide.

また、熱間加工を行った場合、再結晶が十分起きず一部
加工組織状態であることもある。この場合は、熱延板に
対し焼鈍を施し、再結晶化を十分進めることにより表面
特性として優れた製品が得られることも明らかとなっ
た。
In addition, when hot working is performed, recrystallization may not occur sufficiently and a partially processed microstructure may occur. In this case, it was also clarified that the hot rolled sheet was annealed and recrystallized sufficiently to obtain a product having excellent surface characteristics.

さらに、上記冷却の制御及び熱間圧延に加えて出発材の
合金組成の微妙な調整も有効である。
Further, in addition to the control of cooling and hot rolling, fine adjustment of the alloy composition of the starting material is also effective.

第2図は、Fe−Cr−Ni三元系平衡状態図におけるCr eq
+Ni eq≒30%相当部の断面状態図であって、文献Trans
action of JWRI,Vol.14,No.1,1985,p.125から引用した
ものである。Cr eqとNi eqは次の通り、成分から計算さ
れる。
Figure 2 shows Cr eq in the equilibrium diagram of the Fe-Cr-Ni ternary system.
+ Ni eq ≈ 30% cross-sectional state diagram corresponding to
It is quoted from action of JWRI, Vol.14, No.1,1985, p.125. Cr eq and Ni eq are calculated from the components as follows.

Cr eq=Cr(%)+1.5×Si(%)+Mo(%)+Nb(%)+Ti(%) Ni eq=Ni(%)+1/2(Mn(%)+Cu(%))+30(C(%)+N(%)) 先ず、Cr eqが小さい( Cr eq=17.3%)と、初晶γ
で凝固し完全γ相である。この場合のγ相は、液相線直
下の高温で晶出し、それ以降成長する。
Cr eq = Cr (%) + 1.5 × Si (%) + Mo (%) + Nb (%) + Ti (%) Ni eq = Ni (%) + 1/2 (Mn (%) + Cu (%)) + 30 (C (%) + N (%)) First, Cr eq is small (Cr eq = 17.3%), and the primary crystal γ
It solidifies and is in the complete γ phase. In this case, the γ phase crystallizes at a high temperature just below the liquidus line and grows thereafter.

一方、Cr eqが大きくなり、Cr eq=19.5%()以上と
なると、初晶はδ相で凝固を完了し、固相反応として約
1370℃からはじめてγ相が析出し初め、それ以降成長に
移るが、先に述べたCr eqが小さいケースに比較する
と、γ粒の成長は大いに抑制される。これは、鋳造直後
の高温域が、γ粒の成長を支配することからも十分考え
られることである。
On the other hand, when Cr eq becomes large and Cr eq = 19.5% () or more, the primary crystal completes solidification in the δ phase and a solid-phase reaction occurs.
The γ phase begins to precipitate from 1370 ° C., and the growth starts thereafter, but the growth of γ grains is greatly suppressed compared to the case where Cr eq is small as described above. This is fully considered because the high temperature region immediately after casting controls the growth of γ grains.

Cr eqが前記二者の中間にあるときは、包晶反応が加わ
って複雑になるが、γ粒の成長を抑制するには、δ相を
凝固させるような成分系が有利でありまた、高温域で材
料を急冷することが有効である。さらに、δ相凝固の効
果は、固相反応においてもγ粒の成長をδ相が妨害する
点にもある。このような、成分系に基づく効果を実験し
た結果、 δ−Fe.cal(%)=3(Cr+1.5Si+Mo+Nb+Ni) −2.8(Ni+1/2Mn+1/2Cu)−84(C+N)−19.8(%) で示されるδ−Fe.cal(%)を−2%以上10%までとす
ることが有効であることが判明した。特に、δ−Fe.cal
(%):1〜5%が良好である。
When Cr eq is in the middle of the two, peritectic reaction is added and it becomes complicated, but in order to suppress the growth of γ grains, a component system that solidifies the δ phase is advantageous, and high temperature It is effective to quench the material in the area. Further, the effect of the δ-phase solidification is that the δ-phase hinders the growth of γ grains even in the solid phase reaction. As a result of experimenting the effect based on such a component system, δ-Fe.cal (%) = 3 (Cr + 1.5Si + Mo + Nb + Ni) -2.8 (Ni + 1 / 2Mn + 1 / 2Cu) -84 (C + N) -19.8 (%) It was found that it is effective to set the δ-Fe.cal (%) to be -2% to 10%. In particular, δ-Fe.cal
(%): 1 to 5% is good.

第3図(a)〜(c)に、δ−Fe.cal(%)を種々変え
た成分系の溶鋼を連続鋳造して2mm厚さの鋳片としたも
のの組織を比較して示す。第3図から、δ−Fe.cal
(%)が−2.3%のものでは、γ相凝固でγ粒が成長し
ていることが分かる。
FIGS. 3 (a) to 3 (c) show a comparison of the microstructures of molten steels of various compositions with various .delta.-Fe.cal (%) continuously cast into 2 mm thick slabs. From Fig. 3, δ-Fe.cal
It can be seen that when the (%) is -2.3%, the γ grains grow due to the γ phase solidification.

δ−Fe.cal(%)が−1.1%のものは、δフェライトが
残留し、γ粒は小さくなっている。δ−Fe.cal(%))
が3.0%のものは、明らかにδ相凝固で、γ粒は極めて
小さいままである。
When the δ-Fe.cal (%) is -1.1%, the δ ferrite remains and the γ grains are small. δ-Fe.cal (%))
Of 3.0% is clearly δ phase solidification, and γ grains remain extremely small.

このように、先に述べた鋳片の冷却制御及び熱間圧延を
利用した細粒化と相俟って、Cr−Ni系ステンレス鋼にお
ける組成の選択が、γ粒の微細化に大きく影響し、δ−
Fe.cal(%)を−2%以上10%以下に制御することが、
極めて重要である。
Thus, in combination with the grain refining utilizing the cooling control and hot rolling of the slab described above, the selection of the composition in the Cr-Ni stainless steel greatly affects the refinement of the γ grains. , Δ−
To control Fe.cal (%) to -2% or more and 10% or less,
Extremely important.

第4図に、δ−Fe.cal(%)を1%程度にして冷却した
鋳片に、1100℃で熱間圧延を施したときの圧下率と、そ
の後デスケーリングし、冷間圧延を施したときに圧下率
が、製品表面のローピング高さにどのように影響するか
を示す。
Fig. 4 shows the reduction rate when hot rolling was performed at 1100 ° C on the slab cooled to δ-Fe.cal (%) of about 1%, and then descaling and cold rolling. It shows how the rolling reduction influences the roping height of the product surface.

第4図から、熱間圧延における圧下率:20%から影響が
現れ、30%以上と高くなるほど製品のローピング高さが
小さくなり、表面の“うねり”は認められなくなる。
As shown in FIG. 4, the rolling reduction of 20% in hot rolling has an effect. The higher the rolling reduction is, the lower the roping height of the product becomes, and the "waviness" of the surface is not observed.

熱間圧延における圧下率20%以上で鋳片内部に再結晶が
認められ、30%以上ではほぼ完全再結晶化する。こうし
て、γ粒の平均粒径は、50μm以下となっていた。
Recrystallization was observed inside the slab at a reduction of 20% or more in hot rolling, and almost complete recrystallization at 30% or more. Thus, the average grain size of the γ grains was 50 μm or less.

さらに、δ−Fe.cal(%)を3%程度にし、双ロール
(冷却ドラム)直下で、鋳片の冷却を行い、鋳片表層部
と内部間で温度差を有せしめて熱間圧延を行った場合に
は、圧下率が10%程度でも良好なローピング特性が得ら
れた。δ量と、双ロール(冷却ドラム)直下での鋳片冷
却の効果が大きいことが分る。
Further, the δ-Fe.cal (%) is set to about 3%, the slab is cooled immediately below the twin rolls (cooling drum), and there is a temperature difference between the surface layer of the slab and the inside, and hot rolling is performed. When it was carried out, good roping characteristics were obtained even when the rolling reduction was about 10%. It can be seen that the amount of δ and the effect of cooling the slab just below the twin rolls (cooling drum) are large.

次ぎに、本発明の構成要件の限定理由を説明する。Next, the reasons for limiting the constituent features of the present invention will be described.

溶鋼成分に関しては、C:0.01〜0.08%、Si:0.25〜1.50
%、Mn:0.15〜3.0%、P:0.015〜0.040%、S:0.001〜0.0
08%、Cr:16.0〜28.0%、Ni:6.0〜24.0%、N:0.015〜0.
33%、Al:0.001〜0.050%、Mo:0.01〜3.0%、Cu:0.01〜
2.0%、Ti:0.01〜0.60%、Nb:0.01〜0.80%、残部:Feお
よび不可避的不純物からなる成分範囲において、δ−F
e.cal(%)を−2%〜10%の範囲、即ちδ相凝固をす
るようにコントロールする必要がある。δ−Fe.cal
(%)が10%を超えると、製品にδ相が残留し、材質の
面で好ましくない。
Regarding molten steel components, C: 0.01 to 0.08%, Si: 0.25 to 1.50
%, Mn: 0.15-3.0%, P: 0.015-0.040%, S: 0.001-0.0
08%, Cr: 16.0 to 28.0%, Ni: 6.0 to 24.0%, N: 0.015 to 0.
33%, Al: 0.001-0.050%, Mo: 0.01-3.0%, Cu: 0.01-
2.0%, Ti: 0.01 to 0.60%, Nb: 0.01 to 0.80%, balance: Fe and δ-F in the composition range consisting of inevitable impurities.
It is necessary to control e.cal (%) in the range of -2% to 10%, that is, to perform δ phase solidification. δ-Fe.cal
If the (%) exceeds 10%, the δ phase remains in the product, which is not preferable in terms of material.

一方、鋳片の厚さが10mmを超えると、γ粒の微細化が困
難となり、γ粒を微細化するために強い熱間加工を行お
うとすると圧延機が巨大なものとなり、実際的でない。
On the other hand, if the thickness of the slab exceeds 10 mm, it becomes difficult to refine the γ grains, and if strong hot working is performed to refine the γ grains, the rolling mill becomes enormous, which is not practical.

鋳造後の鋳片の冷却は、鋳造機出口での鋳片の復熱を抑
えかつ、1100℃までのγ粒成長温度域における平均冷却
速度を100℃/s以上可及的に高くして行うと有効であ
る。
Cooling of the slab after casting is performed by suppressing reheating of the slab at the exit of the casting machine and increasing the average cooling rate in the γ grain growth temperature range up to 1100 ° C to 100 ° C / s or higher as much as possible. And is effective.

熱間圧延は、鋳片の表面温度が900℃以上の領域で行
い、鋳片内部の再結晶化を促進する。特に、鋳片内部が
高温域にある状態(鋳造後10秒間以内)のときに、60%
以下の圧下率を適用する熱間圧延を鋳片に施せば十分で
ある。60%を超える圧下率を適用しても効果が飽和す
る。一方、鋳造後10秒間を超えるタイミングでは、鋳片
の表層部と内部間の温度差が小さくなり、γ粒の微細化
効果が著しく減殺される。
Hot rolling is performed in a region where the surface temperature of the slab is 900 ° C or higher, and promotes recrystallization inside the slab. Especially, 60% when the inside of the slab is in a high temperature range (within 10 seconds after casting)
It is sufficient to subject the slab to hot rolling in which the following reduction ratios are applied. The effect is saturated even if a rolling reduction of more than 60% is applied. On the other hand, at a timing that exceeds 10 seconds after casting, the temperature difference between the surface layer portion and the inside of the cast slab becomes small, and the effect of refining γ grains is significantly diminished.

その後、鋳片は、900〜550℃の温度域において、50℃/s
以上の冷却速度で冷却された後、650℃以下で巻き取ら
れる。これらの条件が満たされないと、粒界に炭化物が
析出して、材料を酸洗したときに粒界腐食を生じ、製品
の表面光沢を損なう。
After that, the slab is 50 ℃ / s in the temperature range of 900 ~ 550 ℃.
After being cooled at the above cooling rate, it is wound up at 650 ° C or lower. If these conditions are not met, carbides will precipitate at the grain boundaries, causing intergranular corrosion when the material is pickled and impairing the surface gloss of the product.

熱延板焼鈍は、950℃以上の温度で行い、再結晶を進行
させる。特に温度と時間を制御し平均γ粒径が50μmを
越えないように焼鈍を行う。一方、熱延板焼鈍後の冷却
は、焼鈍中にδ−Feが鋳片段階より減少するために、δ
/γ界面に析出するCr炭化物の析出が遅れ、その結果鋳
片や熱延板の冷却より遅くできるためCr炭化物析出域の
冷却速度を10℃/s以上とした。
The hot-rolled sheet annealing is performed at a temperature of 950 ° C. or higher to promote recrystallization. In particular, the temperature and time are controlled and annealing is performed so that the average γ grain size does not exceed 50 μm. On the other hand, cooling after hot-rolled sheet annealing is because δ-Fe decreases during annealing from the slab stage,
Since the precipitation of Cr carbide precipitated at the / γ interface is delayed, and as a result, it can be slower than the cooling of the slab and the hot rolled sheet, the cooling rate in the Cr carbide precipitation region was set to 10 ° C / s or more.

(実施例) 実施例1 第1表に示す、18Cr−8Ni鋼を基本とする種々の成分のC
r−Ni系ステンレス鋼を溶製した。凝固の初相をδ相と
すべく、 δ−Fe.cal(%)=3(Cr+1.5Si+Mo+Nb+Ti) −2.8(Ni+1/2Mn+1/2Cu)−84(C+N)−19.8(%) の関係に従って、第2表に示すように、δ−Fe.cal
(%)を−3.55%から7.81%まで変化させた。これらの
溶鋼を、内部水冷方式の垂直型双ロール連続鋳造機によ
って、1.6〜7.5mmの間の種々の厚さの鋳片を鋳造した。
鋳造機直下からロール冷却や水スプレー冷却を適用して
鋳片を冷却し、復熱を防止した。1300〜1100℃の温度域
において、120℃/sを超える平均冷却速度が得られた。
(Example) Example 1 C of various components based on 18Cr-8Ni steel shown in Table 1
r-Ni stainless steel was melted. According to the relation of δ−Fe.cal (%) = 3 (Cr + 1.5Si + Mo + Nb + Ti) −2.8 (Ni + 1 / 2Mn + 1 / 2Cu) −84 (C + N) -19.8 (%), the first phase of solidification should be δ phase. As shown in Table 2, δ-Fe.cal
(%) Was changed from -3.55% to 7.81%. These molten steels were cast into slabs of various thicknesses between 1.6 and 7.5 mm by an internal water-cooled vertical twin roll continuous casting machine.
Roll cooling and water spray cooling were applied from directly below the casting machine to cool the slab and prevent recuperation. The average cooling rate of over 120 ℃ / s was obtained in the temperature range of 1300〜1100 ℃.

次いで、鋳片を、鋳造後8秒間以内に1100〜950℃の温
度域で熱延圧延した。このときの圧下率は、10%程度か
ら50%程度までの間であった(第2表)。その後、鋳片
を900〜550℃の間を60℃/s以上の冷却速度で冷却し、60
0℃以下で巻き取った。
Then, the slab was hot-rolled within a temperature range of 1100 to 950 ° C. within 8 seconds after casting. The rolling reduction at this time was between about 10% and about 50% (Table 2). After that, the slab is cooled between 900 and 550 ℃ at a cooling rate of 60 ℃ / s or more,
It was wound up at 0 ° C or lower.

比較材は、900〜550℃の間の冷却が不十分で、750℃程
度の高温で巻き取ったものもある。
The comparative material was insufficiently cooled between 900 and 550 ° C, and some of the comparative materials were wound at a high temperature of about 750 ° C.

然る後、材料を酸洗、デスケーリングして冷間圧延した
後、通常の焼鈍域は光輝焼鈍した。
After that, the material was pickled, descaled, cold-rolled, and then bright-annealed in the usual annealing region.

こうして得られた製品の表面性状を調査した。特に、製
品表面のローピング高さと光沢に注目した。第2表に示
すように、本実施例に示したものは、δフェライトを活
用して、鋳片でのγ相の晶出、析出を低温化したこと
で、その後の鋳片の冷却や熱間圧延効果も加わって、何
れも優れた表面性状を示した。
The surface properties of the products thus obtained were investigated. Particular attention was paid to the roping height and gloss of the product surface. As shown in Table 2, in the example shown in the present example, δ ferrite was utilized to lower the temperature of crystallization and precipitation of the γ phase in the slab, thereby cooling and heat the slab thereafter. In addition to the effect of hot rolling, all of them showed excellent surface properties.

一方、比較法では、δフェライトの効果がなくかつ、鋳
片の冷却も不足で、巻き取り温度も高くその結果、製品
表面のローピングが大きく、表面光沢も不良であった。
On the other hand, in the comparative method, the effect of δ-ferrite was not obtained, the slab was insufficiently cooled, and the winding temperature was high. As a result, the product surface had a large roping and the surface gloss was poor.

(発明の効果) 本発明は、以上述べたように構成しかつ、作用せしめる
ようにしたから、製品厚さに近い厚さの薄帯を連続鋳造
によって直接的に得る簡潔なプロセスで、表面品質と材
質が優れたCr−Ni系ステンレス薄鋼板を得ることができ
る。
(Advantages of the Invention) Since the present invention is configured and operated as described above, a simple process for directly obtaining a thin ribbon having a thickness close to the product thickness by continuous casting, It is possible to obtain a Cr-Ni-based stainless steel sheet with excellent material.

【図面の簡単な説明】[Brief description of drawings]

第1図は、双ロール(水冷)式連続鋳造機によってCr−
Ni系ステンレス鋼薄帯を鋳造するときの、薄帯の温度・
時間関係を示す図、第2図は、Fe−Cr−Ni三元系平衡状
態図におけるCr eq+Ni eq≒30%相当部の断面状態図、
第3図(a)〜(c)はδ−Fe.cal(%)を種々変えた
成分系の溶鋼を連続鋳造して2mm厚さの鋳片としたもの
の組織を比較して示す金属顕微鏡写真、第4図は、δ−
Fe.cal(%)を1%程度にして鋳造し冷却した鋳片に、
1100℃で熱間圧延を施したときの圧下率と、その後デス
ケーリングし冷間圧延を施したときの圧下率が、製品表
面のローピング高さに及ぼす影響を示す図である。
Fig. 1 shows Cr-using a twin roll (water cooling) type continuous casting machine.
Temperature of ribbon when casting Ni-based stainless steel ribbon
Fig. 2 is a diagram showing a time relationship, Fig. 2 is a sectional state diagram of a portion corresponding to Cr eq + Ni eq ≈ 30% in the Fe-Cr-Ni ternary system equilibrium state diagram,
FIGS. 3 (a) to 3 (c) are metal micrographs showing a comparison of the structures of molten steels of various component types with various δ-Fe.cal (%) continuously cast into 2 mm thick slabs. , FIG. 4 shows δ−
Fe.cal (%) to about 1% and cast and cooled,
It is a figure which shows the influence which the rolling reduction at the time of hot-rolling at 1100 degreeC, and the rolling reduction at the time of performing descaling and cold rolling after that on the roping height of a product surface.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 末広 利行 山口県光市大字島田3434番地 新日本製鐵 株式會社光製鐵所内 (56)参考文献 特開 昭63−421(JP,A) 特開 昭60−224715(JP,A) 特開 昭60−255921(JP,A) 特公 昭63−27407(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshiyuki Suehiro 3434 Shimada, Hikari City, Yamaguchi Pref. Nippon Steel Co., Ltd. Inside the Hikari Works, Ltd. (56) JP-A-60-224715 (JP, A) JP-A-60-255921 (JP, A) JP-B-63-27407 (JP, B2)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】18%Cr−8%Ni鋼に代表されるCr−Ni系ス
テンレス鋼を、鋳型壁面が鋳片に同期して移動する連続
鋳造機によって、凝固時の冷却速度を100℃/s以上とし
て厚さ10mm以下の薄帯状鋳片に連続鋳造し、900℃以上
の温度域で60%以下の熱間加工を施して、該鋳片内部の
再結晶を進めてγ粒を微細化し平均γ粒径を50μm以下
としたのち、900℃から550℃の範囲を50℃/s以上の冷却
速度で冷却し、650℃以下の温度域で巻取り、以後常法
により冷延板とすることを特徴とする表面品質と材質が
優れたCr−Ni系ステンレス薄鋼板の製造法。
Claims: 1. A Cr-Ni type stainless steel represented by 18% Cr-8% Ni steel is cooled by a continuous casting machine in which the wall surface of the mold moves in synchronism with the slab and the cooling rate during solidification is 100 ° C / s or more continuously cast into a thin strip-shaped slab having a thickness of 10 mm or less, and hot-worked at 60% or less in a temperature range of 900 ° C. or more, and promotes recrystallization inside the slab to refine γ grains. After setting the average γ grain size to 50 μm or less, cool it in the range of 900 ° C to 550 ° C at a cooling rate of 50 ° C / s or more, wind it in the temperature range of 650 ° C or less, and then form a cold rolled sheet by a conventional method. A method of manufacturing Cr-Ni-based stainless steel sheet with excellent surface quality and material.
【請求項2】18%Cr−8%Ni鋼に代表されるCr−Ni系ス
テンレス鋼を、鋳型壁面が鋳片に同期して移動する連続
鋳造機によって、凝固時の冷却速度を100℃/s以上とし
て厚さ10mm以下の薄帯状鋳片に連続鋳造し、凝固後は該
鋳片の復熱を起こさせず可及的に高温域から冷却を開始
して1100℃までの平均冷却速度を鋳片表面温度で100℃/
s以上としてγ粒の成長を抑制しつつ鋳片表面部と内部
間に温度差の存する鋳造後10秒間以内に900℃以上の温
度域で60%以下の熱間加工を施して、鋳片内部の再結晶
を進めて鋳片のγ粒を微細化し平均γ粒径を50μm以下
としたのち、900℃から550℃の範囲を50℃/s以上の冷却
速度で冷却し、650℃以下の温度域で巻取り、以後常法
により冷延板とすることを特徴とする表面品質と材質が
優れたCr−Ni系ステンレス薄鋼板の製造法。
2. A Cr-Ni type stainless steel represented by 18% Cr-8% Ni steel is cooled by a continuous casting machine in which the wall surface of the mold moves in synchronism with the slab and the cooling rate during solidification is 100 ° C. / Continuously cast into a strip-shaped slab having a thickness of 10 mm or less as s or more, and after solidification, the average cooling rate up to 1100 ° C. is started by cooling from the high temperature region without causing reheat of the slab. 100 ° C / at surface temperature
s or more, while suppressing the growth of γ grains, there is a temperature difference between the surface and the inside of the slab. Within 10 seconds after casting, 60% or less hot working is performed in the temperature range of 900 ° C or more, After refining the γ grains of the slab to make the average γ grain size 50 μm or less, cool it in the range of 900 ° C to 550 ° C at a cooling rate of 50 ° C / s or more, A method for producing a Cr-Ni-based stainless steel sheet having excellent surface quality and material, which is characterized by winding in a zone and then forming a cold-rolled sheet by a conventional method.
【請求項3】18%Cr−8%Ni鋼に代表されるCr−Ni系ス
テンレス鋼を、鋳型壁面が鋳片に同期して移動する連続
鋳造機によって、凝固時の冷却速度を100℃/s以上とし
て厚さ10mm以下の薄帯状鋳片に連続鋳造し、δ−Fe.cal
(%)−3(Cr+1.5Si+Mo+Nb+Ti)−2.8(Ni+0.5M
n+0.5Cu)−84(C+N)−19.8で定義されるδ−Fe.c
al(%)を−2〜10%として凝固の初晶をδ相とすると
ともにγ相の晶出や変態の開始温度を低くして凝固途中
からのγ粒の成長を抑制し、凝固後は該鋳片の復熱を起
こさせず可及的に高温域から冷却を開始して1100℃まで
の平均冷却速度を鋳片表面温度で100℃/s以上としてγ
粒の成長を抑制しつつ鋳片表面部と内部間に温度差の存
する鋳造後10秒間以内に900℃以上の温度域で60%以下
の熱間加工を施して、鋳片内部の再結晶を進めて鋳片の
γ粒を微細化し平均γ粒径を50μm以下としたのち、90
0℃から550℃の範囲を50℃/s以上の冷却速度で冷却し、
650℃以下の温度域で巻取り、以後常法により冷延板と
することを特徴とする表面品質と材質が優れたCr−Ni系
ステンレス薄鋼板の製造法。
3. A continuous casting machine in which a Cr-Ni-based stainless steel typified by 18% Cr-8% Ni steel moves in synchronization with a slab, and the cooling rate during solidification is 100 ° C. / s-Fe.cal
(%)-3 (Cr + 1.5Si + Mo + Nb + Ti) -2.8 (Ni + 0.5M
n + 0.5Cu) -84 (C + N) -19.8 defined as δ-Fe.c
al (%) is set to -2 to 10% to set the primary crystal of solidification as the δ phase, and the crystallization of the γ phase and the start temperature of transformation are lowered to suppress the growth of γ grains during solidification, and after solidification, The average cooling rate up to 1100 ° C by starting the cooling from the highest possible temperature range without causing reheat of the slab and the average slab surface temperature of 100 ° C / s or more γ
There is a temperature difference between the surface of the slab and the inside of the slab, while suppressing the growth of grains. Within 10 seconds after casting, 60% or less hot working is performed in the temperature range of 900 ° C or more to recrystallize the inside of the slab. We proceeded to refine the γ grains of the cast slab to make the average γ grain size 50 μm or less, then 90
Cool in the range of 0 ℃ to 550 ℃ at a cooling rate of 50 ℃ / s or more,
A method for producing a Cr-Ni-based stainless steel sheet having excellent surface quality and material, which is characterized by rolling in a temperature range of 650 ° C or less and then forming a cold-rolled sheet by a conventional method.
【請求項4】18%Cr−8%Ni鋼に代表されるCr−Ni系ス
テンレス鋼を、鋳型壁面が鋳片に同期して移動する連続
鋳造機によって、凝固時の冷却速度を100℃/s以上とし
て厚さ10mm以下の薄帯状鋳片に連続鋳造し、900℃以上
の温度域で60%以下の熱間加工を施し、次いで900℃か
ら550℃の範囲を50℃/s以上の冷却速度で冷却し、650℃
以下の温度域で巻取った後、平均γ粒径が50μm以下と
なるように950℃以上で温度と時間を制御する熱延板焼
鈍を施し、次いで10℃/s以上の冷却速度で冷却し、以後
常法により冷延板とすることを特徴とする表面品質と材
質が優れたCr−Ni系ステンレス薄鋼板の製造法。
4. A continuous casting machine in which a Cr-Ni-based stainless steel typified by 18% Cr-8% Ni steel moves in synchronization with a slab, and the cooling rate during solidification is 100 ° C. / s or more, it is continuously cast into a strip-shaped slab with a thickness of 10 mm or less, hot-worked at 60% or less in a temperature range of 900 ℃ or more, and then cooled in the range of 900 ℃ to 550 ℃ to 50 ℃ / s or more. Cooling at speed, 650 ℃
After winding in the following temperature range, hot-rolled sheet annealing that controls the temperature and time at 950 ° C or higher is performed so that the average γ grain size is 50 μm or less, and then cooled at a cooling rate of 10 ° C / s or higher. A method for producing a Cr-Ni-based stainless steel sheet having excellent surface quality and material, which is characterized by forming a cold-rolled sheet by a conventional method.
【請求項5】18%Cr−8%Ni鋼に代表されるCr−Ni系ス
テンレス鋼を、鋳型壁面が鋳片に同期して移動する連続
鋳造機によって、凝固時の冷却速度を100℃/s以上とし
て厚さ10mm以下の薄帯状鋳片に連続鋳造し、凝固後は該
鋳片の復熱を起こさせず可及的に高温域から冷却を開始
して1100℃までの平均冷却速度を鋳片表面温度で100℃/
s以上としてγ粒の成長を抑制しつつ鋳片表面部と内部
間に温度差の存する鋳造後の10秒間以内に900℃以上の
温度域で60%以下の熱間加工を施し、次いで900℃から5
50℃の範囲を50℃/s以上の冷却速度で冷却し、650℃以
下の温度域で巻取った後、平均γ粒径が50μm以下とな
るように950℃以上で温度と時間を制御する熱延板焼鈍
を施し、次いで10℃/s以上の冷却速度で冷却し、以後常
法により冷延板とすることを特徴とする表面品質と材質
が優れたCr−Ni系ステンレス薄鋼板の製造法。
5. A cooling machine for solidifying the cooling rate of Cr-Ni stainless steel typified by 18% Cr-8% Ni steel by a continuous casting machine in which the wall surface of the mold moves in synchronization with the slab. Continuously cast into a strip-shaped slab having a thickness of 10 mm or less as s or more, and after solidification, the average cooling rate up to 1100 ° C. is started by cooling from the high temperature region without causing reheat of the slab. 100 ° C / at surface temperature of slab
s or more, while suppressing the growth of γ grains, there is a temperature difference between the surface and the inside of the slab. Within 10 seconds after casting, 60% or less hot working is performed in the temperature range of 900 ° C or more, and then 900 ° C. From 5
After cooling the range of 50 ℃ at a cooling rate of 50 ℃ / s or higher, and winding it in the temperature range of 650 ℃ or lower, control the temperature and time at 950 ℃ or higher so that the average γ particle size becomes 50μm or lower. Manufacture of Cr-Ni-based stainless steel sheet with excellent surface quality and material, which is characterized by performing hot-rolled sheet annealing, then cooling at a cooling rate of 10 ° C / s or more, and then forming a cold-rolled sheet by a conventional method. Law.
【請求項6】18%Cr−8%Ni鋼に代表されるCr−Ni系ス
テンレス鋼を、鋳型壁面が鋳片に同期して移動する連続
鋳造機によって、凝固時の冷却速度を100℃/s以上とし
て厚さ10mm以下の薄帯状鋳片に連続鋳造し、δ−Fe.cal
(%)=3(Cr+1.5Si+Mo+Nb+Ti)−2.8(Ni+0.5M
n+0.5Cu)−84(C+N)−19.8で定義されるδ−Fe.c
al(%)を−2〜10%として凝固の初晶をδ相とすると
ともにγ相の晶出や変態の開始温度を低くして凝固途中
からのγ粒の成長を抑制し、凝固後は該鋳片の復熱を起
こさせず可及的に高温域から冷却を開始して1100℃まで
の平均冷却速度を鋳片表面温度で100℃/s以上としてγ
粒の成長を抑制しつつ鋳片表面部と内部間に温度差の存
する鋳造後10秒間以内に900℃以上の温度域で60%以下
の熱間加工を施し、次いで900℃から550℃の範囲を50℃
/s以上の冷却速度で冷却し、650℃以下の温度域で巻取
った後、平均γ粒径が50μm以下となるように950℃以
上で温度と時間を制御する熱延板焼鈍を施し、次いで10
℃/s以上の冷却速度で冷却し、以後常法により冷延板と
することを特徴とする表面品質と材質が優れたCr−Ni系
ステンレス薄鋼板の製造法。
6. A continuous casting machine in which a Cr-Ni-based stainless steel typified by 18% Cr-8% Ni steel moves in synchronization with a slab, and the cooling rate during solidification is 100 ° C. / s-Fe.cal
(%) = 3 (Cr + 1.5Si + Mo + Nb + Ti) -2.8 (Ni + 0.5M
n + 0.5Cu) -84 (C + N) -19.8 defined as δ-Fe.c
al (%) is set to -2 to 10% to set the primary crystal of solidification as the δ phase, and the crystallization of the γ phase and the start temperature of transformation are lowered to suppress the growth of γ grains during solidification, and after solidification, The average cooling rate up to 1100 ° C by starting the cooling from the highest possible temperature range without causing reheat of the slab and the average slab surface temperature of 100 ° C / s or more γ
There is a temperature difference between the surface of the slab and the inside of the slab while suppressing grain growth. Within 10 seconds after casting, 60% or less hot working is performed in a temperature range of 900 ° C or higher, then in the range of 900 ° C to 550 ° C. To 50 ° C
After cooling at a cooling rate of / s or more and winding in a temperature range of 650 ° C or less, hot-rolled sheet annealing is performed to control the temperature and time at 950 ° C or more so that the average γ grain size is 50 μm or less, Then 10
A method for producing a Cr-Ni-based stainless steel sheet having excellent surface quality and material, which is characterized by cooling at a cooling rate of ℃ / s or more and then forming a cold-rolled sheet by a conventional method.
JP22147188A 1988-07-08 1988-09-06 Method for producing Cr-Ni stainless steel sheet with excellent surface quality and material Expired - Fee Related JPH0730406B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1019900700496A KR930000089B1 (en) 1988-07-08 1989-07-08 Process for production of cr-ni type stainless sheet having excellent surface properties and material quality
EP89908266A EP0378705B2 (en) 1988-07-08 1989-07-10 PROCESS FOR PRODUCING THIN Cr-Ni STAINLESS STEEL SHEET EXCELLENT IN BOTH SURFACE QUALITY AND QUALITY OF MATERIAL
US07/474,772 US5030296A (en) 1988-07-08 1989-07-10 Process for production of Cr-Ni type stainless steel sheet having excellent surface properties and material quality
PCT/JP1989/000692 WO1990000454A1 (en) 1988-07-08 1989-07-10 PROCESS FOR PRODUCING THIN Cr-Ni STAINLESS STEEL SHEET EXCELLENT IN BOTH SURFACE QUALITY AND QUALITY OF MATERIAL
DE68925578T DE68925578T3 (en) 1988-07-08 1989-07-10 METHOD FOR PRODUCING THIN SHEETS FROM CR-NI AND STAINLESS STEEL WITH EXCELLENT PROPERTIES, AND SURFACE QUALITY AND MATERIAL QUALITY
ES8903028A ES2016153A6 (en) 1988-09-06 1989-09-05 Process for manufacturing stainless steel sheet of the Cr- Ni type which has excellent surface properties and material quality
KR1019900700496A KR900701434A (en) 1988-07-08 1990-03-08 Manufacturing method of Cr-Ni stainless steel sheet with excellent surface quality and material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP63-169094 1988-07-08
JP16909488 1988-07-08

Publications (2)

Publication Number Publication Date
JPH02133528A JPH02133528A (en) 1990-05-22
JPH0730406B2 true JPH0730406B2 (en) 1995-04-05

Family

ID=15880207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22147188A Expired - Fee Related JPH0730406B2 (en) 1988-07-08 1988-09-06 Method for producing Cr-Ni stainless steel sheet with excellent surface quality and material

Country Status (1)

Country Link
JP (1) JPH0730406B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5281284A (en) * 1991-08-28 1994-01-25 Nippon Steel Corporation Process for producing thin sheet of Cr-Ni-based stainless steel having excellent surface quality and workability
WO1993020966A1 (en) * 1992-04-17 1993-10-28 Nippon Steel Corporation Thin-strip cast piece of austenitic stainless steel, thin-strip cold-rolled steel plate and method of manufacturing the same
EP0706845B2 (en) * 1994-03-25 2006-08-09 Nippon Steel Corporation Method of production of thin strip slab
EP0760397B1 (en) * 1995-04-14 2002-08-28 Nippon Steel Corporation Equipment for manufacturing stainless steel strip
BR9606325A (en) * 1995-04-14 1997-09-16 Nippon Steel Corp Apparatus for the production of a stainless steel strip
JP2750096B2 (en) * 1995-05-08 1998-05-13 新日本製鐵株式会社 Strip continuous casting hot rolling heat treatment pickling equipment and method for producing pickling coil
JPH09194947A (en) * 1996-01-17 1997-07-29 Nippon Steel Corp Hot rolled chromium-nickel stainless steel plate minimal in anisotropy and its production
JP3709003B2 (en) * 1996-01-26 2005-10-19 新日本製鐵株式会社 Thin plate continuous casting method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224715A (en) * 1984-04-23 1985-11-09 Nippon Steel Corp Manufacture of hot rolled thin steel strip
JPS60255921A (en) * 1984-05-31 1985-12-17 Sumitomo Metal Ind Ltd Manufacture of hot rolled austenitic stainless steel strip
JPH0730404B2 (en) * 1986-06-19 1995-04-05 新日本製鐵株式会社 New production method of austenitic stainless steel sheet with excellent surface characteristics and materials
JPH0764688B2 (en) * 1986-07-17 1995-07-12 日本バイエルアグロケム株式会社 Agro-horticultural germicidal composition

Also Published As

Publication number Publication date
JPH02133528A (en) 1990-05-22

Similar Documents

Publication Publication Date Title
JPH0730406B2 (en) Method for producing Cr-Ni stainless steel sheet with excellent surface quality and material
JPH03100124A (en) Production of cr-ni stainless steel sheet excellent in surface quality
US5030296A (en) Process for production of Cr-Ni type stainless steel sheet having excellent surface properties and material quality
EP0378705B1 (en) PROCESS FOR PRODUCING THIN Cr-Ni STAINLESS STEEL SHEET EXCELLENT IN BOTH SURFACE QUALITY AND QUALITY OF MATERIAL
KR950005320B1 (en) Process for producing thin sheet of cr-ni based stainless steel having excellent surface quality and workability
EP0463182B1 (en) METHOD OF MANUFACTURING Cr-Ni STAINLESS STEEL SHEET EXCELLENT IN SURFACE QUALITY AND MATERIAL THEREOF
JP2512650B2 (en) Method for producing Cr-Ni type stainless steel thin plate excellent in material and surface quality
JPH0730407B2 (en) Method for producing Cr-Ni type stainless steel thin plate with excellent surface quality
JPH0730405B2 (en) Method for producing Cr-Ni type stainless steel thin plate with excellent surface quality
JP2532314B2 (en) Method for producing Cr-Ni type stainless steel thin plate excellent in surface quality and workability
JP3222057B2 (en) Method for producing Cr-Ni stainless steel hot-rolled steel sheet and cold-rolled steel sheet excellent in surface quality and workability
JPH02166233A (en) Manufacture of cr-series stainless steel thin sheet using thin casting method
JPH0788534B2 (en) Method for producing Cr-Ni type stainless steel thin plate with excellent surface quality
JPH0670253B2 (en) Method for producing Cr-Ni type stainless steel thin plate having excellent surface quality and material
JPH02258931A (en) Production of cr stainless steel sheet by thin-wall casting method
KR930000089B1 (en) Process for production of cr-ni type stainless sheet having excellent surface properties and material quality
JP2768527B2 (en) Method for producing thin Cr-Ni stainless steel sheet with excellent workability
JPH0559446A (en) Production of cr-ni stainless steel sheet excellent in surface quality and workability
JPH0796684B2 (en) Method for producing Cr-Ni type stainless steel thin plate with excellent surface quality
JPH02263930A (en) Production of cr-ni stainless steel sheet excellent in surface quality
JPH0342150A (en) Production of cr-ni stainless steel sheet having excellent surface quality
WO1990000454A1 (en) PROCESS FOR PRODUCING THIN Cr-Ni STAINLESS STEEL SHEET EXCELLENT IN BOTH SURFACE QUALITY AND QUALITY OF MATERIAL
JPH02263929A (en) Production of cr-ni stainless steel sheet excellent in surface quality
JP2730802B2 (en) Method for producing thin Cr-Ni stainless steel sheet with excellent workability
JPH0796685B2 (en) Method for producing Cr-Ni series stainless steel thin plate with excellent surface quality and material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees