JPH02133528A - Production of cr-ni stainless steel sheet having excellent surface quality and material quality - Google Patents

Production of cr-ni stainless steel sheet having excellent surface quality and material quality

Info

Publication number
JPH02133528A
JPH02133528A JP22147188A JP22147188A JPH02133528A JP H02133528 A JPH02133528 A JP H02133528A JP 22147188 A JP22147188 A JP 22147188A JP 22147188 A JP22147188 A JP 22147188A JP H02133528 A JPH02133528 A JP H02133528A
Authority
JP
Japan
Prior art keywords
slab
less
cooling rate
temperature
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22147188A
Other languages
Japanese (ja)
Other versions
JPH0730406B2 (en
Inventor
Masanori Ueda
上田 全紀
Masayuki Abe
雅之 阿部
Hidehiko Sumitomo
住友 秀彦
Toshiyuki Suehiro
末広 利行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to KR1019900700496A priority Critical patent/KR930000089B1/en
Priority to DE68925578T priority patent/DE68925578T3/en
Priority to EP89908266A priority patent/EP0378705B2/en
Priority to US07/474,772 priority patent/US5030296A/en
Priority to PCT/JP1989/000692 priority patent/WO1990000454A1/en
Priority to ES8903028A priority patent/ES2016153A6/en
Priority to KR1019900700496A priority patent/KR900701434A/en
Publication of JPH02133528A publication Critical patent/JPH02133528A/en
Publication of JPH0730406B2 publication Critical patent/JPH0730406B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To produce the title stainless steel sheet having excellent surface quality and material quality with the simple process by continuously casting a Cr-Ni stainless steel to a thin strip-like ingot under specific conditions, then subjecting the ingot to hot working to form the finer recrystal grains, coiling the ingot after cooling and subjecting the same to cold rolling. CONSTITUTION:The Cr-Ni stainless steel represented by 18% Cr-8% Ni steel is continu ously cast to the thin strip-like ingot having <=10mm thickness by a continuous casting machine in which the wall surfaces of the casting mold moves in synchronization with the ingot while the cooling rate at the time of solidifying is kept at >=100 deg.C/sec, by which the smaller gamma grains are formed. The ingot is then subjected to <=60% hot rolling in a >=900 deg.C temp. region to accelerate the recrystallization in the ingot and to form the finer gamma grains until <=50mu average gamma grain size is attained. The ingot is further cooled at >=50 deg.C/sec cooling rate in a 900 to 500 deg.C range and after the ingot is coiled in a <=650 deg.C temp. region, the ingot is made into a cold rolled sheet by the conventional method. The finer structure is formed in this way and the Cr-Ni stainless steel sheet having the excellent surface quality and the material quality is obtd. in this way.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、鋳片と鋳型内壁面間に相対速度差のない、所
謂同期式連続鋳造プロセスによって鋳片厚さを製品厚さ
に近いサイズとしてCr−Ni系ステンレス鋼薄板を製
造する方法において、鋳片段階から組織を微細化して優
れた表面品質と材質を有するCr−Ni系ステンレス薄
鋼板を製造する方法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention uses a so-called synchronous continuous casting process in which there is no relative speed difference between the slab and the inner wall surface of the mold, so that the thickness of the slab can be reduced to a size close to the product thickness. The present invention relates to a method for manufacturing a Cr-Ni stainless steel sheet having excellent surface quality and material quality by refining the structure from the slab stage.

(従来の技術) 従来、連続鋳造法を用いてステンレス鋼薄板を製造する
には、鋳型を鋳造方向に振動させながら厚さ100mm
以上の鋳片にV?造し、得られた鋳片の表面手入れを行
い、加熱炉において1000℃以上に加熱した後、粗圧
延機および仕」二圧延機列からなるホットストリンブミ
ルによって熱間圧延を施し、厚さ数mmのホットストリ
ップとしていた。
(Conventional technology) Conventionally, in order to manufacture stainless steel thin plates using the continuous casting method, the mold is vibrated in the casting direction and the thickness is 100 mm.
V on the above slab? The obtained slab is surface-treated, heated to 1,000°C or higher in a heating furnace, and then hot-rolled in a hot string mill consisting of a rough rolling mill and two finishing mill rows. It was a hot strip of several mm.

こうして得られたホットストリップを冷間圧延するに際
しては、最終製品に要求される形状(平坦さ)、材質、
表面性状を確保するために、強い熱間加工を受けたホン
トストリップを軟化させるための熱延板焼鈍を行うとと
もに、表面のスゲール等を酸洗工程の後に研削によって
除去していた。
When cold rolling the hot strip obtained in this way, the shape (flatness), material, and
In order to secure the surface quality, hot-rolled sheets were annealed to soften the Honstrip, which had undergone intense hot processing, and surface sgale and the like were removed by grinding after the pickling process.

この従来のプロセスにおいては、長大な熱間圧延設備で
、材料の加熱および加工のために多大のエネルギを必要
とし、生産性の面でも優れた製造プロセスとは言い難か
った。また、最8!製品は、100mm以上の厚さの鋳
片から多くの加工が加えられて製造されるために集合m
織が発達し、製品に、ユーザーにおいてプレス加工等を
加えるときはその異方性を考慮することが必要となる等
使用上の制約も多かった。
This conventional process requires a large amount of energy to heat and process the material in a long hot rolling facility, and cannot be said to be an excellent manufacturing process in terms of productivity. Also, the highest 8! The product is manufactured from cast slabs with a thickness of 100 mm or more, which undergoes many processes, so it is difficult to assemble.
With the development of textiles, there were many restrictions on use, such as the need to consider the anisotropy when applying press processing etc. to the product by the user.

処で、100mm以上の厚さの鋳片をホラ1−ストリッ
プに圧延゛するために、長大な熱間圧延設備と多大なエ
ネルギ、圧延動力を必要とするという問題を解決すべく
、最近、連続鋳造の過程でホットストリップと同等か或
はそれに近い厚さの鋳片(薄帯)を得るプロセスの研究
が進められている。
Recently, in order to solve the problem that rolling slabs with a thickness of 100 mm or more into flat strips requires a long hot rolling facility and a large amount of energy and rolling power, a continuous rolling method has been recently developed. Research is underway on a process for obtaining slabs (thin strips) with a thickness equal to or close to that of hot strips during the casting process.

たとえば、「鉄と鋼J′85、A197〜′85、A2
56において特集された論文に、ホットストリップを連
続鋳造によって直接的に得るプロセスが開示されている
。このような連続鋳造プロセスにあっては、得ようとす
る鋳片(ストリップ)のゲージが1〜10mmの水準で
あるときはツインドラム方式が、また、鋳片のゲージが
20〜b水準であるときはツインベルト方式が検討され
ている。
For example, "Tetsu to Hagane J'85, A197~'85, A2
The article featured in 56 discloses a process for obtaining hot strip directly by continuous casting. In such a continuous casting process, the twin drum method is used when the gauge of the strip to be obtained is 1 to 10 mm, and the twin drum method is used when the gauge of the strip to be obtained is 20 to B. A twin belt system is currently being considered.

しかしながら、これらの連続鋳造プロセスにおいては鋳
造段階にも未だ問題があるとされ、製品の材質や表面性
状に関して問題が解決したという段階には至っていない
However, in these continuous casting processes, there are still problems at the casting stage, and the problems regarding the material and surface quality of the product have not yet been resolved.

(発明が解決しようとする課題) 新しいプロセスとして開発が進められている、ホットス
トリップと同等か或はそれに近い厚さの鋳片(薄帯)杏
連続鋳造によって得ることを前提トスルプロセスにおい
ては、鋳造から製品までの工程が簡略化されるために、
ステンレスFA製品の表面特性が、鋳片性状に敏感に影
響されることになる。即ち、優れた表面性状を有する製
品を得るためには、優れた鋳片を得る必要がある。
(Problem to be solved by the invention) In the tossle process, which is being developed as a new process, it is assumed that a slab (thin ribbon) having a thickness equal to or close to that of hot strip is obtained by continuous casting. In order to simplify the process from casting to products,
The surface properties of stainless steel FA products are sensitively affected by the properties of the slab. That is, in order to obtain a product with excellent surface properties, it is necessary to obtain an excellent slab.

本発明は、ステンレス鋼薄板製品に特有の光沢むらやロ
ービング現象と呼ばれる表面欠陥のないCr−Ni系ス
テンレス鋼薄板を得ることができる簡潔な製造プロセス
を提供することを目的としてなされた。
The present invention has been made with the object of providing a simple manufacturing process capable of obtaining a Cr--Ni stainless steel thin plate free of surface defects called uneven gloss and roving phenomenon that are characteristic of stainless steel thin plate products.

(課題を解決するための手段) 本発明の特徴とする処は、下記のとおりである。(Means for solving problems) The features of the present invention are as follows.

(1)18%Cr−8%Ni鋼に代表されるCr−Ni
系ステンレス鋼を、鋳型壁面が鋳片に同期して移動する
連続鋳造機によって、凝固時の冷却速度を100℃/S
以上として厚さ10m+n以下の薄帯状鋳片に連続鋳造
し、、900℃以上の温度域で60%以下の熱間加工を
施して、該鋳片内部の再結晶を進めて1粒を微細化し冷
間圧延前の平均γ粒径を50μm以下としたのち、90
0 ”Cから550 ℃の範囲を50℃/s以上の冷却
速度で冷却し、 650℃以下の温度域で巻取り、以後常法により冷延板
とすることを特徴とする表面品質と材質が優れたCr−
Ni系ステンレス薄鋼板の製造法。
(1) Cr-Ni represented by 18%Cr-8%Ni steel
A continuous casting machine, in which the mold wall surface moves in synchronization with the slab, cools the stainless steel at a cooling rate of 100°C/S during solidification.
As described above, a thin strip-shaped slab with a thickness of 10 m+n or less is continuously cast, and hot worked at a temperature of 900°C or higher to a depth of 60% or less to promote recrystallization inside the slab and refine each grain. After reducing the average γ grain size to 50 μm or less before cold rolling,
The surface quality and material are characterized by being cooled at a cooling rate of 50°C/s or more in the range from 0"C to 550°C, coiled in a temperature range of 650°C or less, and then made into a cold rolled sheet by a conventional method. Excellent Cr-
A method for manufacturing Ni-based thin stainless steel sheets.

(2)18%Cr−8%Ni1iに代表されるCr−N
i系ステンレス鋼を、鋳型壁面が鋳片に同期して移動す
る連続鋳造機によって、凝固時の冷却速度を100℃/
s以上としてjIさ10 mm以下の薄帯状鋳片に連続
鋳造し、凝固後は該鋳片の復熱を起こさせず可及的に高
温域から冷却を開始して1100℃までの平均冷却速度
を鋳片表面温度で100 ℃/S以上としてγ粒の成長
を抑制しつつ鋳片表面部と内部間に温度差の存する鋳造
後10秒間以内に900℃以上の温度域で60%以下の
熱間加工を施して、鋳片内部の再結晶を進めて鋳片のT
粒を微細化し冷間圧延前の平均1粒径を50μm以下と
したのち、900℃から550℃の範囲を50”C/ 
s以上の冷却速度で冷却し、650℃以下の温度域で巻
取り、以後常法により冷延板とすることを特徴とする表
面品質と材質が優れたCr−Ni系ステンレス薄鋼板の
製造法。
(2) Cr-N represented by 18%Cr-8%Ni1i
I-series stainless steel is cooled at a cooling rate of 100°C/100°C during solidification using a continuous casting machine in which the mold wall moves in synchronization with the slab.
Continuously cast into thin strip slabs with jI of 10 mm or less, and after solidification, start cooling from the high temperature range as much as possible without causing reheating of the slab, and average cooling rate up to 1100 ° C. The slab surface temperature is set at 100 °C/S or higher to suppress the growth of γ grains, and the temperature difference between the surface and the inside of the slab is 60% or lower within 10 seconds after casting in a temperature range of 900 °C or higher. Performing machining to promote recrystallization inside the slab and improve the T of the slab.
After refining the grains so that the average grain size before cold rolling is 50 μm or less, the grains are rolled at 50”C/
A method for producing a Cr-Ni stainless thin steel sheet with excellent surface quality and material quality, characterized by cooling at a cooling rate of s or more, coiling at a temperature of 650°C or less, and then forming a cold-rolled sheet by a conventional method. .

(3)18%Cr−8%N1fiに代表されるCr −
N i系ステンレス鋼を、鋳型壁面が鋳片に同期して移
動する連続鋳造機によって、凝固時の冷却速度を100
℃/ s以上として厚さ10mm以下の薄帯状鋳片に連
続鋳造し、δ−Fe、cal(χ)=3(Cr+1.5
Si+Mo+Nb+Ti)  2.8(Ni+0.5M
n+0.5Cu)  84(C+N)−19,8で定義
されるδ−Fe、cal(χ)を−2〜10%として凝
固の初晶をδ相とするとともにγ相の晶出や変態の開始
温度を低くして凝固途中からのγ粒の成長を抑制し、凝
固後は該鋳片の復熱を起こさせず可及的に高温域から冷
却を開始して1100℃までの平均冷却速度を鋳片表面
温度で100℃/s以上としてγ粒の成長を抑制しつつ
鋳片表面部と内部間に温度差の存する鋳造後10秒間以
内に900℃以上の温度域で60%以下の熱間加工を施
して、鋳片内部の再結晶を進めて鋳片の1粒を微細化し
冷間圧延前の平均1粒径を50μm以下としためち、9
00℃から550℃の範囲を50℃/ s以上の冷却速
度で冷却し、650℃以下の温度域で巻取り、以後常法
により冷延板とすることを特徴とする表面品質と材質が
優れたCr−Ni系ステンレス薄鋼板の製造法。
(3) Cr − represented by 18%Cr-8%N1fi
A continuous casting machine in which the mold wall moves in synchronization with the slab is used to reduce the cooling rate of Ni-based stainless steel to 100% during solidification.
℃/s or more into a thin strip slab with a thickness of 10 mm or less, δ-Fe, cal (χ) = 3 (Cr + 1.5
Si+Mo+Nb+Ti) 2.8(Ni+0.5M
n+0.5Cu) 84(C+N)-19,8 δ-Fe, cal(χ) is set to -2 to 10%, the primary crystal of solidification becomes the δ phase, and the crystallization and transformation of the γ phase starts. The growth of γ grains during solidification is suppressed by lowering the temperature, and after solidification, cooling is started from as high a temperature as possible without causing reheating of the slab, and the average cooling rate is increased to 1100℃. Hot heating of 60% or less in a temperature range of 900°C or higher within 10 seconds after casting where there is a temperature difference between the surface and inside of the slab while suppressing the growth of γ grains by setting the slab surface temperature to 100°C/s or higher. Processing is performed to advance recrystallization inside the slab to refine each grain of the slab so that the average grain size before cold rolling is 50 μm or less, 9
It has excellent surface quality and material quality, as it is cooled at a cooling rate of 50°C/s or more in the range from 00°C to 550°C, rolled up in a temperature range of 650°C or less, and then made into a cold-rolled sheet by a conventional method. A method for manufacturing a Cr-Ni stainless thin steel sheet.

(4)18%Cr−8%Ni1jlに代表されるCr−
Ni系ステンレス鋼を、鋳型壁面が鋳片に同期して移動
する連続鋳造機によって、凝固時の冷却速度を100℃
/s以上として厚さ10mm以下の薄帯状鋳片に連続鋳
造し、900℃以上の温度域で60%以下の熱間加工を
施し、次いで900 ”Cから550℃の範囲を50“
C/s以上の冷却速度で冷却し、650℃以下の温度域
で巻取った後、平均γ粒径が50tIm以下となるよう
に950℃以上で温度と時間を制御する熱延板焼鈍を施
し、次いで10℃/S以上の冷却速度で冷却し、以後常
法により冷延板とすることを特徴とする表面品質と材質
が優れたCr−Ni系ステンレス薄鋼板の製造法。
(4) Cr- represented by 18%Cr-8%Ni1jl
Ni-based stainless steel is cooled at a cooling rate of 100°C during solidification using a continuous casting machine in which the mold wall moves in synchronization with the slab.
/s or more into thin strip-shaped slabs with a thickness of 10 mm or less, subjected to hot working of 60% or less in a temperature range of 900 ℃ or higher, and then 50 '' in a temperature range of 900 '' to 550 ℃.
After cooling at a cooling rate of C/s or higher and coiling in a temperature range of 650°C or lower, hot-rolled sheet annealing is performed at 950°C or higher with controlled temperature and time so that the average γ grain size is 50tIm or lower. A method for producing a Cr-Ni stainless thin steel sheet with excellent surface quality and material quality, characterized by cooling at a cooling rate of 10° C./S or more and then forming a cold-rolled sheet by a conventional method.

(5)18%Cr−8%NiwAに代表されるCr−N
i系ステンレス鋼を、鋳型壁面が鋳片に同期して移動す
る連続鋳造機によって、凝固時の冷却速度を100℃/
s以上として厚さ10mm以下の薄帯状鋳片に連続鋳造
し、凝固後は該51片の復熱を起こさせず可及的に高温
域から冷却を開始して1100”Cまでの平均冷却速度
を鋳片表面温度で100℃/S以上としてγ粒の成長を
抑制しつつ鋳片表面部と内部間に温度差の存する鋳造後
10秒間以内に900℃以上の温度域で60%以下の熱
間加工を施し、次いで900℃から550℃の範囲を5
0”C/ s以上の冷却速度で冷却し、650℃以下の
温度域で巻取った後、平均1粒径が50μm以下となる
ように950℃以上で温度と時間を制御する熱延板焼鈍
を施し、次いで10 ℃/ s以上の冷却速度で冷却し
、以後常法により冷延板とすることを特徴とする表面品
質と材質が優れたCr−Ni系ステンレス薄鋼板の製造
法。
(5) Cr-N represented by 18%Cr-8%NiwA
I-series stainless steel is cooled at a cooling rate of 100°C/100°C during solidification using a continuous casting machine in which the mold wall moves in synchronization with the slab.
Continuously cast into thin strip slabs with a thickness of 10 mm or less as s or more, and after solidification, start cooling from the high temperature range as possible without causing reheating of the 51 pieces, and average cooling rate up to 1100"C. The surface temperature of the slab is set at 100℃/S or higher to suppress the growth of γ grains, and the temperature difference between the surface and the inside of the slab exists within 10 seconds after casting. Temperature processing is performed, and then the temperature range from 900°C to 550°C is
After cooling at a cooling rate of 0"C/s or higher and coiling at a temperature range of 650°C or lower, hot-rolled sheet annealing is performed by controlling temperature and time at 950°C or higher so that the average grain size is 50 μm or lower. A method for producing a Cr-Ni stainless thin steel sheet with excellent surface quality and material quality, characterized by subjecting the sheet to cold rolling, followed by cooling at a cooling rate of 10° C./s or more, and then forming a cold-rolled sheet by a conventional method.

(6)18%Cr−8%Ni鋼に代表されるCr−旧糸
ステンレス鋼を、鋳型壁面が鋳片に同期して移動する連
続鋳造機によって、凝固時の冷却速度を100℃/S以
上として厚さ10mm以下の薄帯状鋳片に連続鋳造し、
δ−Fe、cal(χ)=3(Cr+1.5Si十Mo
+Nb+Ti)  2.8(Ni+0.5Mn+0.5
Cu) −84(C+N)−19,8で定義されるδ−
Fe、cal(χ)を−2〜10%として凝固の初晶を
6相とするとともにγ相の晶出や変態の開始温度を低く
して凝固途中からの1粒の成長を抑制し、凝固後は該鋳
片の復熱を起こさせず可及的に高温域から冷却を開始し
て1100℃までの平均冷却速度を鋳片表面温度で10
0℃/S以上としてγ粒の成長を抑制しつつ鋳片表面部
と内部間に温度差の存する鋳造後10秒間以内に900
℃以上の温度域で60%以下の熱間加工を施し、次いで
900℃から550℃の範囲を50℃/S以上の冷却速
度で冷却し、650℃以下の温度域で巻取った後、平均
1粒径が50μm以下となるように950℃以上で温度
と時間を制御する熱延板焼鈍を施し、次いで10℃/s
以上の冷却速度で冷却し、以後常法により冷延板とする
ことを特徴とする表面品質と十オ質が優れたCr−Ni
系ステンレスFilJ鋼板の製造法。
(6) Using a continuous casting machine in which the mold wall surface moves in synchronization with the slab, Cr-old stainless steel, such as 18% Cr-8% Ni steel, is cooled at a cooling rate of 100°C/S or more during solidification. Continuously cast into thin strip slabs with a thickness of 10 mm or less,
δ-Fe, cal(χ)=3(Cr+1.5Si+Mo
+Nb+Ti) 2.8(Ni+0.5Mn+0.5
Cu) −84(C+N)−δ− defined as −19,8
By setting Fe, cal (χ) to -2 to 10%, the primary crystals for solidification are made into 6 phases, and the starting temperature for crystallization and transformation of the γ phase is lowered to suppress the growth of a single grain in the middle of solidification. After that, without causing reheating of the slab, start cooling from the high temperature range as possible, and increase the average cooling rate to 1100°C by 10% at the slab surface temperature.
900°C within 10 seconds after casting when there is a temperature difference between the surface and the inside of the slab while suppressing the growth of γ grains at 0°C/S or higher.
After hot working at a temperature of 60% or less in a temperature range of 650°C or higher, cooling at a cooling rate of 50°C/S or higher from 900°C to 550°C, and winding in a temperature range of 650°C or lower, the average Hot-rolled plate annealing is carried out at 950°C or higher, controlling the temperature and time so that the grain size is 50 μm or less, and then annealing is performed at 10°C/s.
Cr-Ni with excellent surface quality and tensile quality characterized by being cooled at the above cooling rate and then made into a cold rolled sheet by a conventional method.
A method for manufacturing stainless steel FilJ steel sheets.

以下に、本発明の詳細な説明する。The present invention will be explained in detail below.

5US304鋼を基本成分とする溶鋼を、内部水冷方式
の双ロール(ツインドラム)連続鋳造試験機によって鋳
造して2〜4mm厚さの薄帯とし、冷却して巻き取った
Molten steel containing 5US304 steel as a basic component was cast into a thin ribbon with a thickness of 2 to 4 mm using an internal water-cooled twin-roll (twin-drum) continuous casting machine, which was cooled and wound up.

こうして得られた鋳片(薄帯)を、デスケーリングした
後直接冷間圧延し、最終焼鈍し、酸洗して2B製品を得
た。これらの製品の表面性状を、従来の、溶鋼を連続鋳
造して100mm以上の厚さを有する鋳片とし、これを
再加熱後、ホットストリップミルによって熱間圧延し、
冷間圧延して得られた製品の表面性状と詳細に比較検討
した。
The thus obtained slab (thin ribbon) was descaled, directly cold rolled, finally annealed, and pickled to obtain a 2B product. The surface quality of these products can be improved by conventional continuous casting of molten steel into slabs with a thickness of 100 mm or more, which are then reheated and hot rolled using a hot strip mill.
A detailed comparison was made with the surface properties of products obtained by cold rolling.

その結果、溶鋼を、内部水冷方式の双ロール(ツインド
ラム)連続鋳造試験機によって鋳造して2〜4柵厚さの
薄帯とし、冷却して巻き取ったものをデスケーリング後
冷間圧延し、最終焼鈍し、酸洗して2B製品としたもの
は、次のような表面欠陥が発生ずる可能性があることが
判明した。
As a result, the molten steel was cast into a thin strip with a thickness of 2 to 4 bars using an internal water-cooled twin-roll (twin-drum) continuous casting machine, which was then cooled and wound, which was then descaled and cold-rolled. It has been found that the following surface defects may occur in 2B products that have been subjected to final annealing and pickling.

(1)  ロービングやオレンジビール・・・冷延時ま
たは製品加工時に表面に微細な凹凸を生じる。
(1) Roving and orange beer: Fine irregularities occur on the surface during cold rolling or product processing.

(2)光沢むら・・・鋳片(薄帯)巻取り中の材料の組
織鋭敏化や粒界酸化またはγ粒粗大化による光沢むらが
発生する。
(2) Unevenness in gloss: Unevenness in gloss occurs due to the sensitization of the structure of the material during winding of the slab (thin ribbon), grain boundary oxidation, or coarsening of γ grains.

これらの製品の表面性状に関する問題は、従来のプロセ
スではみられない、薄鋳片(薄帯)を直接、連続鋳造に
よって得る過程を含むプロセス固有の問題である。
Problems regarding the surface properties of these products are unique to the process, which does not occur in conventional processes, and involves the process of obtaining thin slabs (thin strips) directly by continuous casting.

発明者等は、これらの表面欠陥の原因を詳(■に検討し
た結果、冷間圧延前の材料のγ粒径が大きい場合や、鋳
片のCr炭化物析出温度域の冷却不充分の場合にこれら
の表面欠陥が顕著に生じることを解明した。
The inventors examined the causes of these surface defects in detail (■) and found that they occur when the γ grain size of the material before cold rolling is large or when the slab is insufficiently cooled in the Cr carbide precipitation temperature range. We found that these surface defects occur significantly.

こうして、ロービング対策としては、冷間圧延前の材料
の1粒径を粒度No、6以上、即ち50μm以下とする
ことが、また光沢むら対策としては、鋳片の高温域にお
ける冷却を制御することが、薄鋳片を直接、連続鋳造に
よって得る過程を含むプロセスを採るときに、望ましい
ことを明らかにした。
Thus, as a countermeasure against roving, it is necessary to set the grain size of the material before cold rolling to a grain size number of 6 or more, that is, 50 μm or less, and as a countermeasure against gloss unevenness, it is necessary to control the cooling of the slab in the high temperature range. However, it has been shown that it is desirable to employ a process that involves obtaining thin slabs directly by continuous casting.

以下、之等の対策について詳細に説明する。Below, these measures will be explained in detail.

冷間圧延用の材料として、1粒径が50μm以下の材料
とするだめの手段として、次のような種々の考え方があ
る。即ぢ、 1)薄鋳片そのものの1粒を小さくする、2)薄鋳片を
、鋳造に引続き熱間加工して、再結晶細粒化する、 3)薄鋳片を、冷間加工し、焼鈍して、再結晶細粒化す
る、 等である。勿論、1)、2)および3)それぞれ単独で
も有効であるが、1)、2)および3)を相互に組合せ
ると、格段に効果が大きくなることが判明した。
There are various ways of thinking as follows as a means of making a material for cold rolling with a grain size of 50 μm or less. In other words, 1) reducing the size of each grain of the thin slab itself, 2) hot working the thin slab after casting to recrystallize it into fine grains, 3) cold working the thin slab. , annealing and recrystallization to make the grain finer. Of course, each of 1), 2), and 3) is effective alone, but it has been found that the effect is significantly greater when 1), 2), and 3) are combined with each other.

本発明においては、特に上記1)薄鋳片そのものの1粒
を小さくする、と2)薄鋳片を、鋳造に引続き熱間加工
して、再結晶細粒化する、の両手段を用いてステンレス
fiEl板表面に生じるロービングを防止し、併せて表
面光沢むらのない、表面性状に優れた製品を得るように
構成している。
In the present invention, in particular, the following two methods are used: 1) reducing the size of each grain of the thin slab itself; and 2) hot working the thin slab after casting to recrystallize it to fine grains. The structure is designed to prevent roving from occurring on the surface of the stainless steel fiEl plate, and to obtain a product with excellent surface properties without uneven surface gloss.

先ず、双ロール(ツインドラム)法等の、鋳型壁面が鋳
片と同期して移動する形式の連続鋳造プロセスによって
薄鋳片を得るときに、TR51片の1粒を小さくするに
は、鋳片における1粒の生成時から小さくするとともに
、その後の成長を抑えるために高温域から鋳片を冷却す
ることが肝要である。また、鋳造直後の鋳片に熱間圧延
を施し、再結晶させて1粒を微細化することが重要であ
る。
First, when obtaining thin slabs by a continuous casting process such as the twin roll (twin drum) method in which the mold wall surface moves in synchronization with the slab, in order to make each grain of TR51 piece smaller, the slab It is important to reduce the size of a single grain from the time of its formation and to cool the slab from a high temperature range in order to suppress subsequent growth. It is also important to hot-roll the slab immediately after casting and recrystallize it to make each grain finer.

このような考え方に従って、発明者等は、各種の組成の
18Cr  aNi鋼を、実験室の小型双ロール連続鋳
造機で鋳造し、鋳造直後の象、冷や熱間圧延、冷間圧延
における条件を変えて、ステンレス鋼薄板を製造し、製
品の表面性状特に、表面のうねりとなるロービングに注
目してその防止法を検討した。その結果、先に述べたよ
うに、冷間圧延前の材料のγ粒径を、1粒の平均粒度N
o、で、6以上、即ち50−以下の粒径とすることが望
ましいことが明らかとなった。
Following this idea, the inventors cast 18Cr aNi steels of various compositions using a small twin-roll continuous casting machine in the laboratory, and varied the conditions immediately after casting, cold and hot rolling, and cold rolling. We manufactured thin stainless steel plates and investigated ways to prevent roving, focusing on the surface properties of the product, especially roving. As a result, as mentioned earlier, the γ grain size of the material before cold rolling was changed to the average grain size N
It has become clear that it is desirable to have a particle size of 6 or more, that is, 50 or less.

第1図に、双ロール法によって溶鋼を連続鋳造して巻取
るまでの鋳片の温度履歴を示す。
Figure 1 shows the temperature history of a slab from continuous casting of molten steel to rolling up by the twin roll method.

第1図においてケース(3)は材料を鋳造後空冷し2た
場合であり、鋳造機においては材料は鋳造ドラムによっ
て急冷されるけれども、鋳造機をでると復熱して昇温し
ドラム直下からの冷却を行わない場合に比べ冷却は緩慢
であり、そのまま巻取ると巻取り後の冷却中にγ粒の成
長が進むことになり、ロービングや冷却中のCr炭化物
析出による鋭敏化、粒界酸化による表面特性上問題が生
じる。
In Figure 1, case (3) is a case in which the material is air-cooled after casting.In the casting machine, the material is rapidly cooled by the casting drum, but when it leaves the casting machine, it regenerates and rises in temperature. Cooling is slower than when no cooling is performed, and if the winding is continued as it is, the growth of γ grains will progress during cooling after winding, resulting in roving, sensitization due to Cr carbide precipitation during cooling, and grain boundary oxidation. Problems arise in terms of surface properties.

第1図においてケース(1)は鋳造後熱間圧延を行い、
鋳片に再結晶を起こさせ1粒を細かくさせたものであり
、熱間圧延後はCr炭化物の析出による鋭敏化を防止す
るために急冷するプロセスを示したものである。
In Figure 1, case (1) is hot rolled after casting.
It is made by recrystallizing a cast slab to make each grain finer, and shows the process of rapid cooling after hot rolling to prevent sensitization due to precipitation of Cr carbides.

同じくケース(2)は、ケース(1)より鋳片の細粒化
を進めるために鋳造後筒、冷を行いその後熱間加工を行
うもので、鋳造後の1粒がケース(1)より微細になる
ため熱延再結晶を行った場合非常に細かい1粒を得るこ
とができ、熱間圧延後はCr炭化物の析出による鋭敏化
を防止するために象、冷するプロセスを示したものであ
る。
Similarly, in case (2), in order to make the slab grain finer than in case (1), the cylinder is cooled after casting and then hot worked, and each grain after casting is finer than in case (1). Therefore, when hot-rolling recrystallization is performed, very fine grains can be obtained, and this shows the process of cooling after hot rolling to prevent sensitization due to precipitation of Cr carbides. .

また、熱間加工を行った場合、再結晶が十分起きず一部
加工組織状態であることもある。この場合は、熱延板に
対し焼鈍を施し、再結晶化を十分進めることにより表面
特性として優れた製品が得られることも明らかとなった
Further, when hot working is performed, recrystallization may not occur sufficiently and a partially processed structure may be formed. In this case, it has also become clear that a product with excellent surface properties can be obtained by annealing the hot rolled sheet and sufficiently promoting recrystallization.

さらに、上記冷却の制御及び熱間圧延に加えて出発材の
合金組成の微妙な調整も有効である。
Furthermore, in addition to the cooling control and hot rolling described above, delicate adjustment of the alloy composition of the starting material is also effective.

第2図は、Fe  Cr  Ni三元系平衡状態図にお
けるCreq +N1eq #30%相当部の断面状態
図であって、文献Transaction of Jf
4R1,Vo!、14.No、I、1985゜p、12
5から引用したものである。CreqとN1eqは次の
通り、成分から計算される。
FIG. 2 is a cross-sectional phase diagram of a portion corresponding to Creq + N1eq #30% in the equilibrium phase diagram of the Fe Cr Ni ternary system, as described in the literature Transaction of Jf
4R1, Vo! , 14. No. I, 1985゜p, 12
This is quoted from 5. Creq and N1eq are calculated from the components as follows.

Cr eq −Cr (χ) +1.5XSi(X) 
+Mo(χ)+Nb(χ)十Ti(χ)Nieq=Ni
(χ) + 1/2 (Mn (χ)+Cu(χ))+
30(C(χ)十N(χ))先ず、Creqが小さい(
■ Creq=17.3χ)と、初晶γで凝固し、完全
γ相である。この場合のγ相は、液相線直下の高温で晶
出し、それ以降成長する。
Cr eq −Cr (χ) +1.5XSi(X)
+Mo(χ)+Nb(χ) 10Ti(χ)Nieq=Ni
(χ) + 1/2 (Mn (χ)+Cu(χ))+
30(C(χ)×N(χ)) First, Creq is small (
■Creq=17.3χ), solidified with primary γ, and is a complete γ phase. In this case, the γ phase crystallizes at a high temperature just below the liquidus line and grows thereafter.

一方、Creqが大きくなり、Creq = 19.5
χ (■)以上となると、初晶はδ相で凝固を完了し、
固相反応として約1370℃からはじめてγ相が析出し
初め、それ以降成長に移るが、先に述べたCreqが小
さいケースに比較すると、γ粒の成長は大いに抑制され
る。これは、鋳造直後の高温域が、1粒の成長を支配す
ることからも十分考えられることである。
On the other hand, Creq increases, and Creq = 19.5
When χ (■) or more, the primary crystals complete solidification in the δ phase,
As a solid phase reaction, the γ phase begins to precipitate at about 1370° C. and then begins to grow, but compared to the case where Creq is small, the growth of γ grains is greatly suppressed. This is entirely conceivable since the high temperature region immediately after casting dominates the growth of a single grain.

Creqが前記三者の中間にあるときは、包晶反応が加
わって複雑になるが、1粒の成長を抑制するには、δ相
を凝固させるような成分系が有利でありまた、高温域で
材料を急冷することが有効である。さらに、δ相凝固の
効果は、固相反応においても1粒の成長をδ相が妨害す
る点にもある。このような、成分系に基づく効果を実験
した結果、δ−Fe、cal(χ)=3(Cr+1.5
 Si十Mo+Nb+Ti)−2,8(Ni+1/2 
Mn+1/2Cu)  84(C+N)  19.8(
χ)で示されるδ−Fe.cal (χ)を−2%以上
10%までとすることが有効であることが判明した。特
に、δ−Fe.cal(χ):1〜5%が良好である。
When Creq is between the above three, the peritectic reaction is added and the situation becomes complicated, but in order to suppress the growth of a single grain, it is advantageous to have a composition system that solidifies the δ phase. It is effective to rapidly cool the material. Furthermore, the effect of δ-phase solidification is that the δ-phase obstructs the growth of a single grain even in a solid-phase reaction. As a result of experimenting with effects based on the component system, we found that δ-Fe, cal(χ)=3(Cr+1.5
Si + Mo + Nb + Ti) -2,8 (Ni + 1/2
Mn+1/2Cu) 84(C+N) 19.8(
δ-Fe. It has been found that it is effective to set cal (χ) to -2% or more and up to 10%. In particular, δ-Fe. cal(χ): 1 to 5% is good.

第3図(a) 〜(C)に、δ−Fe、cal(χ)を
種々変えた成分系の溶鋼を連続鋳造して2鵜厚さの鋳片
としたものの組織を比較して示す。第3図から、δ−F
e、cal(χ)が−2,3%のものでは、γ相凝固で
γ粒が成長していることが分かる。
FIGS. 3(a) to 3(c) show a comparison of the microstructures of slabs having a thickness of 2 mm by continuous casting of molten steel with various compositions of δ-Fe and cal(χ). From Figure 3, δ−F
It can be seen that in the case where e, cal (χ) is −2.3%, γ grains grow due to γ phase solidification.

δ−Fe、cal(χ)が−1,1%のものは、δフェ
ライトが残留し、1粒は小さくなっている。δ−Fe、
cal(χ))が3.0%のものは、明らかにδ相凝固
で、γ粒は極めて小さいままである。
In the case where δ-Fe and cal(χ) are -1.1%, δ ferrite remains and one grain is small. δ-Fe,
In the case where cal(χ)) is 3.0%, the solidification is clearly in the δ phase, and the γ grains remain extremely small.

このように、先に述べた鋳片の冷却制御及び熱間圧延を
利用した細粒化と相俟って、Cr−Ni系ステンレス鋼
における組成の選択が、1粒の微細化に大きく影響し、
δ−Fe、cal(χ)を−2%以上10%以下に制御
することが、極めて0重要である。
In this way, in conjunction with the aforementioned grain refinement using slab cooling control and hot rolling, the composition selection of Cr-Ni stainless steel has a large effect on the refinement of each grain. ,
It is extremely important to control δ-Fe, cal(χ) to -2% or more and 10% or less.

第4図に、δ−Fe、cal(χ)を1%程度にして冷
却した鋳片に、1100℃で熱間圧延を施したときの圧
下率と、その後デスケーリングし、冷間圧延を施したと
きに圧下率が、製品表面のロービング高さにどのように
影響するかを示す。
Figure 4 shows the reduction ratio when a slab cooled with δ-Fe, cal (χ) of about 1% is hot rolled at 1100°C, and then descaled and cold rolled. This shows how the rolling reduction affects the roving height on the product surface.

第4図から、熱間圧延における圧下率:20%から影響
が現れ、30%以上と高くなるほど製品のロービング高
さが小さくなり、表面の“うねり°“は認められなくな
る。
From FIG. 4, the influence appears from the reduction ratio of 20% in hot rolling, and as the reduction ratio increases to 30% or more, the roving height of the product becomes smaller, and "waviness" on the surface is no longer recognized.

熱間圧延における圧下率20%以上で鋳片内部に再結晶
が認められ、30%以上ではほぼ全面再結晶化する。こ
うして、1粒の平均粒径は、50μm以下となっていた
Recrystallization is observed inside the slab at a reduction rate of 20% or more during hot rolling, and recrystallization occurs almost entirely at a reduction rate of 30% or more. In this way, the average particle size of one particle was 50 μm or less.

さらに、δ−Fe、cal (X)を3%程度にし、双
ロール(冷却ドラム)直下で、鋳片の冷却を行い、鋳片
表層部と内部間で温度差を有せしめて熱間圧延を行った
場合には、圧下率が10%程度でも良好なロービング特
性が得られた。δ量と、双ロール(冷却ドラム)直下で
の鋳片冷却の効果が大きいことが分る。
Furthermore, δ-Fe, cal (X) is set to about 3%, and the slab is cooled directly under the twin rolls (cooling drum) to create a temperature difference between the surface layer and the inside of the slab, and hot rolling is performed. When this was done, good roving properties were obtained even at a rolling reduction of about 10%. It can be seen that the effect of cooling the slab directly under the twin rolls (cooling drum) is large.

次ぎに、本発明の構成要件の限定理由を説明する。Next, reasons for limiting the constituent elements of the present invention will be explained.

溶鋼成分に関しては、C:0.01〜0.08%、Si
:0.25〜1.50%、nn: 0.15〜3.0%
、P : 0.015〜o、o、io%、S : 0.
001〜0.008%、Cr:1G、O〜28.0%、
Ni:6.O〜 24.0%、N : 0.015〜0
.33%、AZ : 0.001〜0.050%、Mo
 : 0.01〜3.0%、Cu : 0.01〜2.
0%、Ti : 0.01〜0160%、Nb : 0
.01〜0;80%、残部:Feおよび不可避的不純物
からなる成分範囲において、δ−Fe、cal(%)を
2%〜10%の範囲、即ちδ相凝固をするようにコント
ロールする必要がある。δ−Fe、cal (%)が1
0%を超えると、製品にδ相が残留し、材質の面で好ま
しくない。
Regarding the molten steel components, C: 0.01 to 0.08%, Si
: 0.25-1.50%, nn: 0.15-3.0%
, P: 0.015~o, o, io%, S: 0.
001~0.008%, Cr:1G, O~28.0%,
Ni:6. O~24.0%, N: 0.015~0
.. 33%, AZ: 0.001-0.050%, Mo
: 0.01-3.0%, Cu: 0.01-2.
0%, Ti: 0.01-0160%, Nb: 0
.. 01 to 0; 80%, balance: In the component range consisting of Fe and unavoidable impurities, it is necessary to control δ-Fe, cal (%) in the range of 2% to 10%, that is, to perform δ phase solidification. . δ-Fe, cal (%) is 1
If it exceeds 0%, the δ phase remains in the product, which is unfavorable in terms of material quality.

一方、鋳片の厚さが10111I11を超えると、1粒
の微細化が困難となり、γ粒を微細化するために強い熱
間加工を行おうとすると圧延機が巨大なものとなり、実
際的でない。
On the other hand, if the thickness of the slab exceeds 10111I11, it becomes difficult to refine one grain, and if intense hot working is attempted to refine the γ grains, the rolling mill will become too large, which is impractical.

鋳造後の鋳片の冷却は、鋳造機出口での鋳片の復熱を抑
えかつ、1100℃までのT粒成長温度域における平均
冷却速度を100℃/s以」二可及的に高くして行うと
有効である。
Cooling of the slab after casting is done by suppressing heat recovery of the slab at the outlet of the casting machine and increasing the average cooling rate as much as possible to 100℃/s or more in the T grain growth temperature range up to 1100℃. It is effective to do so.

熱間圧延は、鋳片の表面温度が900℃以上の領域で行
い、鋳片内部の再結晶化を促進する。特に、鋳片内部が
高温域にある状態(鋳造後10秒間以内)のときに、6
0%以下の圧下率を適用する熱間圧延を鋳片に施せば十
分である。60%を超える圧下率を適用しても効果が飽
和する。一方、鋳造後10秒間を超えるタイミングでは
、鋳片の表層部と内部間の温度差が小さくなり、1粒の
微細化効果が著しく減殺される。
Hot rolling is performed in a region where the surface temperature of the slab is 900° C. or higher to promote recrystallization inside the slab. In particular, when the inside of the slab is in a high temperature range (within 10 seconds after casting),
It is sufficient to hot-roll the slab using a rolling reduction of 0% or less. The effect is saturated even if a reduction rate of more than 60% is applied. On the other hand, at a timing exceeding 10 seconds after casting, the temperature difference between the surface layer and the inside of the slab becomes small, and the effect of refining each grain is significantly reduced.

その後、鋳片は、900〜550℃の温度域において、
50℃/ s以上の冷却速度で冷却された後、650 
”C以下で巻き取られる。これらの条件が満たされない
と、粒界に炭化物が析出して、材料を酸洗したどきに粒
界腐食を生じ、製品の表面光沢を(貝なう。
Thereafter, the slab is heated in a temperature range of 900 to 550°C.
After being cooled at a cooling rate of 50°C/s or more, 650°C
If these conditions are not met, carbides will precipitate at the grain boundaries, causing intergranular corrosion when the material is pickled, reducing the surface gloss of the product.

熱延板焼鈍は、950℃以上の温度で行い、再結晶を進
行させる。特に温度と時間を制御し平均γ粒径が50μ
mを越えないように焼鈍を行う。−方、熱延板焼鈍後の
冷却は、焼鈍中にδ−Feが鋳片段階より減少するため
に、δ/T界面に析出するCr炭化物の析出が遅れ、そ
の結果鋳片や熱延板の冷却より遅くできるためCr炭化
物析出域の冷却速度を10 ”C/ s以上とした。
Hot-rolled sheet annealing is performed at a temperature of 950° C. or higher to advance recrystallization. In particular, by controlling temperature and time, the average γ particle size is 50μ
Annealing is performed so as not to exceed m. On the other hand, during cooling after annealing a hot rolled sheet, since δ-Fe decreases from the slab stage during annealing, the precipitation of Cr carbides precipitated at the δ/T interface is delayed, resulting in The cooling rate of the Cr carbide precipitation region was set to 10"C/s or more because the cooling rate can be slower than that of the Cr carbide precipitation region.

(実施例) 実施例1 第1表に示す、18Cr−f3Nifiを基本とする種
々の成分のCr−Ni系ステンレス24を溶製した。1
疑固の初相をδ相とすべく、 δ −Fe、cal (X)=3(Cr+1.5Si+
Mo+Nb+Ti)2.8(Ni+1/2Mn+1/2
Cu)−84(C+N)−]9.8(X)の関係に従っ
て、第2表に示すように、δ−Fe、cal(χ)を−
3,55%から7.81%まで変化させた。これらの溶
鋼を、内部水冷方式の垂直型双ロール連続鋳造機によっ
て、1.6〜7.5 mmの間の種々の厚さの鋳片を鋳
造した。鋳造機直下からロール冷却や水スプレー冷却を
適用して鋳片を冷却し、復熱を防止した。1300〜1
100℃の温度域において、120℃/sを超える平均
冷却速度が得られた。
(Example) Example 1 Cr-Ni stainless steel 24 having various components based on 18Cr-f3Nifi as shown in Table 1 was produced. 1
In order to make the pseudo-solid initial phase δ phase, δ −Fe, cal (X)=3(Cr+1.5Si+
Mo+Nb+Ti)2.8(Ni+1/2Mn+1/2
Cu)-84(C+N)-]9.8(X), as shown in Table 2, δ-Fe, cal(χ) is -
It was changed from 3.55% to 7.81%. These molten steels were cast into slabs of various thicknesses between 1.6 and 7.5 mm using a vertical twin-roll continuous casting machine with internal water cooling. Roll cooling and water spray cooling were applied from directly below the casting machine to cool the slab and prevent heat recovery. 1300-1
In a temperature range of 100°C, an average cooling rate exceeding 120°C/s was obtained.

次いで、鋳片を、鋳造後8秒間以内に1100〜950
℃の温度域で熱延圧延した。このときの圧下率は、10
%程度から50%程度までの間であった(第2表)。そ
の後、鋳片を900〜550℃の間を60℃/s以上の
冷却速度で冷却し、600℃以下で巻き取った。
The slab is then heated to a temperature of 1100 to 950 within 8 seconds after casting.
Hot rolling was carried out in the temperature range of ℃. The rolling reduction rate at this time is 10
% to about 50% (Table 2). Thereafter, the slab was cooled between 900 and 550°C at a cooling rate of 60°C/s or more, and wound up at 600°C or less.

比較材は、900〜550℃の間の冷却が不十分で、7
50 ℃程度の高温で巻き取ったものもある。
The comparative material was insufficiently cooled between 900 and 550°C, resulting in a temperature of 7.
Some are wound at high temperatures of around 50°C.

然る後、材料を酸洗、デスケーリングして冷間圧延した
後、通常の焼鈍或は光輝焼鈍した。
Thereafter, the material was pickled, descaled, cold rolled, and then conventionally annealed or bright annealed.

こうして得られた製品の表面性状を調査した。The surface properties of the product thus obtained were investigated.

特に、製品表面のロービング高さと光沢に注目した。第
2表に示すように、本実施例に示したものは、δフェラ
イトを活用して、鋳片でのT相の晶出、析出を低温化し
たことで、その後の鋳片の冷却や熱間圧延効果も加わっ
て、何れも優れた表面性状を示した。
In particular, we focused on the roving height and gloss on the product surface. As shown in Table 2, the product shown in this example utilizes δ ferrite to lower the temperature of crystallization and precipitation of the T phase in the slab. In addition to the effect of inter-rolling, all exhibited excellent surface properties.

一方、比較法では、δフェライトの効果がなくかつ、鋳
片の冷却も不足で、巻き取り温度も高くその結果、製品
表面のロービングが大きく、表面光沢も不良であった。
On the other hand, in the comparative method, there was no effect of δ ferrite, cooling of the slab was insufficient, and the winding temperature was high, resulting in large roving on the product surface and poor surface gloss.

(発明の効果) 本発明は、以上述べたように構成しかつ、作用せしめる
ようにしたから、製品厚さに近い厚さの1帯を連続鋳造
によって直接的に得るB潔なプロセスで、表面品質と材
質が優れたCr−Ni系ステンレス薄鋼板を得ることが
できる。
(Effects of the Invention) Since the present invention is constructed and operated as described above, it is possible to directly obtain a strip with a thickness close to that of the product by continuous casting, and the surface It is possible to obtain a Cr-Ni stainless thin steel sheet with excellent quality and material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、双ロール(水冷)式連続鋳造機によってCr
  Ni系ステンレス鋼薄帯を鋳造するときの、薄帯の
温度・時間関係を示す図、第2図は、FeCr−Ni三
元系平衡状態図におけるCr明+Nl四ζ30%相当部
の断面状態図、第3図(a)〜(C)はδFe、cal
(χ)を種々変えた成分系の溶鋼を連続鋳造して2mm
J¥さの鋳片としたものの組織を比較して示す金属顕微
鏡写真、第4図は、δ−Fe、cal (X)を1%程
度にして鋳造し冷却した鋳片に、1100”Cで熱間圧
延を施したときの圧下率と、その後デスケーリングし冷
間圧延を施したときの圧下率が、製品表面のロービング
高さに及ぼず影響を示す図である。 /8   20 Cr吟 (%) 第8図 炙 )) 第8図 手続補正書 (自発) 鰭糸、−)圧下率(%) 1、事件の表示 昭和63年特許願第221471号 2、発明の名称 表面品質と材質が優れたCr−Ni系ステンレス薄鋼板
の製造法 3、補正をする者 事件との関係 特許出願人 東京都千代田区大手町二丁目6番3号 (665)新日本製鐵株式會社 代表者 齋  藤    裕 4、代理人〒100 東京都千代田区丸の内二丁目4番1号 5、補正縫令の日付 昭和  年  月  日6、補正
の対象 (1)特許請求の範囲を別紙のとおり改める。 (2)明細書10頁4行、同11頁1行、同12頁3行
「冷間圧延前の」を夫々削除する。 (3)第2図を別紙のように改める。 特許請求の範囲 (1)18%Cr−8%N1jiQに代表されるCr−
Ni系ステンレス鋼を、鋳型壁面が鋳片に同期して移動
する連続鋳造機によって、凝固時の冷却速度を100 
”C/ s以上として厚さ10M以下の薄帯状鋳片に連
続鋳造し、900℃以上の温度域で60%以下の熱間加
工を施して、該鋳片内部の再結晶を進めて7粒を@、I
II化し平均1粒径を50μm以下としたのち、900
℃から550℃の範囲を50”C/ s以上の冷却速度
で冷却し、650℃以下の温度域で巻取り、以後常法に
より冷延板とすることを特徴とする表面品質と材質が優
れたCr−!ii系スナステンレス薄鋼板造法。 (2)i%Cr−8%Niiに代表されるCr−Ni系
ステンレス鋼を、鋳型壁面が鋳片に同期して移動する連
続鋳造機によって、凝固時の冷却速度を100℃/s以
上として厚さ10価以下の薄・!IP状鋳片に連続鋳造
し、凝固後は該鋳片の復熱を起こさせず可及的に高温域
から冷却を開始して1100℃までの平均冷却速度を鋳
片表面温度で100℃78以上としてγ粒の成長を抑制
しつつ鋳片表面部と内部間に温度差の存する鋳造後10
秒間以内に900℃以上の温度域で60%以下の熱間加
工を施して、鋳片内部の再結晶を進めて鋳片のγ粒を微
細化し平均γ粒径を50μm以下としたのち、900℃
から550℃の範囲を50℃/s以上の冷却速度で冷却
し、650℃以下の温度域で巻取り、以後常法により冷
延板とすることを特徴とする表面品質と材質が優れたC
r−Ni系ステンレス薄鋼板の製造法。 (3118%Cr−8%Nit1gIに代表されるCr
−Ni系ステンレス鋼を、鋳型壁面が鋳片に同期して移
動する連続鋳造機によって、凝固時の冷却速度を100
℃/s以上として厚さ10mm以下の薄帯状鋳片に連続
鋳造し、δ−Fe、cal(χ)=3(Cr+1.5S
i+MofNb+Ti)−2,8(Ni+0.5Mn+
0.5Cu)  84(C+N)−19,8で定義され
るδ−Fe、cal (X)を−2〜10%として凝固
の初晶をδ相とするとともにγ相の晶出や変態の開始温
度を低くして凝固途中からのγ粒の成長を抑制し、凝固
後は該鋳片の復熱を起こさせず可及的に高温域から冷却
を開始して1100℃までの平均冷却速度を鋳片表面温
度で100℃/s以上としてγ粒の成長を抑制しつつ鋳
片表面部と内部間に温度差の存する鋳造後10秒間以内
に900℃以上の温度域で60%以下の熱間加工を施し
て、鋳片内部の再結晶を進めて鋳片の1粒を微細化し平
均γ粒径を501Im以下としたのち、900 ℃から
550℃の範囲を50℃/s以上の冷却速度で冷却し、
650℃以下の温度域で巻取り、以後常法により冷延板
とすることを特徴とする表面品質と材質が優れたCr−
Ni系ステンレス薄鋼板の製造法。 (4)18%Cr−8%Ni鋼に代表されるCr−Ni
系ステンレス鋼を、鋳型壁面が鋳片に同期して移動する
連続鋳造機によって、凝固時の冷却速度を100℃/s
以上として厚さ10mm以下の薄帯状鋳片に連続鋳造し
、900℃以上の温度域で60%以下の熱間加工を施し
、次いで900℃から550゛Cの範囲を50℃/S以
上の冷却速度で冷却し、650℃以下の温度域で巻取っ
た後、平均1粒径が50IIm以下となるように950
゛C以上で温度と時間を制御する熱延板焼鈍を施し、次
いで10℃/S以上の冷却速度で冷却し、以後常法によ
り冷延板とすることを特徴とする表面品質と材質が優れ
たCr−Ni系ステンレス薄鋼板の製造法。 (5)18%Cr−8%N1jllilに代表されるC
r−Ni系ステンレス鋼を、鋳型壁面が鋳片に同期して
移動する連続SR造機によって、凝固時の冷却速度を1
00℃/s以上として厚さ10mm以下の薄帯状鋳片に
連続鋳造し、凝固後は該鋳片の復熱を起こさせず可及的
に高温域がら冷却を開始して1100℃までの平均冷却
速度を鋳片表面温度で100 ℃/S以上としてγ粒の
成長を抑制しつつ鋳片表面部と内部間に温度差の存する
鋳造後10秒間以内に900℃以上の温度域で60%以
下の熱間加工を施し、次いで900℃から550℃の範
囲を50“C/s以上の冷却速度で冷却し、650 ”
C以下の温度域で巻取った後、平均γ粒径が50μm以
下となるように950゛C以上で温度と時間を制御する
熱延板焼鈍を施し、次いで10 ℃/ s以上の冷却速
度で冷却し、以後常法により冷延板とすることを特徴と
する表面品質と材質が優れたCr−Ni系ステンレス薄
鋼板の製造法。 (6)18%Cr−8%Nti4に代表されるCr−N
i系ステンレス鋼を、鋳型壁面が鋳片に同期して移動す
る連続鋳造機によって、凝固時の冷却速度を100℃/
s以上として厚さ10mm以下の薄帯状鋳片に連続鋳造
し、δ−Fe、cal(X) =3(Cr+1.5Si
十Mo+Nb+Tj)−2,8(Ni+0.5Mn+0
.5Cu)  84(C+N)−19,8で定義される
δ−Fe、cal(χ)を−2〜10%として凝固の初
品をδ相とするとともにγ相の晶出や変態の開始温度を
低くして凝固途中からの1粒の成長を抑制し、凝固後は
該鋳片の復熱を起こさせず可及的に高温域から冷却を開
始して1100℃までの平均冷却速度を鋳片表面温度で
100℃/S以上としてγ粒の成長を抑制しつつ鋳片表
面部と内部間に温度差の存する鋳造後10秒間以内に9
00℃以上の温度域で60%以下の熱間加工を施し、次
いで900℃から550℃の範囲を50℃/S以上の冷
却速度で冷却し、650 ”C以下の温度域で巻取った
後、平均1粒径が50卿以下となるように950℃以上
で温度と時間を制御する熱延板焼鈍を施し、次いで10
℃/S以上の冷却速度で冷却し、以後常法により冷延板
とすることを特徴とする表面品質と材質が優れたCr−
Ni系ステンレス薄鋼板の製造法。 Cr吟 (%〕
Figure 1 shows how Cr is cast using a twin-roll (water-cooled) continuous casting machine.
A diagram showing the temperature/time relationship of the ribbon when casting a Ni-based stainless steel ribbon. Figure 2 is a cross-sectional phase diagram of a portion corresponding to 30% of Cr light + Nl four ζ in the FeCr-Ni ternary system equilibrium phase diagram. , Fig. 3(a) to (C) are δFe, cal
Continuous casting of molten steel with various compositions with different (χ)
Fig. 4 is a metallurgical micrograph showing a comparison of the structures of J¥-sized cast slabs. It is a diagram showing the influence of the rolling reduction when hot rolling is applied and the rolling reduction when descaling and cold rolling is subsequently applied without affecting the roving height of the product surface. /8 20 Crgin ( %) Figure 8 Roasted )) Figure 8 Procedural Amendment (Voluntary) Fin thread, -) Reduction rate (%) 1. Indication of the incident Patent Application No. 221471 of 1988 2. Name of the invention Surface quality and material Excellent Cr-Ni stainless thin steel sheet manufacturing method 3, relationship with the amended case Patent applicant 2-6-3 Otemachi, Chiyoda-ku, Tokyo (665) Nippon Steel Corporation Representative Saito Yu 4, Agent Address: 2-4-1-5 Marunouchi, Chiyoda-ku, Tokyo 100 Date of the amendment order: Month, Day 6, 1939, Subject of amendment (1) The scope of the patent claims is revised as shown in the attached sheet. (2) ``Before cold rolling'' is deleted from page 10, line 4, page 11, line 1, and page 12, line 3 of the specification. (3) Revise Figure 2 as shown in the attached sheet. Claims (1) Cr- represented by 18%Cr-8%N1jiQ
Ni-based stainless steel is cooled at a cooling rate of 100% during solidification using a continuous casting machine in which the mold wall moves in synchronization with the slab.
"C/s or more, it is continuously cast into a thin strip slab with a thickness of 10M or less, and hot worked at a temperature of 900℃ or higher to a rate of 60% or less to promote recrystallization inside the slab, resulting in 7 grains. @, I
After converting into II and making the average particle size 50 μm or less, 900
Excellent surface quality and material quality, characterized by cooling at a cooling rate of 50"C/s or more in the range from ℃ to 550℃, coiling in a temperature range of 650℃ or less, and then forming it into a cold-rolled sheet by a conventional method. (2) Cr-Ni stainless steel, represented by i%Cr-8%Nii, is produced using a continuous casting machine in which the mold wall moves in synchronization with the slab. , Continuously cast into a thin IP-shaped slab with a thickness of 10 or less with a cooling rate of 100 ° C / s or more during solidification, and after solidification, the slab is kept in the high temperature range as much as possible without causing reheating. After casting, the average cooling rate from 1100°C to 1100°C was set to 100°C or higher at the slab surface temperature to suppress the growth of γ grains and create a temperature difference between the slab surface and the inside.
After performing hot working of 60% or less in a temperature range of 900°C or higher within seconds to advance recrystallization inside the slab and refine the γ grains in the slab to an average γ grain size of 50 μm or less, ℃
to 550°C at a cooling rate of 50°C/s or more, coiled in a temperature range of 650°C or less, and then made into a cold-rolled sheet by a conventional method.C with excellent surface quality and material quality.
Method for producing r-Ni stainless thin steel sheet. (Cr represented by 3118%Cr-8%Nit1gI)
- The cooling rate of Ni-based stainless steel during solidification is increased to 100% by using a continuous casting machine in which the mold wall moves in synchronization with the slab.
℃/s or more into a thin strip slab with a thickness of 10 mm or less, δ-Fe, cal (χ) = 3 (Cr + 1.5S
i+MofNb+Ti)-2,8(Ni+0.5Mn+
0.5Cu) δ-Fe defined as 84(C+N)-19,8, cal (X) is set to -2 to 10% to make the primary crystal of solidification the δ phase, and the crystallization of the γ phase and the start of transformation. The growth of γ grains during solidification is suppressed by lowering the temperature, and after solidification, cooling is started from as high a temperature as possible without causing reheating of the slab, and the average cooling rate is increased to 1100℃. Hot heating of 60% or less in a temperature range of 900°C or higher within 10 seconds after casting where there is a temperature difference between the surface and inside of the slab while suppressing the growth of γ grains by setting the slab surface temperature to 100°C/s or higher. After processing and recrystallizing the inside of the slab to make each grain of the slab fine and the average γ grain size to 501Im or less, it is cooled in the range from 900 °C to 550 °C at a cooling rate of 50 °C / s or more. cool,
Cr- with excellent surface quality and material quality, characterized by being rolled in a temperature range of 650°C or less and then cold-rolled by conventional methods.
A method for manufacturing Ni-based stainless thin steel sheets. (4) Cr-Ni represented by 18%Cr-8%Ni steel
A continuous casting machine, in which the mold wall surface moves in synchronization with the slab, cools the stainless steel at a cooling rate of 100°C/s during solidification.
As described above, a thin strip slab with a thickness of 10 mm or less is continuously cast, subjected to hot working of 60% or less in a temperature range of 900 °C or more, and then cooled in a range of 900 °C to 550 °C at a rate of 50 °C/S or more. After cooling at a high speed and winding in a temperature range of 650°C or less, 950
It has excellent surface quality and material quality, which is characterized by subjecting the hot-rolled plate to annealing at a temperature and time controlled above ゛C, then cooling at a cooling rate of 10℃/s or above, and then forming it into a cold-rolled plate using a conventional method. A method for manufacturing a Cr-Ni stainless thin steel sheet. (5) C represented by 18%Cr-8%N1jllil
A continuous SR molding machine, in which the mold wall surface moves in synchronization with the slab, reduces the cooling rate of r-Ni stainless steel to 1 during solidification.
Continuously cast into a thin strip slab with a thickness of 10 mm or less at a rate of 00°C/s or more, and after solidification, start cooling in the high temperature range as much as possible without causing reheating of the slab, and average up to 1100°C. The cooling rate is set to 100 °C/S or more at the slab surface temperature to suppress the growth of γ grains, and the cooling rate is reduced to 60% or less in the temperature range of 900 °C or higher within 10 seconds after casting when there is a temperature difference between the slab surface and the inside. hot working, and then cooled at a cooling rate of 50"C/s or more in the range of 900°C to 550°C, and then cooled to 650"
After coiling in a temperature range of 10°C or lower, hot-rolled plate annealing is performed at a temperature of 950°C or higher and for a controlled time so that the average γ grain size is 50 μm or lower, and then at a cooling rate of 10°C/s or higher. A method for manufacturing a Cr--Ni stainless thin steel sheet with excellent surface quality and material quality, which comprises cooling and thereafter forming a cold-rolled sheet by a conventional method. (6) Cr-N represented by 18%Cr-8%Nti4
I-series stainless steel is cooled at a cooling rate of 100°C/100°C during solidification using a continuous casting machine in which the mold wall moves in synchronization with the slab.
s or more into a thin strip slab with a thickness of 10 mm or less, δ-Fe, cal (X) = 3 (Cr + 1.5 Si
10Mo+Nb+Tj)-2,8(Ni+0.5Mn+0
.. 5Cu) δ-Fe defined as 84(C+N)-19,8, cal(χ) is -2 to 10%, the initial solidification product is δ phase, and the starting temperature of crystallization and transformation of γ phase is After solidification, cooling is started from as high a temperature as possible without causing reheating of the slab, and the average cooling rate is maintained at 1100℃. 9 within 10 seconds after casting when there is a temperature difference between the surface and the inside of the slab while suppressing the growth of γ grains by setting the surface temperature to 100℃/S or higher.
After applying hot working of 60% or less in a temperature range of 00°C or higher, then cooling in a range of 900°C to 550°C at a cooling rate of 50°C/S or higher, and winding in a temperature range of 650"C or lower. , hot-rolled sheet annealing is performed at 950°C or higher with controlled temperature and time so that the average grain size is 50 mm or less, and then 10 mm
Cr- with excellent surface quality and material quality, characterized by being cooled at a cooling rate of ℃/S or higher and then made into a cold-rolled sheet by a conventional method.
A method for manufacturing Ni-based stainless thin steel sheets. Crgin (%)

Claims (6)

【特許請求の範囲】[Claims] (1)18%Cr−8%Ni鋼に代表されるCr−Ni
系ステンレス鋼を、鋳型壁面が鋳片に同期して移動する
連続鋳造機によって、凝固時の冷却速度を100℃/s
以上として厚さ10mm以下の薄帯状鋳片に連続鋳造し
、900℃以上の温度域で60%以下の熱間加工を施し
て、該鋳片内部の再結晶を進めてγ粒を微細化し冷間圧
延前の平均γ粒径を50μm以下としたのち、900℃
から550℃の範囲を50℃/s以上の冷却速度で冷却
し、650℃以下の温度域で巻取り、以後常法により冷
延板とすることを特徴とする表面品質と材質が優れたC
r−Ni系ステンレス薄鋼板の製造法。
(1) Cr-Ni represented by 18%Cr-8%Ni steel
A continuous casting machine, in which the mold wall surface moves in synchronization with the slab, cools the stainless steel at a cooling rate of 100°C/s during solidification.
As described above, a thin strip-shaped slab with a thickness of 10 mm or less is continuously cast, hot-worked to a temperature of 60% or less in a temperature range of 900°C or higher to promote recrystallization inside the slab, refine the γ grains, and cool it. After making the average γ grain size 50 μm or less before rolling,
to 550°C at a cooling rate of 50°C/s or more, coiled in a temperature range of 650°C or less, and then made into a cold-rolled sheet by a conventional method.C with excellent surface quality and material quality.
Method for producing r-Ni stainless thin steel sheet.
(2)18%Cr−8%Ni鋼に代表されるCr−Ni
系ステンレス鋼を、鋳型壁面が鋳片に同期して移動する
連続鋳造機によって、凝固時の冷却速度を100℃/s
以上として厚さ10mm以下の薄帯状鋳片に連続鋳造し
、凝固後は該鋳片の復熱を起こさせず可及的に高温域か
ら冷却を開始して1100℃までの平均冷却速度を鋳片
表面温度で100℃/s以上としてγ粒の成長を抑制し
つつ鋳片表面部と内部間に温度差の存する鋳造後10秒
間以内に900℃以上の温度域で60%以下の熱間加工
を施して、鋳片内部の再結晶を進めて鋳片のγ粒を微細
化し冷間圧延前の平均T粒径を50μm以下としたのち
、900℃から550℃の範囲を50℃/s以上の冷却
速度で冷却し、650℃以下の温度域で巻取り、以後常
法により冷延板とすることを特徴とする表面品質と材質
が優れたCr−Ni系ステンレス薄鋼板の製造法。
(2) Cr-Ni represented by 18%Cr-8%Ni steel
A continuous casting machine, in which the mold wall surface moves in synchronization with the slab, cools the stainless steel at a cooling rate of 100°C/s during solidification.
As described above, a thin strip-shaped slab with a thickness of 10 mm or less is continuously cast, and after solidification, cooling is started from as high a temperature as possible without causing reheating of the slab, and the average cooling rate is maintained at an average cooling rate of 1100℃. Hot working of 60% or less in a temperature range of 900°C or higher within 10 seconds after casting where there is a temperature difference between the surface and the inside of the slab while suppressing the growth of γ grains at a single surface temperature of 100°C/s or higher. After recrystallizing the inside of the slab and refining the γ grains in the slab to make the average T grain size before cold rolling 50μm or less, the rolling process is carried out at 50℃/s or more in the range from 900℃ to 550℃. A method for producing a Cr--Ni stainless thin steel sheet with excellent surface quality and material quality, characterized by cooling at a cooling rate of , coiling in a temperature range of 650° C. or lower, and then forming a cold-rolled sheet by a conventional method.
(3)18%Cr−8%Ni鋼に代表されるCr−Ni
系ステンレス鋼を、鋳型壁面が鋳片に同期して移動する
連続鋳造機によって、凝固時の冷却速度を100℃/s
以上として厚さ10mm以下の薄帯状鋳片に連続鋳造し
、δ−Fe.cal(%)=3(Cr+1.5Si+M
o+Nb+Ti)−2.8(Ni+0.5Mn+0.5
Cu)−84(C+N)−19.8で定義されるδ−F
e.cal(%)を−2〜10%として凝固の初晶をδ
相とするとともにγ相の晶出や変態の開始温度を低くし
て凝固途中からのγ粒の成長を抑制し、凝固後は該鋳片
の復熱を起こさせず可及的に高温域から冷却を開始して
1100℃までの平均冷却速度を鋳片表面温度で100
℃/s以上としてγ粒の成長を抑制しつつ鋳片表面部と
内部間に温度差の存する鋳造後10秒間以内に900℃
以上の温度域で60%以下の熱間加工を施して、鋳片内
部の再結晶を進めて鋳片のγ粒を微細化し冷間圧延前の
平均γ粒径を50μm以下としたのち、900℃から5
50℃の範囲を50℃/s以上の冷却速度で冷却し、6
50℃以下の温度域で巻取り、以後常法により冷延板と
することを特徴とする表面品質と材質が優れたCr−N
i系ステンレス薄鋼板の製造法。
(3) Cr-Ni represented by 18%Cr-8%Ni steel
A continuous casting machine, in which the mold wall surface moves in synchronization with the slab, cools the stainless steel at a cooling rate of 100°C/s during solidification.
As described above, a thin strip-shaped slab with a thickness of 10 mm or less was continuously cast, and δ-Fe. cal(%)=3(Cr+1.5Si+M
o+Nb+Ti)-2.8(Ni+0.5Mn+0.5
δ-F defined as Cu)-84(C+N)-19.8
e. Cal (%) is -2 to 10% and the primary crystal of solidification is δ
The growth of γ grains during solidification is suppressed by lowering the starting temperature of crystallization and transformation of the γ phase, and after solidification, the slab is heated as much as possible from the high temperature range without causing reheating. The average cooling rate from the start of cooling to 1100℃ is 100℃ at the slab surface temperature.
900°C within 10 seconds after casting, where there is a temperature difference between the surface and the inside of the slab while suppressing the growth of γ grains at ℃/s or higher.
After performing hot working of 60% or less in the above temperature range to advance recrystallization inside the slab and refine the γ grains in the slab to make the average γ grain size before cold rolling 50 μm or less, ℃ to 5
Cooling the range of 50°C at a cooling rate of 50°C/s or more, 6
Cr-N with excellent surface quality and material quality, characterized by being rolled in a temperature range of 50°C or less and then made into a cold-rolled sheet by a conventional method.
A method for manufacturing i-series thin stainless steel sheets.
(4)18%Cr−8%Ni鋼に代表されるCr−Ni
系ステンレス鋼を、鋳型壁面が鋳片に同期して移動する
連続鋳造機によって、凝固時の冷却速度を100℃/s
以上として厚さ10mm以下の薄帯状鋳片に連続鋳造し
、900℃以上の温度域で60%以下の熱間加工を施し
、次いで900℃から550℃の範囲を50℃/s以上
の冷却速度で冷却し、650℃以下の温度域で巻取った
後、平均γ粒径が50μm以下となるように950℃以
上で温度と時間を制御する熱延板焼鈍を施し、次いで1
0℃/s以上の冷却速度で冷却し、以後常法により冷延
板とすることを特徴とする表面品質と材質が優れたCr
−Ni系ステンレス薄鋼板の製造法。
(4) Cr-Ni represented by 18%Cr-8%Ni steel
A continuous casting machine, in which the mold wall surface moves in synchronization with the slab, cools the stainless steel at a cooling rate of 100°C/s during solidification.
As described above, a thin strip slab with a thickness of 10 mm or less is continuously cast, subjected to hot working of 60% or less in a temperature range of 900 °C or higher, and then cooled at a cooling rate of 50 °C/s or higher in the range of 900 °C to 550 °C. After cooling and coiling at a temperature range of 650°C or less, hot-rolled plate annealing is performed at 950°C or higher with controlled temperature and time so that the average γ grain size is 50 μm or less, and then 1
Cr with excellent surface quality and material quality, which is cooled at a cooling rate of 0°C/s or more and then made into a cold-rolled sheet by a conventional method.
-Production method of Ni-based stainless thin steel sheet.
(5)18%Cr−8%Ni鋼に代表されるCr−Ni
系ステンレス鋼を、鋳型壁面が鋳片に同期して移動する
連続鋳造機によって、凝固時の冷却速度を100℃/s
以上として厚さ10mm以下の薄帯状鋳片に連続鋳造し
、凝固後は該鋳片の復熱を起こさせず可及的に高温域か
ら冷却を開始して1100℃までの平均冷却速度を鋳片
表面温度で100℃/s以上としてγ粒の成長を抑制し
つつ鋳片表面部と内部間に温度差の存する鋳造後10秒
間以内に900℃以上の温度域で60%以下の熱間加工
を施し、次いで900℃から550℃の範囲を50℃/
s以上の冷却速度で冷却し、650℃以下の温度域で巻
取った後、平均γ粒径が50μm以下となるように95
0℃以上で温度と時間を制御する熱延板焼鈍を施し、次
いで10℃/s以上の冷却速度で冷却し、以後常法によ
り冷延板とすることを特徴とする表面品質と材質が優れ
たCr−Ni系ステンレス薄鋼板の製造法。
(5) Cr-Ni represented by 18%Cr-8%Ni steel
A continuous casting machine, in which the mold wall surface moves in synchronization with the slab, cools the stainless steel at a cooling rate of 100°C/s during solidification.
As described above, a thin strip-shaped slab with a thickness of 10 mm or less is continuously cast, and after solidification, cooling is started from as high a temperature as possible without causing reheating of the slab, and the average cooling rate is maintained at an average cooling rate of 1100℃. Hot working of 60% or less in a temperature range of 900°C or higher within 10 seconds after casting where there is a temperature difference between the surface and the inside of the slab while suppressing the growth of γ grains at a single surface temperature of 100°C/s or higher. 50℃/50℃ in the range of 900℃ to 550℃.
After cooling at a cooling rate of s or more and winding in a temperature range of 650°C or less, the average γ grain size is 95 μm or less.
Excellent surface quality and material quality characterized by hot-rolled sheet annealing at a temperature and time control of 0°C or higher, then cooling at a cooling rate of 10°C/s or higher, and then a cold-rolled sheet using conventional methods. A method for manufacturing a Cr-Ni stainless thin steel sheet.
(6)18%Cr−8%Ni鋼に代表されるCr−Ni
系ステンレス鋼を、鋳型壁面が鋳片に同期して移動する
連続鋳造機によって、凝固時の冷却速度を100℃/s
以上として厚さ10mm以下の薄帯状鋳片に連続鋳造し
、δ−Fe.cal(%)−3(Cr+1.5Si+M
o+Nb+Ti)−2.8(Ni+0.5Mn+0.5
Cu)−84(C+N)−19.8で定義されるδ−F
e.cal(%)を−2〜10%として凝固の初晶をδ
相とするとともにγ相の晶出や変態の開始温度を低くし
て凝固途中からのγ粒の成長を抑制し、凝固後は該鋳片
の復熱を起こさせず可及的に高温域から冷却を開始して
1100℃までの平均冷却速度を鋳片表面温度で100
℃/s以上としてγ粒の成長を抑制しつつ鋳片表面部と
内部間に温度差の存する鋳造後10秒間以内に900℃
以上の温度域で60%以下の熱間加工を施し、次いで9
00℃から550℃の範囲を50℃/s以上の冷却速度
で冷却し、650℃以下の温度域で巻取った後、平均γ
粒径が50μm以下となるように950℃以上で温度と
時間を制御する熱延板焼鈍を施し、次いで10℃/s以
上の冷却速度で冷却し、以後常法により冷延板とするこ
とを特徴とする表面品質と材質が優れたCr−Ni系ス
テンレス薄鋼板の製造法。
(6) Cr-Ni represented by 18%Cr-8%Ni steel
A continuous casting machine, in which the mold wall surface moves in synchronization with the slab, cools the stainless steel at a cooling rate of 100°C/s during solidification.
As described above, a thin strip-shaped slab with a thickness of 10 mm or less was continuously cast, and δ-Fe. cal(%)-3(Cr+1.5Si+M
o+Nb+Ti)-2.8(Ni+0.5Mn+0.5
δ-F defined as Cu)-84(C+N)-19.8
e. Cal (%) is -2 to 10% and the primary crystal of solidification is δ
The growth of γ grains during solidification is suppressed by lowering the starting temperature of crystallization and transformation of the γ phase, and after solidification, the slab is heated as much as possible from the high temperature range without causing reheating. The average cooling rate from the start of cooling to 1100℃ is 100℃ at the slab surface temperature.
900°C within 10 seconds after casting, where there is a temperature difference between the surface and the inside of the slab while suppressing the growth of γ grains at ℃/s or higher.
Hot working of 60% or less in the above temperature range, then 9
The average γ
The hot-rolled sheet is annealed by controlling the temperature and time at 950° C. or higher so that the grain size is 50 μm or less, and then cooled at a cooling rate of 10° C./s or higher, and thereafter made into a cold-rolled sheet by a conventional method. A method for manufacturing Cr-Ni stainless thin steel sheets with excellent surface quality and material quality.
JP22147188A 1988-07-08 1988-09-06 Method for producing Cr-Ni stainless steel sheet with excellent surface quality and material Expired - Fee Related JPH0730406B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1019900700496A KR930000089B1 (en) 1988-07-08 1989-07-08 Process for production of cr-ni type stainless sheet having excellent surface properties and material quality
DE68925578T DE68925578T3 (en) 1988-07-08 1989-07-10 METHOD FOR PRODUCING THIN SHEETS FROM CR-NI AND STAINLESS STEEL WITH EXCELLENT PROPERTIES, AND SURFACE QUALITY AND MATERIAL QUALITY
EP89908266A EP0378705B2 (en) 1988-07-08 1989-07-10 PROCESS FOR PRODUCING THIN Cr-Ni STAINLESS STEEL SHEET EXCELLENT IN BOTH SURFACE QUALITY AND QUALITY OF MATERIAL
US07/474,772 US5030296A (en) 1988-07-08 1989-07-10 Process for production of Cr-Ni type stainless steel sheet having excellent surface properties and material quality
PCT/JP1989/000692 WO1990000454A1 (en) 1988-07-08 1989-07-10 PROCESS FOR PRODUCING THIN Cr-Ni STAINLESS STEEL SHEET EXCELLENT IN BOTH SURFACE QUALITY AND QUALITY OF MATERIAL
ES8903028A ES2016153A6 (en) 1988-09-06 1989-09-05 Process for manufacturing stainless steel sheet of the Cr- Ni type which has excellent surface properties and material quality
KR1019900700496A KR900701434A (en) 1988-07-08 1990-03-08 Manufacturing method of Cr-Ni stainless steel sheet with excellent surface quality and material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP63-169094 1988-07-08
JP16909488 1988-07-08

Publications (2)

Publication Number Publication Date
JPH02133528A true JPH02133528A (en) 1990-05-22
JPH0730406B2 JPH0730406B2 (en) 1995-04-05

Family

ID=15880207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22147188A Expired - Fee Related JPH0730406B2 (en) 1988-07-08 1988-09-06 Method for producing Cr-Ni stainless steel sheet with excellent surface quality and material

Country Status (1)

Country Link
JP (1) JPH0730406B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993020966A1 (en) * 1992-04-17 1993-10-28 Nippon Steel Corporation Thin-strip cast piece of austenitic stainless steel, thin-strip cold-rolled steel plate and method of manufacturing the same
US5281284A (en) * 1991-08-28 1994-01-25 Nippon Steel Corporation Process for producing thin sheet of Cr-Ni-based stainless steel having excellent surface quality and workability
WO1995026242A1 (en) * 1994-03-25 1995-10-05 Nippon Steel Corporation Method of production of thin strip slab
EP0816519A1 (en) * 1996-01-17 1998-01-07 Nippon Steel Corporation HOT ROLLED Cr-Ni STAINLESS STEEL PLATE OF LOW ANISOTROPY AND PROCESS FOR PRODUCING THE SAME
EP0818545A1 (en) * 1996-01-26 1998-01-14 Nippon Steel Corporation Process for continuously casting sheet metal and apparatus for continuously producing sheet metal
US5875831A (en) * 1995-05-08 1999-03-02 Nippon Steel Corporation Process for producing continuously metallic coil
US5904204A (en) * 1995-04-14 1999-05-18 Nippon Steel Corporation Apparatus for producing strip of stainless steel
US6099665A (en) * 1995-04-14 2000-08-08 Nippon Steel Corporation Method for producing Cr-Ni type stainless steel thin sheet having excellent surface quality

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224715A (en) * 1984-04-23 1985-11-09 Nippon Steel Corp Manufacture of hot rolled thin steel strip
JPS60255921A (en) * 1984-05-31 1985-12-17 Sumitomo Metal Ind Ltd Manufacture of hot rolled austenitic stainless steel strip
JPS63421A (en) * 1986-06-19 1988-01-05 Nippon Steel Corp Novel production of thin austenitic stainless steel sheet having excellent surface characteristic and material quality
JPS6327407A (en) * 1986-07-17 1988-02-05 Nippon Tokushu Noyaku Seizo Kk Fungicidal composition for agricultural and horticultural purposes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224715A (en) * 1984-04-23 1985-11-09 Nippon Steel Corp Manufacture of hot rolled thin steel strip
JPS60255921A (en) * 1984-05-31 1985-12-17 Sumitomo Metal Ind Ltd Manufacture of hot rolled austenitic stainless steel strip
JPS63421A (en) * 1986-06-19 1988-01-05 Nippon Steel Corp Novel production of thin austenitic stainless steel sheet having excellent surface characteristic and material quality
JPS6327407A (en) * 1986-07-17 1988-02-05 Nippon Tokushu Noyaku Seizo Kk Fungicidal composition for agricultural and horticultural purposes

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5281284A (en) * 1991-08-28 1994-01-25 Nippon Steel Corporation Process for producing thin sheet of Cr-Ni-based stainless steel having excellent surface quality and workability
US5467811A (en) * 1992-04-17 1995-11-21 Nippon Steel Corporation Thin cast strip of austenitic stainless steel and cold-rolled sheet in thin strip form and processes for producing said strip and sheet
WO1993020966A1 (en) * 1992-04-17 1993-10-28 Nippon Steel Corporation Thin-strip cast piece of austenitic stainless steel, thin-strip cold-rolled steel plate and method of manufacturing the same
WO1995026242A1 (en) * 1994-03-25 1995-10-05 Nippon Steel Corporation Method of production of thin strip slab
US5584337A (en) * 1994-03-25 1996-12-17 Nippon Steel Corporation Process for producing thin cast strip
AU675388B2 (en) * 1994-03-25 1997-01-30 Nippon Steel & Sumitomo Metal Corporation Method of production of thin strip slab
CN1046445C (en) * 1994-03-25 1999-11-17 新日本制铁株式会社 Method of production of thin strip slab
US6099665A (en) * 1995-04-14 2000-08-08 Nippon Steel Corporation Method for producing Cr-Ni type stainless steel thin sheet having excellent surface quality
US5904204A (en) * 1995-04-14 1999-05-18 Nippon Steel Corporation Apparatus for producing strip of stainless steel
US5875831A (en) * 1995-05-08 1999-03-02 Nippon Steel Corporation Process for producing continuously metallic coil
EP0816519A1 (en) * 1996-01-17 1998-01-07 Nippon Steel Corporation HOT ROLLED Cr-Ni STAINLESS STEEL PLATE OF LOW ANISOTROPY AND PROCESS FOR PRODUCING THE SAME
EP0816519A4 (en) * 1996-01-17 1998-10-21 Nippon Steel Corp HOT ROLLED Cr-Ni STAINLESS STEEL PLATE OF LOW ANISOTROPY AND PROCESS FOR PRODUCING THE SAME
EP0818545A4 (en) * 1996-01-26 1999-02-24 Nippon Steel Corp Process for continuously casting sheet metal and apparatus for continuously producing sheet metal
US6051085A (en) * 1996-01-26 2000-04-18 Nippon Steel Corporation Process for continuously casting sheet metal and apparatus for continuously producing sheet metal
EP0818545A1 (en) * 1996-01-26 1998-01-14 Nippon Steel Corporation Process for continuously casting sheet metal and apparatus for continuously producing sheet metal

Also Published As

Publication number Publication date
JPH0730406B2 (en) 1995-04-05

Similar Documents

Publication Publication Date Title
JPH02133528A (en) Production of cr-ni stainless steel sheet having excellent surface quality and material quality
JPH03100124A (en) Production of cr-ni stainless steel sheet excellent in surface quality
US5030296A (en) Process for production of Cr-Ni type stainless steel sheet having excellent surface properties and material quality
KR950005320B1 (en) Process for producing thin sheet of cr-ni based stainless steel having excellent surface quality and workability
US5188681A (en) Process for manufacturing thin strip or sheet of cr-ni-base stainless steel having excellent surface quality and material quality
EP0378705B2 (en) PROCESS FOR PRODUCING THIN Cr-Ni STAINLESS STEEL SHEET EXCELLENT IN BOTH SURFACE QUALITY AND QUALITY OF MATERIAL
JP2532314B2 (en) Method for producing Cr-Ni type stainless steel thin plate excellent in surface quality and workability
JP2512650B2 (en) Method for producing Cr-Ni type stainless steel thin plate excellent in material and surface quality
JPH02133529A (en) Production of cr-ni stainless steel sheet having excellent surface quality and material quality
JPH0219426A (en) Manufacture of cr-ni stainless steel sheet having excellent quality and surface property
JPH02166233A (en) Manufacture of cr-series stainless steel thin sheet using thin casting method
JPH02263931A (en) Production of cr-ni stainless steel sheet excellent in surface quality
JPH0559446A (en) Production of cr-ni stainless steel sheet excellent in surface quality and workability
JPH02133522A (en) Production of cr-ni stainless steel sheet having excellent surface quality and material quality
KR930000089B1 (en) Process for production of cr-ni type stainless sheet having excellent surface properties and material quality
JPH0342150A (en) Production of cr-ni stainless steel sheet having excellent surface quality
JP2607187B2 (en) Method for producing thin Cr-Ni stainless steel sheet with excellent surface quality and workability
JP2768527B2 (en) Method for producing thin Cr-Ni stainless steel sheet with excellent workability
JPH03285023A (en) Production of cr-ni-based stainless steel thin sheet excellent in surface quality and material quality
JPH0796684B2 (en) Method for producing Cr-Ni type stainless steel thin plate with excellent surface quality
JPH02263929A (en) Production of cr-ni stainless steel sheet excellent in surface quality
JPH02263930A (en) Production of cr-ni stainless steel sheet excellent in surface quality
WO1990000454A1 (en) PROCESS FOR PRODUCING THIN Cr-Ni STAINLESS STEEL SHEET EXCELLENT IN BOTH SURFACE QUALITY AND QUALITY OF MATERIAL
JPH04333347A (en) Production of stainless steel cast strip having excellent corrosion resistance and machinability
JP2730802B2 (en) Method for producing thin Cr-Ni stainless steel sheet with excellent workability

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees