JPH02133522A - Production of cr-ni stainless steel sheet having excellent surface quality and material quality - Google Patents

Production of cr-ni stainless steel sheet having excellent surface quality and material quality

Info

Publication number
JPH02133522A
JPH02133522A JP28669088A JP28669088A JPH02133522A JP H02133522 A JPH02133522 A JP H02133522A JP 28669088 A JP28669088 A JP 28669088A JP 28669088 A JP28669088 A JP 28669088A JP H02133522 A JPH02133522 A JP H02133522A
Authority
JP
Japan
Prior art keywords
cooling
stainless steel
manufacturing
solidification
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28669088A
Other languages
Japanese (ja)
Other versions
JPH0670253B2 (en
Inventor
Masanori Ueda
上田 全紀
Shinichi Teraoka
慎一 寺岡
Hidehiko Sumitomo
住友 秀彦
Toshiyuki Suehiro
末広 利行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP28669088A priority Critical patent/JPH0670253B2/en
Publication of JPH02133522A publication Critical patent/JPH02133522A/en
Publication of JPH0670253B2 publication Critical patent/JPH0670253B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys

Abstract

PURPOSE:To produce the stainless steel sheet having excellent surface quality and material quality by casting a Cr-Ni stainless steel to a thin strip-like ingot under specific conditions then to cooling to adjust the grain sizes, and subjecting the ingot adequately to hot, warm and cold working. CONSTITUTION:The Cr-Ni stainless steel represented by 18% Cr-8% Ni steel is continuously cast to the thin strip-like ingot having <=10mm thickness by a continuous casting machine in which the wall surfaces of the casting mold moves in synchronization with the ingot while the cooling rate at the time of solidifying is kept at >=100 deg.C/sec. This ingot is cooled at >=100 deg.C/sec cooling rate down to 1200 deg.C by starting the cooling from the solidification temp. as far as possible while the recuperation of the ingot is suppressed to prevent the growth of gamma grains or gamma grains, by which the gamma grain sizes are reduced to <=50mu in average over the entire part of the thickness. Further, the ingot is cooled at >=10 deg.C/sec average cooling rate in a 1200 to 550 deg.C temp. region to suppress the growth of the gamma particles and to prevent the precipitation of carbide; thereafter, the ingot is subjected to one or >=2 kinds of the hot working, warm working and cold working, and is thereby made into the product.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、鋳片と鋳型内壁面間に相対速度差のない、所
謂同期式連続鋳造プロセスによって鋳片厚さを製品厚さ
に近いサイズとしてCr−Ni系ステンレス鋼薄板を製
造する方法において、鋳片段階から組織を微細化して優
れた表面性状を有するCr−Ni系ステンレスi薄板を
製造する方法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention uses a so-called synchronous continuous casting process in which there is no relative speed difference between the slab and the inner wall surface of the mold, so that the thickness of the slab can be reduced to a size close to the product thickness. The present invention relates to a method for manufacturing a Cr-Ni stainless steel thin plate having excellent surface properties by refining the structure from the slab stage.

(従来の技術) 従来、連続鋳造法を用いてステンレス銅薄板を製造する
には、鋳型を鋳造方向に振動させながら厚さ100mm
以」−の鋳片に鋳造し、得られた鋳片の表面手入れを行
い、加熱炉において1000℃以上に加熱した後、粗圧
延機および仕上圧延機列からなるホットストリップミル
によって熱間圧延を施し、厚さ数mmのホットストリッ
プとしていた。
(Prior art) Conventionally, in order to manufacture a stainless steel thin plate using a continuous casting method, a mold is vibrated in the casting direction and a thickness of 100 mm is produced.
After the surface of the obtained slab is treated and heated to 1000°C or higher in a heating furnace, it is hot rolled by a hot strip mill consisting of a rough rolling mill and a finishing rolling mill row. It was applied as a hot strip several mm thick.

こうして得られたホラトスl−リップを冷間圧延するに
際しては、最貸製品に要求される形状(平坦さ)、材質
、表面性状を確保するために、強い熱間加工を受けたホ
ットストリップを軟化させるための熱延板焼鈍を行うと
ともに、表面のスケール等を酸洗工程の後に研削によっ
て除去していた。
When cold rolling the Horatos L-lip obtained in this way, the hot strip that has undergone intense hot processing is softened to ensure the shape (flatness), material quality, and surface quality required for the best product. In addition to annealing the hot-rolled sheet to improve the quality of the steel, scale and the like on the surface were removed by grinding after the pickling process.

この従来のプロセスにおいては、長大な熱間圧延設備で
、JrA #’4の加熱および加工のために多大のエイ
・ルギを必要とし、生産性の面でも優れた製造プロセス
とはJjい難かった。また、最終製品は、100mm以
上の厚さの鋳片から多くの加工が加えちれて製造される
ために集合Mi織が発達し、製品に、ユーザーにおいて
プレス加工等を加えるときはその異方性を考慮すること
が必要となる等使用十の制約も多かった。
This conventional process requires a large amount of energy to heat and process JrA #'4 in a long hot rolling facility, and is hardly an excellent manufacturing process in terms of productivity. . In addition, because the final product is manufactured from a cast slab with a thickness of 100 mm or more and subjected to many processes, a clustered Mi weave is developed, and when the product is subjected to press processing etc. by the user, the anisotropic There were many restrictions on its use, such as the need to consider gender.

処で、1 f) Omm以上の厚さの鋳片をホントスト
リップに圧延するために、長大な熱間圧延設備と多大な
エネルギ、圧延動力を必要とするという問題を解決すべ
く、最近、i!!続鋳造の過程でホントストリップと同
等か或はそれに近い厚さの鋳片(薄帯)を得るプロセス
の研究が進められている。
1 f) In order to solve the problem of requiring a long hot rolling equipment and a large amount of energy and rolling power in order to roll a slab with a thickness of 0 mm or more into a real strip, we have recently developed an i ! ! Research is underway on a process for obtaining slabs (thin strips) with a thickness equal to or close to that of real strips during continuous casting.

たとえば、「鉄と鋼」°85、A197〜′85、A2
56において特集された論文に、ホットストリップを連
続鋳造によって直接的に得るプロセスが開示されている
。このような連続鋳造プロセスにあっては、得ようとす
る鋳片(ストリップ)のゲージが1〜10mmの水準で
あるときはツイントラム方式がまた、鋳片のゲージが2
0〜50胴の水準であるときはツインベルト方式が検討
されている。
For example, "Tetsu to Hagane" °85, A197-'85, A2
The article featured in 56 discloses a process for obtaining hot strip directly by continuous casting. In such a continuous casting process, the twin tram method is used when the gauge of the strip to be obtained is 1 to 10 mm, and the twin tram method is used when the gauge of the strip is 2 mm.
At the level of 0 to 50 cylinders, a twin belt system is being considered.

しかしながら、これらの連続鋳造プロセスにおいては鋳
造段階にも未だ問題があるとされ、製品の材質や表面性
状に関して問題が解決したという段階には至っていない
However, in these continuous casting processes, there are still problems at the casting stage, and the problems regarding the material and surface quality of the product have not yet been resolved.

(発明が解決しようとする課B) 新しいプロセスとして開発が進められている、ホットス
トリップと同等か或はそれに近い厚さの鋳片(薄帯)を
連続鋳造によって得ることを前提とするプロセスにおい
ては、鋳造から製品までの工程が筒略化されるために、
ステンレス釦製晶の表面特性が、鋳片性状に敏感に影古
されることになる。即ち、優れた表面性状を有する製品
を得るためには、優れた鋳片を得る必要がある。
(Problem B to be solved by the invention) In a process that is being developed as a new process and is based on the premise of obtaining a slab (thin strip) with a thickness equal to or close to that of hot strip by continuous casting. Because the process from casting to products is simplified,
The surface characteristics of stainless steel button crystals are sensitively affected by the properties of the slab. That is, in order to obtain a product with excellent surface properties, it is necessary to obtain an excellent slab.

本発明は、ステンレス鋼薄板製品に特有の光沢むらやロ
ービング現象と呼ばれる表面欠陥のないCr−Ni系ス
テンレスEl板を得ることができる簡潔な製造プロセス
を(に供することを目的としてなされた。
The present invention has been made with the object of providing a simple manufacturing process capable of obtaining a Cr-Ni stainless steel plate free of surface defects called uneven gloss and roving phenomenon that are characteristic of thin stainless steel plate products.

(課題を解決するだめの手段) 本発明の要旨は下記の通りである。(Failure to solve the problem) The gist of the invention is as follows.

(1)18%Cr−8%Nj鋼に代表されるCr−Ni
系ステンレス鋼を、鋳型壁面が鋳片に同期して移動する
連続鋳造機によって、2凝固時の冷却速度を100 ℃
/sec以上として厚さ10mm以下の薄帯状鋳片に連
続鋳造し、得られた鋳片を可及的に凝固/、’Jr度か
ら冷却を開始して該鋳片の復熱を抑えつつ100℃/s
ec以上の冷却速度で1200℃まで冷却してδ粒或い
はγ粒の成長を防止し、γ粒径を板厚全体で平均50μ
m以下に微細化し、次いで1200℃−550℃の温度
域を10℃/sec以上の平均冷却速度で冷却して1粒
の成長を抑制すると共に炭化物の析出を防止し、しかる
後熱間加工、 温間加工および冷間加工の一種または2種以上を施して
製品とすることを特徴とする表面品質と材質が優れたC
r’−Ni系ステンレス鋼薄板の製造方法。
(1) Cr-Ni represented by 18%Cr-8%Nj steel
A continuous casting machine, in which the mold wall surface moves in synchronization with the slab, cools the stainless steel at a cooling rate of 100 °C during the second solidification.
Continuously cast into thin strip slabs with a thickness of 10 mm or less at 1/sec or more, and solidify the obtained slabs as much as possible/starting cooling from 'Jr degrees to suppress reheating of the slabs to 100 mm. ℃/s
The growth of δ grains or γ grains is prevented by cooling to 1200°C at a cooling rate of ec or higher, and the γ grain size is reduced to an average of 50μ throughout the plate thickness.
m or less, and then cooled in the temperature range of 1200 ° C to 550 ° C at an average cooling rate of 10 ° C / sec or more to suppress the growth of one grain and prevent carbide precipitation, and then hot working, C with excellent surface quality and material quality, characterized by products that have been subjected to one or more types of warm processing and cold processing.
Method for manufacturing r'-Ni stainless steel thin plate.

(2)請求項(1)に規定する製造方法において、δF
e、cal(χ)=3(Cr+1.5Si+Mo+Ti
+Nb)−2,8(Ni+0.5Mn+0.5Cu)−
84(C+N)−19,8(X)で定義されるδ−Fe
(2) In the manufacturing method defined in claim (1), δF
e, cal(χ)=3(Cr+1.5Si+Mo+Ti
+Nb)-2,8(Ni+0.5Mn+0.5Cu)-
δ-Fe defined as 84(C+N)-19,8(X)
.

cal(χ)を−2〜10%としてδ相を凝固の初晶或
いは共晶とし凝固途中のγ粒の成長を抑制して凝固を完
了しγ相の晶出や析出の開始温度を低くして、鋳片1粒
径を板厚全体で平均50μm以下にする表面品質と材質
が優れたCr−Ni系ステンレス斧1薄板の製造方法。
Cal (χ) is set to -2 to 10% to make the δ phase primary or eutectic during solidification, suppress the growth of γ grains during solidification, complete solidification, and lower the starting temperature for crystallization and precipitation of the γ phase. A method for producing a thin plate of Cr-Ni stainless steel axe having excellent surface quality and material quality in which the grain size of each slab is 50 μm or less on average throughout the plate thickness.

(3)請求項(1)に規定する製造方法において100
℃/sec以上の冷却速度で凝固後1200℃までなさ
れる冷却が、内部冷却ロール・外部から水冷されるロー
ル・空冷ロールなどを組合せた1組以上のロールによっ
て5%以下の圧下を鋳片に適用する状態下でなされるも
のである表面品質と材質が優れたCr−Ni系ステンレ
スtAgJ板の製造方法。
(3) In the manufacturing method defined in claim (1), 100
Cooling to 1200℃ after solidification at a cooling rate of ℃/sec or higher is achieved by applying a reduction of 5% or less to the slab using one or more sets of rolls that combine internal cooling rolls, externally water-cooled rolls, air-cooled rolls, etc. A method for manufacturing a Cr-Ni stainless steel tAgJ plate with excellent surface quality and material quality under applicable conditions.

(4)請求項(])に規定する製造方法において請求項
(2)の成分系で請求項(3)の冷却方法を用いて行な
う表面品質と材質が優れたCr  Ni系ステンレス鋼
薄板の製造方法。
(4) Manufacture of a Cr-Ni stainless steel thin plate with excellent surface quality and material quality by using the cooling method of claim (3) with the component system of claim (2) in the manufacturing method defined in claim (]). Method.

(5)請求項(1)に規定する製造方法において100
℃/sec以上の冷却速度で凝固後1200’cまでな
される冷却が、気体および/または液体を用いて行なわ
れる表面品質と材質が優れたCrNi系ステンL・ス鋼
薄板の製造方法。
(5) In the manufacturing method defined in claim (1), 100%
A method for manufacturing a CrNi stainless steel thin plate having excellent surface quality and material quality, in which cooling to 1200'C after solidification is performed at a cooling rate of at least C/sec using gas and/or liquid.

(6)請求項(1)に規定する製造方法において請求項
(2)の成分系で請求項(5)の冷却方法を用いて行な
・う表面品質と材質が優れたCr  Ni系ステンレス
鋼薄手反の製造力;去。
(6) Cr-Ni stainless steel with excellent surface quality and material quality, which is produced by using the cooling method of claim (5) with the component system of claim (2) in the manufacturing method defined in claim (1). Manufacturing capacity for thin fabric;

(7)請求項(1)に規定する製造方法において100
’(:/sec以上の冷却速度で凝固後1200℃まで
なされる冷却が5%以下の圧下を鋳片に適用する状態下
で内部冷却ロール・外部から水冷されるロール・空冷ロ
ールなどを組合せた1組以上のロールでなされる冷却と
気体および/または液体を用いて行なわれる冷却を組合
せた冷却方法でなされる表面品質と材質がイ3れたCr
−Ni系スステン1/ス鋼薄板の製造方法。
(7) In the manufacturing method defined in claim (1), 100%
'(: Cooling to 1200℃ after solidification at a cooling rate of 1/sec or more is applied to the slab with a reduction of 5% or less, using a combination of internal cooling rolls, externally water-cooled rolls, air-cooled rolls, etc. Cr whose surface quality and material quality are improved by a cooling method that combines cooling performed with one or more sets of rolls and cooling performed using gas and/or liquid.
- A method for producing a Ni-based stainless steel thin plate.

(8)請求項(1)に規定するl!!遣方法に、おいて
請求項(2)の成分系で請求項(7)の冷却方法を用い
て行なう表面品質と材質が侍れた(:r−Ni系ステン
レス1)」薄板の製造方法。
(8) The l specified in claim (1)! ! A method for manufacturing a thin plate of "r-Ni stainless steel 1" in which surface quality and material quality are met using the cooling method of claim (7) with the component system of claim (2).

以下に、本発明の詳細な説明する。The present invention will be explained in detail below.

SO5304鋼を基本成分とする溶鋼を、内部水冷方式
の双ロール(ツインドラl、)連続鋳造試験機によって
鋳造して2〜4柵l〃さの薄帯とし、冷却して巻き取っ
た。
Molten steel containing SO5304 steel as a basic component was cast into a thin strip of 2 to 4 bars in length using an internal water-cooled twin-roll continuous casting machine, which was cooled and wound.

こうして得られた鋳片(薄帯)を、デスケーリングした
後直接冷間圧延し、最終焼鈍し、酸洗(〜で2B製品を
得た。これらの製品の表面性状を、従来の、溶鋼を連続
鋳造して100mm以−Lの厚さを有する鋳片とし、こ
れを再加熱後、ホ71=ストリップミルによって熱間圧
延し、冷間圧延して11、られた製品の表面性状と詳細
に比較検討し5た。
The slabs (thin strips) thus obtained were descaled, then directly cold rolled, final annealed, and pickled to obtain 2B products. Continuously cast to obtain a slab with a thickness of 100 mm or more, reheated, hot rolled using a strip mill, and cold rolled to determine the surface properties and details of the resulting product. I did a comparative study.

その結果、溶鋼を、内部水冷方式の双ロール(ツインド
ラム)連続鋳造試験機によって鋳造して2〜4mm厚さ
の薄帯とし、冷却して巻き取ったものをデスケーリング
後冷間圧延し、最終焼鈍し、酸洗して2B製品としたも
のは、次のような表面欠陥が発生する可能性があること
が判明した。
As a result, the molten steel was cast into a thin strip with a thickness of 2 to 4 mm using an internal water-cooled twin-roll (twin-drum) continuous casting machine, which was cooled and wound, which was then descaled and cold-rolled. It has been found that the following surface defects may occur in the final annealed and pickled 2B product.

(1)  ロービングやオレンジビール・・・冷延時ま
たは製品加工時に表面に微細な凹凸を生じる。
(1) Roving and orange beer: Fine irregularities occur on the surface during cold rolling or product processing.

(2)光沢むら・・・鋳片(薄帯)巻取り中の材料の組
織鋭敏化や粒界酸化またはT粒)■犬死による光沢ムラ
が発生する。
(2) Uneven gloss...Uneven gloss occurs due to the sensitization of the structure of the material during winding of the slab (thin ribbon), grain boundary oxidation, or T-grain).

これらの製品表面性状に閏する問題は、従来のプロセス
ではみられない、薄鋳片(薄帯)を直接、連続鋳造によ
って得る過程を含むプロセス固有の問題である。
These problems concerning the surface properties of products are unique to the process, which does not occur in conventional processes, and involves the process of directly obtaining thin slabs (thin strips) by continuous casting.

発明者等は、これらの製品表面性状に関する問題の原因
を詳細に検討した結果、冷間圧延前の材nの1粒径が大
きい場合や、鋳片のCr炭化物析出温度域の冷却不充分
の場合にこれらの表面欠陥が顕著に生じることを解明し
た。
As a result of a detailed study of the causes of problems related to the surface properties of these products, the inventors found that the single grain size of the material n before cold rolling was large, or insufficient cooling of the slab in the Cr carbide precipitation temperature range. It was found that these surface defects occur significantly in some cases.

こうして、ロービング対策としては、冷間圧延前の材料
のγ粒径を粒度No、 6以上、即ち50ttrn以下
とすることが、また光沢むら対策としては、鋳片の高温
域における冷却を制御することが、薄鋳片を直接、連続
鋳造によって得る過程を含むプロセスを採るときに、望
ましいことを明らかにした。
Thus, as a countermeasure against roving, it is necessary to set the gamma grain size of the material before cold rolling to a grain size number of 6 or more, that is, 50 ttrn or less, and as a countermeasure against gloss unevenness, it is necessary to control the cooling of the slab in the high temperature range. However, it has been shown that it is desirable to employ a process that involves obtaining thin slabs directly by continuous casting.

以下にこれらの対策について更に詳細に説明する。These measures will be explained in more detail below.

冷間圧延用の材料として、1粒径が50um以下の材料
とするだめの手段として、次のような種々の考え方があ
る。即ち、 (1)薄鋳片そのもののT粒を小さくする、(2)薄鋳
片を、鋳造に引続き熱間加工して、再結晶細粒化する、 (3)薄鋳片を、冷間加工し、焼鈍して、再結晶細粒化
する、 等である。
There are various ways of thinking as follows as means for making a material for cold rolling with a grain size of 50 um or less. That is, (1) reducing the T-grain of the thin slab itself; (2) hot working the thin slab after casting to make it recrystallized; (3) cold working the thin slab. Processing, annealing, recrystallization to refine grains, etc.

本発明は特に上記の(1)鋳片そのもののγ粒を小さく
する方法に関するものである。
The present invention particularly relates to the above (1) method of reducing the γ grains of the slab itself.

まず双ロール法や単ロール法等の薄鋳片のT粒そのもの
を小さくする方法としては、凝固時のγ粒を小さくする
と共に、その後のT粒の成長を抑制するために、高温か
ら冷却することが重要である。
First, as a method to reduce the T grains themselves in thin slabs such as the twin roll method and single roll method, in addition to reducing the γ grains during solidification, cooling from a high temperature is used to suppress the subsequent growth of T grains. This is very important.

以上の考え方にしたが−っで本発明者等は各種組成の1
8Cr−8Niを基本とする溶鋼を実験室の小型双ロー
ルや単ロールでS7η造し、鋳造直下の急冷を行なって
、ステンI/スS岡の表面品質、とくに表面のうねりの
原因となるロービングに注目して研究を実施した。この
結果、先に述べた冷延前の1粒径をTの平均粒度No、
 6以」二、即ち平均粒径として50μ県以下とするこ
とが望ましいことが判明した。双ロール法や単ロール法
等により鋳造した薄鋳片のT粒は、錆固後急速に成長す
る。凝固後鋳片のT粒の成長を抑制するのに必要な冷却
速度を調べるため種々の材質の鋳型を用いて凝固後の冷
却速度及び冷却温度域を変化させ1粒径を測定後直接冷
延し、ロービングを評価した。
Based on the above idea, the present inventors have developed various compositions.
Molten steel based on 8Cr-8Ni is formed into S7η using a small twin roll or single roll in a laboratory, and then rapidly cooled immediately after casting to improve the surface quality of stainless steel I/S steel, especially the roving that causes surface waviness. The research was conducted with a focus on As a result, the grain size before cold rolling mentioned earlier was determined to be T's average grain size No.
It has been found that it is desirable to have an average particle diameter of 50 μm or less. T-grains in thin slabs cast by the twin-roll method, single-roll method, etc. grow rapidly after rust hardens. In order to investigate the cooling rate necessary to suppress the growth of T grains in the slab after solidification, we used molds made of various materials to vary the cooling rate and cooling temperature range after solidification, measured the single grain size, and then directly cold-rolled the slab. and evaluated roving.

その結果、凝固1i4oo〜1200℃において粒成長
が著しく進行すること、そのため1400〜1200℃
までを急冷することが必要であることが判った。
As a result, it was found that grain growth significantly progresses between 1i4oo and 1200°C during solidification.
It was found that it was necessary to rapidly cool the

第1図は18.3%Cr−8,3〜9%Ni合金の小型
サンプルを種々の材質の鋳型に鋳造・凝固させ、140
0〜1200℃までの平均6速と鋳片1粒径の関係を示
した図であるが、100℃/sec未満の6速では粒径
が50μffl超になり、ロービングが不良であった。
Figure 1 shows that small samples of 18.3% Cr-8, 3-9% Ni alloy were cast and solidified into molds made of various materials.
It is a diagram showing the relationship between the average 6 speeds from 0 to 1200°C and the grain size of a slab. At 6 speeds below 100°C/sec, the grain size exceeded 50 μffl, and roving was poor.

第2図は1400〜1200℃までの平均6速と鋳片を
直接冷延したときのロービング高さの関係を示している
。ロービング高さが6速の増加によって低下しており1
00℃/sec以上の6速でロービング高さが現行の5
llS304プロパ一冷延製品板並みの0.211m以
下になっている。すなわち1400〜1200℃までの
平均6速を100℃/sea以上としなければならない
ことが判った。
FIG. 2 shows the relationship between the average 6 speeds from 1400 to 1200°C and the roving height when the slab is directly cold rolled. The roving height has decreased due to the increase in 6th gear and 1
The current roving height is 5 at 6 speeds over 00℃/sec.
The length is 0.211m or less, which is comparable to that of S304 proper cold-rolled product sheets. In other words, it was found that the average 6 speed from 1400 to 1200°C must be 100°C/sea or more.

更に上記の冷却に加えるに、合金組成と関連して、合金
組成に合った最適な冷却条件を採ることが重要であるこ
とが判明した。
Furthermore, in addition to the above-mentioned cooling, it has been found that in relation to the alloy composition, it is important to adopt optimal cooling conditions suitable for the alloy composition.

第3図はFe−Cr−Ni系三元系の平衡状態図におけ
るCreqモN1eq#30%相当部相当面状態図を文
献(Transaction of JWRl、 Vo
l 14.No、1.1985.p!25)から引用し
たものである。CreqとN1eqは次の通りで、成分
から計算される。
Figure 3 shows the phase diagram of the surface corresponding to the Creq mo N1 eq #30% equivalent part in the equilibrium phase diagram of the Fe-Cr-Ni ternary system, based on the literature (Transaction of JWRl, Vo
l 14. No. 1.1985. p! 25). Creq and N1eq are as follows and are calculated from the components.

Creq=Cr(χ)+1.5XSi(χ)+Mo(χ
)+Nb(χ)+Ti(X)Nieq=Ni(χ)+1
/2Mn(z)+1/2Cu(χ)+30(C(X)+
N(χ))まずCreqが小さくて、■のケースではC
req・17.3%で初品はTで凝固し完全γ相である
。この場合のγ相は液相線直下の1450℃以上で晶出
し以後成長する。一方Cr6qが大きくなり■のケース
Creq 〜19.5%以上で初品はδ相で凝固を完了
し、固相反応として約1370℃からはじめてγ相が析
出し始め、以後成長に移るが、先に述べたCreqの小
さいケースに比較すると1粒の成長は大いに抑制される
Creq=Cr(χ)+1.5XSi(χ)+Mo(χ
)+Nb(χ)+Ti(X)Nieq=Ni(χ)+1
/2Mn(z)+1/2Cu(χ)+30(C(X)+
N(χ)) First, if Creq is small, in the case of ■, C
At the request of 17.3%, the initial product is solidified with T and has a complete γ phase. In this case, the γ phase crystallizes and grows at 1450° C. or higher, just below the liquidus line. On the other hand, when Cr6q increases and Cr exceeds ~19.5%, the initial product completes solidification in the δ phase, and as a solid phase reaction, the γ phase begins to precipitate at about 1370°C, after which growth begins. Compared to the case of small Creq described in 1., the growth of a single grain is greatly suppressed.

これは鋳造直後の高温域がγ粒の成長を支配することか
らも十分考えられることである。Creqがこれらの中
間域では包共晶反応が加わって複雑になるが、1粒の成
長を抑制するにはδ凝固をさせるような成分系が有利で
ある。特にδ6λ固を活用してTの析出開始を遅らせる
成分選択と、高温域を急冷する方法の組合せがγ粒の成
長を抑制して微細化するためには効果的である。
This is entirely conceivable because the high temperature region immediately after casting controls the growth of γ grains. When Creq is in these intermediate ranges, the peritectic reaction is added and becomes complicated, but in order to suppress the growth of a single grain, a component system that causes δ solidification is advantageous. In particular, the combination of component selection that utilizes δ6λ solids to delay the start of T precipitation and a method of rapidly cooling the high temperature region is effective for suppressing the growth of γ grains and making them fine.

多(の成分系で実験した結果、 δ−Fe、cal(χ)〜3(Cr+1.5Si+Mo
+Nb+Ti)−2,8(Ni+1/2Mn+1/2C
u)−84(C+N)−19,8(χ)で示されるδ−
Fe、cal(χ)を−2%以」二で10%までとする
ことが有効であることが判明した。
As a result of experiments with a component system of poly(δ-Fe, cal(χ)~3(Cr+1.5Si+Mo
+Nb+Ti)-2,8(Ni+1/2Mn+1/2C
u) −84(C+N)−19,8(χ) δ−
It has been found that it is effective to keep Fe and cal(χ) from -2% to 10%.

第5図(a)、 (b)、 (C)の金属B微鏡組織写
真はδFe、cal(X)を変えた成分系で2mm鋳片
に鋳造し、冷却した鋳片組織を比較して示す。図から明
らがなようにδ−Fe、cal(χ)が−2,3%のも
のではT凝固で、1粒が成長している。δ−Fe、ca
l(′1)が1、1%のものではδフェライトが残留し
、1粒は小さくなっている。δ−Fe、cal(X)が
3.0%のものでは明らかにδ凝固で、γ粒はきわめて
小さいままであり、更にδ−Fe、cal(χ)が大き
い場合には、γ粒、δ相ともきわめて小さいままである
。このように先に述べた鋳片冷却と合わせてCr−Ni
系での組成選択が鋳片のγ粒の微細イしに大きな影′E
を有しており、δ−Fe、cal($)を−2%以上で
10%以下に制御することがきわめて重要である。δ−
PC1cal(χ)が10%超ではこれらの効果は飽和
する。
The microstructure photographs of metal B in Figures 5 (a), (b), and (C) are obtained by comparing the structures of 2 mm slabs cast with different compositions of δFe and cal(X) and cooled. show. As is clear from the figure, in the case of δ-Fe and cal(χ) of -2.3%, T solidification occurred and one grain grew. δ-Fe, ca
In the case where l('1) is 1.1%, δ ferrite remains and one grain is small. When δ-Fe, cal (X) is 3.0%, δ solidification clearly occurs, and γ grains remain extremely small. Furthermore, when δ-Fe, cal (χ) is large, γ grains, δ Both phases remain extremely small. In this way, in conjunction with the slab cooling mentioned earlier, Cr-Ni
The composition selection in the system has a big influence on the fineness of the γ grains in the slab.
It is extremely important to control δ-Fe, cal ($) from -2% to 10%. δ−
These effects are saturated when PC1cal(χ) exceeds 10%.

こうして、T凝固に比較してδ凝固では、γ相の析出温
度が低くなるので、凝固後の冷却開始が遅れても、より
微細なT粒組織が得られる点で、合金組成の選択と凝固
後の冷却条件の選択が重要となる。
In this way, compared to T solidification, in δ solidification, the precipitation temperature of the γ phase is lower, so even if the start of cooling after solidification is delayed, a finer T grain structure can be obtained. The subsequent selection of cooling conditions is important.

なお本発明の課題の解決策の要点は以」二のような考え
方に基づくものであるが、a円筒後の鋳片の冷却、特に
均一な冷却法が重要である。Cr−Ni系の薄肉鋳造に
おいては凝固時の鋳片の脆化が今一つの問題点であるが
、本発明者等の研究がら、18Cr−8Ni系では凝固
点下50″C程度の温度域が特に高温脆化が大きく、例
えば18Cr  8Ni@金では、鋳片中心部で139
0″C以下になると合金の高温延性が著しく回復するこ
とを見出している(第4図)、従ってこれらの温度域以
下では、内部冷却方式のロールを使用して、若干の圧下
例えば5%以下の範囲で圧下をしつつ、ロール冷却を行
なう方法が有効である。1組、あるいは複数組のロール
冷却を行なうことで、鋳片幅方向にわたり、復熱を防止
して有効に冷却することが出来、1200℃までの平均
冷却速度として100 ℃/sec以上で冷却すること
が出来る。もちろん、ロール冷却と組合せて高圧の空気
や窒素等のガス冷却や、少量の液体を混合したミスト冷
却を使用して、均一冷却を行なうことも有効であり、こ
れらの冷却法を単独で使用することも有効である。
The main point of the solution to the problem of the present invention is based on the following two ideas, and it is important to cool the slab after the cylinder a, especially a uniform cooling method. Another problem with thin-walled Cr-Ni casting is the embrittlement of the slab during solidification, but research by the present inventors has shown that 18Cr-8Ni is particularly susceptible to embrittlement in the temperature range of about 50"C below the freezing point. High temperature embrittlement is large, for example, in 18Cr 8Ni@gold, 139% at the center of the slab.
It has been found that the high-temperature ductility of the alloy is significantly recovered at temperatures below 0"C (Figure 4). Therefore, below these temperatures, internal cooling rolls are used to reduce the reduction by a small amount, for example, below 5%. An effective method is to cool the slab while rolling it down within a range of 1. By cooling one set or multiple sets of rolls, it is possible to prevent recuperation and effectively cool the slab across its width. It is possible to cool at an average cooling rate of 100 °C/sec or more up to 1200 °C.Of course, in combination with roll cooling, gas cooling such as high-pressure air or nitrogen, or mist cooling mixed with a small amount of liquid can be used. It is also effective to carry out uniform cooling, and it is also effective to use these cooling methods alone.

以下に本発明の実施例について述べる。Examples of the present invention will be described below.

(実施例) 18Cr−8Ni系を基本としてNi量を主として変化
させたステンレス鋼を溶製し、内部水冷式の双ロール鋳
造機を用いて、1mmから7.5 mm厚みの鋳片に製
造した。成分例は第1表の通りである。δFe、cal
(%)を−3,6〜7.8 (χ)まで変化させた。
(Example) Stainless steel based on the 18Cr-8Ni system with mainly varying amounts of Ni was melted and produced into slabs with a thickness of 1 mm to 7.5 mm using an internal water-cooled twin roll casting machine. . Examples of ingredients are shown in Table 1. δFe, cal
(%) was changed from -3.6 to 7.8 (χ).

鋳造機の出側には高圧窒素ガスを吹き付ける冷却手段に
引き続いて、内部水冷方式のロールによる冷却手段を配
置して、鋳片を冷却し、復熱を防止して冷却した。一部
ミス[冷却手段もロール冷却のあとに配置した。こうし
て、鋳造板厚、したがって鋳造速度によって異なるが、
1200℃までの平均冷却速度を2650℃〜120℃
/secとして冷却した。その後1200〜550℃の
範囲は水冷または空冷によって10℃/sec以上の冷
却速度で冷却し巻き取った。
On the exit side of the casting machine, a cooling means for spraying high-pressure nitrogen gas was followed by a cooling means for internal water-cooled rolls to cool the slab and prevent heat recuperation. Some mistakes were made [the cooling means was also placed after the roll cooling. Thus, depending on the cast plate thickness and therefore the casting speed,
Average cooling rate up to 1200℃ from 2650℃ to 120℃
/sec. Thereafter, the film was cooled in the range of 1200 to 550°C by water cooling or air cooling at a cooling rate of 10°C/sec or more, and then wound up.

得られた鋳片の組織を観察した結果、δ−Fe、 ca
 1(χ)が−2%程度以下では明かにγ粒径が認識出
来、1400〜1200 ℃までの冷却速度が300 
℃/sec以にのときは1粒の平均粒径が40〜50J
nn程度であった。δ−Fe、cal(Z)が−2%以
上の鋳片で、1400〜1200℃までの冷却速度が1
00 ℃/sec以にのときはδフェライト川も極めて
i日かく、かつγ粒界は識別出来ず、局部的に認められ
るγ粒も20.1以下と微細であった。これらの鋳片を
直接冷延したところ、鋳片γ粒径が50μm以下のもの
については表面にロービングの発生は認められず良好で
あった。
As a result of observing the structure of the obtained slab, it was found that δ-Fe, ca
When 1(χ) is less than about -2%, the γ particle size can be clearly recognized, and the cooling rate from 1400 to 1200 °C is 300 °C.
When the temperature is below ℃/sec, the average particle size of one particle is 40 to 50 J.
It was about nn. A slab with δ-Fe, cal (Z) of -2% or more, with a cooling rate of 1 from 1400 to 1200℃
When the temperature was 00° C./sec or higher, the δ ferrite river was also extremely wide, and the γ grain boundaries could not be discerned, and the locally observed γ grains were as fine as 20.1 or less. When these slabs were directly cold-rolled, no roving was observed on the surface of the slabs with a gamma grain size of 50 μm or less, and the results were good.

しかし、δ−Fe、eal(%)が−2%未71!】で
1400℃〜1200℃までの冷却速度が300°[/
sec以下の場合やδ−Fe、cal(χ)が−2%以
上で1400 ℃−1200℃までの冷却速度が100
 ℃/sec未満の場合は1粒径が80!浦を超え、表
面光沢、ロービングとも不良であった。
However, δ-Fe, eal (%) is -2% less than 71! ], the cooling rate from 1400℃ to 1200℃ is 300℃[/
sec or less, or when δ-Fe, cal(χ) is -2% or more, the cooling rate from 1400℃ to 1200℃ is 100℃.
If the temperature is less than ℃/sec, the particle size is 80! It exceeded the ura, and both surface gloss and roving were poor.

(発明の効果) 本発明に従い、製品厚さに近い厚さの薄帯を連続鋳造に
よって直接的に得る簡潔なプロセスにより、表面品質と
材質が優れたCr−Ni系ステンレス鋼薄)反・を得る
ことができる。
(Effects of the Invention) According to the present invention, a thin strip of Cr-Ni stainless steel with excellent surface quality and material quality is produced by a simple process of directly obtaining a thin strip with a thickness close to the product thickness by continuous casting. Obtainable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1回は、融点直下の鋳片の6速とγ粒径の関係を示す
図、第2図は、融点直下の鋳片の6速と、鋳片を直接冷
延した際の冷延板のロービング高さの関係を示す図、第
3図は、Fe−Cr−Ni系三元系平衡状態図における
Creq+N1eq#30%相当部の断面状態図、第4
圓はsus304mの融点直下の正負荷と割れ発生の関
係を示す図、第5図(a)、(b)、 (C)は、δ−
Fe、cal(χ)を種々変えた成分系の溶銅1を連続
鋳造して2++unl’Xさの鋳片としたものの組繊を
比較して示す金属顕微鏡組織写真である。 ロービング高さ(Am) 第3図 Cre< (%) 悄偶のj′絞径(Aグ) 歪負荷ご哉ノt(’c)(中・い−益、゛()第6図 < 、 > ’+−Pa、qai之X)w−1,il;:K100’
1第6図 / CX
Part 1 is a diagram showing the relationship between the 6 speed of a slab just below the melting point and the γ grain size, and Figure 2 is a diagram showing the relationship between the 6 speed of a slab just below the melting point and the cold rolled plate when the slab is directly cold rolled. Figure 3 is a diagram showing the relationship between the roving heights of
The circle is a diagram showing the relationship between positive load just below the melting point of SUS304m and crack occurrence, and Figures 5 (a), (b), and (C) are δ-
It is a metallurgical microscopic structure photograph showing a comparison of the assembled fibers of 2++ unl' Roving height (Am) Fig. 3 Cre < (%) Diameter j' of the convex (Ag) Distortion load ('c) > '+-Pa,qai之X)w-1,il;:K100'
1 Figure 6/CX

Claims (1)

【特許請求の範囲】 (1)18%Cr−8%Ni鋼に代表されるCr−Ni
系ステンレス鋼を、鋳型壁面が鋳片に同期して移動する
連続鋳造機によって、凝固時の冷却速度を100℃/s
ec以上として厚さ10mm以下の薄帯状鋳片に連続鋳
造し、得られた鋳片を可及的に凝固温度から冷却を開始
して該鋳片の復熱を抑えつつ100℃/sec以上の冷
却速度で1200℃まで冷却してδ粒或いはγ粒の成長
を防止し、γ粒径を板厚全体で平均50μm以下に微細
化し、次いで1200℃〜550℃の温度域を10℃/
sec以上の平均冷却速度で冷却してγ粒の成長を抑制
すると共に炭化物の析出を防止し、しかる後熱間加工、
温間加工および冷間加工の一種または2種以上を施して
製品とすることを特徴とする表面品質と材費が優れたC
r−Ni系ステンレス鋼薄板の製造方法。 (2)請求項(1)に規定する製造方法において、δ−
Fe.cal(%)=3(Cr+1.5Si+Mo+T
i+Nb)−2.8(Ni+0.5Mn+0.5Cu)
−84(C+N)−19.8(%)で定義されるδ−F
e.cal(%)を−2〜10%としてδ相を凝固の初
晶或いは共晶とし凝固途中のγ粒の成長を抑制して凝固
を完了しγ相の晶出や析出の開始温度を低くして、鋳片
γ粒径を板厚全体で平均50μm以下にする表面品質と
材質が優れたCr−Ni系ステンレス鋼薄板の製造方法
。 (3)請求項(1)に規定する製造方法において100
℃/sec以上の冷却速度で凝固後1200℃までなさ
れる冷却が、内部冷却ロール・外部から水冷されるロー
ル・空冷ロールなどを組合せた1組以上のロールによっ
て5%以下の圧下を鋳片に適用する状態下でなされるも
のである表面品質と材質が優れたCr−Ni系ステンレ
ス鋼薄板の製造方法。(4)請求項(1)に規定する製
造方法において請求項(2)の成分系で請求項(3)の
冷却方法を用いて行なう表面品質と材質が優れたCr−
Ni系ステンレス鋼薄板の製造方法。 (5)請求項(1)に規定する製造方法において100
℃/sec以上の冷却速度で凝固後1200℃までなさ
れる冷却が、気体および/または液体を用いて行なわれ
る表面品質と材質が優れたCr−Ni系ステンレス鋼薄
板の製造方法。 (6)請求項(1)に規定する製造方法において請求項
(2)の成分系で請求項(5)の冷却方法を用いて行な
う表面品質と材質が優れたCr−Ni系ステンレス鋼薄
板の製造方法。 (7)請求項(1)に規定する製造方法において100
℃/sec以上の冷却速度で凝固後1200℃までなさ
れる冷却が5%以下の圧下を鋳片に適用する状態下で内
部冷却ロール・外部から水冷されるロール・空冷ロール
などを組合せた1組以上のロールでなされる冷却と気体
および/または液体を用いて行なわれる冷却を組合せた
冷却方法でなされる表面品質と材質が優れたCr−Ni
系ステンレス鋼薄板の製造方法。 (8)請求項(1)に規定する製造方法において請求項
(2)の成分系で請求項(7)の冷却方法を用いて行な
う表面品質と材質が優れたCr−Ni系ステンレス鋼薄
板の製造方法。
[Claims] (1) Cr-Ni steel represented by 18% Cr-8% Ni steel
A continuous casting machine, in which the mold wall surface moves in synchronization with the slab, cools the stainless steel at a cooling rate of 100°C/s during solidification.
Continuous casting is carried out into thin strip-shaped slabs with a thickness of 10 mm or less at EC or more, and cooling of the obtained slabs is started from the solidification temperature as much as possible to suppress reheating of the slabs and cast at a rate of 100 ° C / sec or more. The growth of δ grains or γ grains is prevented by cooling to 1200°C at a cooling rate, and the γ grain size is refined to an average of 50 μm or less throughout the plate thickness, and then the temperature range from 1200°C to 550°C is reduced by 10°C/
Cooling at an average cooling rate of sec or more to suppress the growth of γ grains and prevent carbide precipitation, followed by hot working,
C: Excellent surface quality and material cost, characterized by products that have been subjected to one or more types of warm processing and cold processing.
Method for producing r-Ni stainless steel thin plate. (2) In the manufacturing method defined in claim (1), δ-
Fe. cal(%)=3(Cr+1.5Si+Mo+T
i+Nb)-2.8(Ni+0.5Mn+0.5Cu)
δ-F defined as -84(C+N)-19.8(%)
e. By setting the cal (%) to -2 to 10%, the δ phase becomes the primary crystal or eutectic of solidification, suppresses the growth of γ grains during solidification, completes the solidification, and lowers the starting temperature of crystallization and precipitation of the γ phase. A method for manufacturing a Cr--Ni stainless steel thin plate having excellent surface quality and material quality, in which the γ grain size of the cast slab is made to be 50 μm or less on average throughout the plate thickness. (3) In the manufacturing method defined in claim (1), 100
Cooling to 1200℃ after solidification at a cooling rate of ℃/sec or higher is achieved by applying a reduction of 5% or less to the slab using one or more sets of rolls that combine internal cooling rolls, externally water-cooled rolls, air-cooled rolls, etc. A method for producing a Cr-Ni stainless steel thin plate with excellent surface quality and material quality under applicable conditions. (4) In the manufacturing method defined in claim (1), using the component system of claim (2) and the cooling method of claim (3), Cr-
A method for manufacturing a Ni-based stainless steel thin plate. (5) In the manufacturing method defined in claim (1), 100
A method for producing a thin Cr--Ni stainless steel sheet with excellent surface quality and material quality, in which cooling to 1200° C. after solidification is performed using gas and/or liquid at a cooling rate of at least 0° C./sec. (6) A thin Cr-Ni stainless steel sheet with excellent surface quality and material quality produced by using the cooling method of claim (5) with the composition system of claim (2) in the manufacturing method defined in claim (1). Production method. (7) In the manufacturing method defined in claim (1), 100%
One set that combines internal cooling rolls, externally water-cooled rolls, air-cooled rolls, etc. under conditions where the slab is cooled to 1200°C after solidification at a cooling rate of ℃/sec or higher and a reduction of 5% or less is applied to the slab. Cr-Ni with excellent surface quality and material quality achieved by a cooling method that combines cooling performed with the above rolls and cooling performed using gas and/or liquid.
A method for manufacturing thin stainless steel sheets. (8) A thin Cr-Ni stainless steel sheet with excellent surface quality and material quality produced by the manufacturing method defined in claim (1) using the component system of claim (2) and the cooling method of claim (7). Production method.
JP28669088A 1988-11-15 1988-11-15 Method for producing Cr-Ni type stainless steel thin plate having excellent surface quality and material Expired - Fee Related JPH0670253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28669088A JPH0670253B2 (en) 1988-11-15 1988-11-15 Method for producing Cr-Ni type stainless steel thin plate having excellent surface quality and material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28669088A JPH0670253B2 (en) 1988-11-15 1988-11-15 Method for producing Cr-Ni type stainless steel thin plate having excellent surface quality and material

Publications (2)

Publication Number Publication Date
JPH02133522A true JPH02133522A (en) 1990-05-22
JPH0670253B2 JPH0670253B2 (en) 1994-09-07

Family

ID=17707714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28669088A Expired - Fee Related JPH0670253B2 (en) 1988-11-15 1988-11-15 Method for producing Cr-Ni type stainless steel thin plate having excellent surface quality and material

Country Status (1)

Country Link
JP (1) JPH0670253B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5281284A (en) * 1991-08-28 1994-01-25 Nippon Steel Corporation Process for producing thin sheet of Cr-Ni-based stainless steel having excellent surface quality and workability
WO2005118902A3 (en) * 2004-04-28 2006-12-21 Nanosteel Co Nano-crystalline steel sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5281284A (en) * 1991-08-28 1994-01-25 Nippon Steel Corporation Process for producing thin sheet of Cr-Ni-based stainless steel having excellent surface quality and workability
WO2005118902A3 (en) * 2004-04-28 2006-12-21 Nanosteel Co Nano-crystalline steel sheet
US7449074B2 (en) 2004-04-28 2008-11-11 The Nano Company, Inc. Process for forming a nano-crystalline steel sheet

Also Published As

Publication number Publication date
JPH0670253B2 (en) 1994-09-07

Similar Documents

Publication Publication Date Title
JPH03100124A (en) Production of cr-ni stainless steel sheet excellent in surface quality
US5030296A (en) Process for production of Cr-Ni type stainless steel sheet having excellent surface properties and material quality
JPH0730406B2 (en) Method for producing Cr-Ni stainless steel sheet with excellent surface quality and material
KR950005320B1 (en) Process for producing thin sheet of cr-ni based stainless steel having excellent surface quality and workability
EP0378705B2 (en) PROCESS FOR PRODUCING THIN Cr-Ni STAINLESS STEEL SHEET EXCELLENT IN BOTH SURFACE QUALITY AND QUALITY OF MATERIAL
JPH0565263B2 (en)
JPH02133522A (en) Production of cr-ni stainless steel sheet having excellent surface quality and material quality
US5188681A (en) Process for manufacturing thin strip or sheet of cr-ni-base stainless steel having excellent surface quality and material quality
JPH02133529A (en) Production of cr-ni stainless steel sheet having excellent surface quality and material quality
JP2532314B2 (en) Method for producing Cr-Ni type stainless steel thin plate excellent in surface quality and workability
JPH0730405B2 (en) Method for producing Cr-Ni type stainless steel thin plate with excellent surface quality
JPH0788534B2 (en) Method for producing Cr-Ni type stainless steel thin plate with excellent surface quality
JP2768527B2 (en) Method for producing thin Cr-Ni stainless steel sheet with excellent workability
JP2002001495A (en) Manufacturing method for austenitic stainless steel sheet iron excellent in surface quality and thin casting slab
KR930000089B1 (en) Process for production of cr-ni type stainless sheet having excellent surface properties and material quality
JPH0342150A (en) Production of cr-ni stainless steel sheet having excellent surface quality
JP2548942B2 (en) Method for preventing cracking during rapid solidification of Fe-Ni based alloy
JPH0735551B2 (en) Method for producing Cr-Ni type stainless steel thin plate with excellent surface quality
JPH0559446A (en) Production of cr-ni stainless steel sheet excellent in surface quality and workability
JPH08176676A (en) Production of chromium-nickel-type stainless steel sheet excellent in surface quality
JPH03107427A (en) Production of cr-ni stainless steel sheet excellent in mechanical property and surface characteristic
JPH04333347A (en) Production of stainless steel cast strip having excellent corrosion resistance and machinability
JPH02267225A (en) Production of cr-ni stainless steel sheet excellent in surface quality
JPH03285023A (en) Production of cr-ni-based stainless steel thin sheet excellent in surface quality and material quality
JPH02263929A (en) Production of cr-ni stainless steel sheet excellent in surface quality

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees