JPH03107427A - Production of cr-ni stainless steel sheet excellent in mechanical property and surface characteristic - Google Patents

Production of cr-ni stainless steel sheet excellent in mechanical property and surface characteristic

Info

Publication number
JPH03107427A
JPH03107427A JP24527289A JP24527289A JPH03107427A JP H03107427 A JPH03107427 A JP H03107427A JP 24527289 A JP24527289 A JP 24527289A JP 24527289 A JP24527289 A JP 24527289A JP H03107427 A JPH03107427 A JP H03107427A
Authority
JP
Japan
Prior art keywords
stainless steel
less
temperature
steel sheet
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24527289A
Other languages
Japanese (ja)
Other versions
JPH07100819B2 (en
Inventor
Masayuki Abe
雅之 阿部
Masanori Ueda
上田 全紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1245272A priority Critical patent/JPH07100819B2/en
Publication of JPH03107427A publication Critical patent/JPH03107427A/en
Publication of JPH07100819B2 publication Critical patent/JPH07100819B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To stably produce a stainless steel sheet excellent in mechanical properties and surface characteristics by successively carrying out the synchronous continuous casting of a cast slab of Cr-Ni stainless steel, the coiling of the cast slab, cold rolling, and annealing treatment under respectively specified conditions. CONSTITUTION:A Cr-Ni stainless steel containing, by weight, 18%Cr-8%Ni as essential component is cast into a cast slab of >=6mm thickness by using a continuous caster of a type where the wall surface of a mold is moved synchronously with a cast slab while regulating cooling rate at the time of solidification to >=30 deg.C/sec. This cast slab is cooled down to 650 deg.C while securing >=20 deg.C/sec average cooling rate, coiled at <=650 deg.C, pickled, and cold-rolled at <=85% rolling reduction, and then, the resulting steel sheet is subjected to control where the relationship between temp. and time is changed in a temp. range of 1000-1300 deg.C and further to annealing where the average crystalline grain size of the material is regulated to grain size No.6-8. By this method, the Cr-Ni stainless steel sheet excellent in mechanical properties and surface characteristics can be stably obtained while obviating the necessity of hot rolling stage.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はCr−Ni系ステンレス鋼板を製造するプロセ
スにおいて鋳片と鋳型内壁面の相対速度差のない、いわ
ゆる同期式連鋳法を用いて連続鋳造に、より鋳片厚さを
製品サイズに近い形で鋳造し、その後冷間圧延及び焼鈍
を規定することにより機械的性質と表面性状を良好にす
る製造方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention uses a so-called synchronous continuous casting method in which there is no relative speed difference between the slab and the inner wall surface of the mold in the process of manufacturing Cr-Ni stainless steel sheets. The present invention relates to a manufacturing method in which mechanical properties and surface properties are improved by continuous casting, in which a slab is cast to a thickness closer to the product size, followed by cold rolling and annealing.

(従来の技術) 従来の連続鋳造法においては鋳型をオシレーションさせ
ながら厚さ100髄以上の鋳片を製造し、その後表面手
入れを行い、加熱炉において1000″C以上に加熱し
た後、粗圧延及び仕上げ圧延からなる連続圧延機によっ
て熱間圧延し、厚さにして数(2) mmのホットストリップを製造してきた。その後この厚
さ数岨のホットストリップを冷間圧延するに際しては最
終製品に要求される形状(平坦さ)、材質、表面性状を
得るために、強い熱間加工を受けたホットストリップを
軟化させるために熱延板焼鈍を行い冷延しやすくすると
ともに、熱間圧延工程でホットストリップに生じたスケ
ール等を、酸洗工程の後に研削によって除去することを
、事前に行うことが必要とされていた。この従来のプロ
セスにおいては長大な熱間圧延設備を必要とするなど多
大なエネルギーが必要となっており生産性という点で最
も優れた製造プロセスとはいい難かった。更に最終製品
は100mm以上の素材から製造されるために集合組織
が発達し、加工時にはその異方性を考慮して加工するこ
とが必要となるなど使用上の制約も多かった。
(Prior art) In the conventional continuous casting method, a slab with a thickness of 100 mm or more is manufactured while oscillating the mold, and then the surface is treated, heated to 1000"C or more in a heating furnace, and then rough rolled. A hot strip with a thickness of several (2) mm has been produced by hot rolling using a continuous rolling mill consisting of a continuous rolling mill consisting of a continuous rolling mill and a finishing rolling process. In order to obtain the required shape (flatness), material quality, and surface properties, hot-rolled sheets are annealed to soften the hot strip that has undergone intense hot processing to make it easier to cold-roll. It was necessary to remove scale, etc. that had formed on the hot strip by grinding after the pickling process.This conventional process required a large amount of hot rolling equipment, etc. It was difficult to say that it was the best manufacturing process in terms of productivity because it required a large amount of energy.Furthermore, because the final product was manufactured from material with a thickness of 100 mm or more, a texture developed, and its anisotropy was affected during processing. There were many restrictions on use, such as the need to take into account the following during processing.

また従来技術における基本的な問題である100mm以
上の厚さを有する鋳片をホットストリップに圧延するた
めに長大な熱間圧延設備と多大なエネルギー、圧延動力
を要すると言う問題を解決すべく、(3) 連続鋳造の過程でホットストリップと同等かあるいはそ
れに近い厚さの鋳片(ストリップ)を得るプロセスの研
究が進められている。例えば「鉄と鋼」85”、八19
7〜85゛、八256において特集された論文にホット
ストリップを連続鋳造によって直接的に得るプロセスが
開示されている。このような連続鋳造プロセスにあって
は得ようとする鋳片(ストリップ)のゲージが1〜10
mmの水準であるときはツインドラム方式が、また鋳片
のゲージが20〜b が専ら適用される。
In addition, in order to solve the fundamental problem in the prior art, that in order to roll slabs with a thickness of 100 mm or more into hot strips, a long hot rolling equipment and a large amount of energy and rolling power are required. (3) Research is underway on a process for obtaining slabs (strips) with a thickness equal to or close to that of hot strips during continuous casting. For example, “Tetsu to Hagane” 85”, 819
A process for obtaining hot strip directly by continuous casting is disclosed in the article featured in No. 7-85, No. 8, 256. In such a continuous casting process, the gauge of the slab to be obtained is 1 to 10.
When it is on the mm level, the twin drum method is exclusively applied, and the gauge of the slab is 20~b.

(発明が解決しようとする問題点) 以上述べたようにCr−Ni系ステンレス網板を製造す
る工程において多大な加熱エネルギー、圧延動力を要す
る長大な熱間圧延設備を用いて鋼板を得ていることは生
産性を低下させコストアップの大きな障害であった。ま
た従来の100mm以上の鋳片より鋼板を得ていたため
に異方性が大きく製品使用時にはその異方性を考慮して
加工する必(4) 要がある等、使用時にも問題が生じていた。また薄鋳片
においては工程が簡略化されるために製品の機械的性質
及びステンレス鋼に必要とされる表面特性が鋳片組織の
影響を大きく受け、これらの課題を改善する必要が生じ
製造上の大きな問題点であった。
(Problems to be Solved by the Invention) As stated above, in the process of manufacturing Cr-Ni stainless steel mesh plates, steel plates are obtained using a long hot rolling facility that requires a large amount of heating energy and rolling power. This was a major obstacle that lowered productivity and increased costs. In addition, since steel plates were obtained from conventional slabs of 100 mm or more, problems also occurred during use, such as the large anisotropy that had to be taken into consideration when processing the product (4). . In addition, because the manufacturing process for thin slabs is simplified, the mechanical properties of the product and the surface properties required for stainless steel are greatly affected by the slab structure, and it is necessary to improve these issues, making it difficult to manufacture. This was a major problem.

(問題点を解決しようとするための手段)このため本発
明者たちはこの機械的性質と表面性状の優れたCr−N
i系ステンレス鋼の安定な製造方法を確立するために研
究を行い以下に述べる要旨の製造方法を確立した。
(Means for solving the problem) For this reason, the present inventors have developed a method using Cr-N, which has excellent mechanical properties and surface properties.
In order to establish a stable manufacturing method for i-series stainless steel, we conducted research and established the manufacturing method as outlined below.

重量%で18%Cr−8%Niを基本成分とするCrN
i系ステンレス鋼を、鋳型壁面が鋳片と同期して移動す
る形式の連続鋳造機を用いて、凝固時の冷却速度を30
″(:/sec以上として厚さ6鵬以下の鋳片を鋳造し
、20℃/SeC以上の平均冷却速度を確保して650
℃まで冷却し650℃以下の温度で捲き取った後、酸洗
を施し、ついで85%以下の圧下率を適用する冷間圧延
を行い、さらに1000℃〜(5)(5) 1300℃の温度域で温度・時間関係を変化させる制御
を行い、材料の平均結晶粒径を粒度番号で6〜8にする
焼鈍を施すことを特徴とする機械的性質と表面性状が優
れたCr−Ni系ステンレス鋼板の製造方法。
CrN whose basic components are 18% Cr-8% Ni by weight%
Using a continuous casting machine in which the mold wall moves in synchronization with the slab, I-series stainless steel is cooled at a cooling rate of 30% during solidification.
'' (: /sec or more, cast a slab with a thickness of 6 or less, ensure an average cooling rate of 20℃/SeC or more, and
After cooling to 1000°C and rolling it up at a temperature of 650°C or less, it is pickled, followed by cold rolling with a rolling reduction of 85% or less, and further at a temperature of 1000°C to (5) (5) 1300°C. Cr-Ni stainless steel with excellent mechanical properties and surface texture, characterized by annealing to bring the average crystal grain size of the material to 6 to 8 in terms of grain size number by controlling the temperature and time relationship in the range. Method of manufacturing steel plates.

さらに鋳造性を良好にするために成分として、重量%で
SiS2.5%、MnS2,0%、S≦0.008%、
N≦0.18%とし、15×S(%)+N(%)く0.
18を満たすことを特徴とする発明である。
Furthermore, in order to improve castability, as components, SiS 2.5%, MnS 2.0%, S≦0.008%,
N≦0.18%, 15×S(%)+N(%)×0.
This invention is characterized by satisfying 18.

以下に本発明の製造方法について詳細に説明する。The manufacturing method of the present invention will be explained in detail below.

主成分として18Cr −8Ni等のCr−Ni系ステ
ンレス鋼の小網塊を実験室で溶解し、鋳片厚で10mm
以下の鋳片を鋳込み種々の冷却速度を鋳片に与えた後巻
取り処理を施し酸洗、冷延を行い、焼鈍を行った後材質
試験を行って機械的性質を評価した。
A small mesh block of Cr-Ni stainless steel with 18Cr-8Ni as the main component is melted in a laboratory, and the slab thickness is 10 mm.
The following slabs were cast, subjected to various cooling rates, then coiled, pickled, cold rolled, annealed, and then subjected to material tests to evaluate mechanical properties.

また異方性の評価としては製品板より圧延方向に対し平
行(L方向)、直角(C方向)、45度(D方向)より
引張試験片を採取し15%の引張試験を行ったときのラ
ンクフォード値(r値)を求め(6) Δr−((r、−+rc +2 rn )/2)lを求
めた。
In addition, for evaluation of anisotropy, tensile test pieces were taken from the product sheet parallel to the rolling direction (L direction), perpendicular to the rolling direction (C direction), and at 45 degrees (D direction), and a 15% tensile test was performed. The Lankford value (r value) was determined and (6) Δr-((r,-+rc+2rn)/2)l was determined.

第1表に供試鋼の成分(wt%)、鋳片厚、捲取温度及
び650℃または捲取温度までの平均冷却速度を示す。
Table 1 shows the composition (wt%), slab thickness, coiling temperature, and average cooling rate to 650° C. or the coiling temperature of the test steel.

また第2表には鋳片を酸洗後、直接冷延を行い焼鈍して
、材質を評価した場合のプロセス条件と材質試験結果を
示す。
Furthermore, Table 2 shows the process conditions and material test results when the slab was pickled, directly cold rolled and annealed, and the material quality was evaluated.

第2表の本発明法の、鋳造後の冷却速度を20℃/se
c以上にし捲取温度を650℃以下とし冷延率85%以
下で製造し焼鈍温度と時間を制御し粒度番号で6〜8の
結晶粒径にしたものは、強度延性が現行プロセス並でし
かも異方性が小さく、表面性状も良好であった。
The cooling rate after casting of the method of the present invention in Table 2 is 20°C/se.
C or higher, the winding temperature is 650℃ or less, the cold rolling rate is 85% or less, the annealing temperature and time are controlled, and the grain size is 6 to 8.The strength and ductility are comparable to the current process. The anisotropy was small and the surface quality was good.

しかし比較法のうち、鋳造後の冷却速度が20℃/se
c以下のNl、N2およびPlについては表面性状が不
良となっており、これは鋳造後の冷却速度が遅いために
冷却中に粒界酸化、Cr炭化物の析出により酸洗時に粒
界腐食が生じ光沢が劣化したことによる。特に捲取温度
を800’CにしたNl、N2及びN3では激しい粒界
腐食を生じ光沢は著しく劣化していた。また冷却速度が
20℃/(7) sec以上であっても、Ml、01のように捲取温度が
650℃以−J−の場合は、捲取り後の冷却中にCr炭
化物が析出し、表面性状が劣化した。
However, among the comparative methods, the cooling rate after casting was 20℃/se.
The surface properties of Nl, N2, and Pl below c are poor, and this is because the cooling rate after casting is slow, resulting in intergranular oxidation during cooling and precipitation of Cr carbides, which causes intergranular corrosion during pickling. This is due to deterioration of gloss. In particular, Nl, N2, and N3, which had a winding temperature of 800'C, caused severe intergranular corrosion and significantly deteriorated gloss. Furthermore, even if the cooling rate is 20°C/(7) sec or more, if the winding temperature is 650°C or higher -J- as in Ml, 01, Cr carbide will precipitate during cooling after winding. The surface quality has deteriorated.

また焼鈍条件が不適切で結晶粒径が小さく、粒度番号で
8より大きくなったA3.A4およびに2については、
強度が高く特に耐力が高いために加工時に問題になる。
In addition, A3. For A4 and 2,
Due to its high strength and particularly high yield strength, it becomes a problem during processing.

これば、焼鈍温度が低すぎたり、焼鈍時間が短時間であ
ることによるためであり、本発明法のような鋳片直接冷
延プロセスにおいては、鋳片に存在するδ−フェライト
(以下、δ−Fe、と略ず)を消滅させるプロセスが、
従来法に比べて大幅に減少するため、焼鈍条件が適切で
ないとδ−Fe、が焼鈍時に消滅せず、粒成長の抑制に
よる細粒化とδ−Fe、の存在による強度の増加が起き
たためである。
This is because the annealing temperature is too low or the annealing time is too short.In the slab direct cold rolling process like the method of the present invention, δ-ferrite (hereinafter referred to as δ The process of annihilating -Fe, abbreviated as
This is because δ-Fe does not disappear during annealing unless the annealing conditions are appropriate, resulting in grain refinement due to grain growth suppression and increased strength due to the presence of δ-Fe. It is.

焼鈍条件により結晶粒径が大きくなり粒度番号が6未満
となったE2.F3については引張時及び加工時に表面
にオレンジビールが発生し表面性状が不良となった。ま
た冷延圧下率が85%を越える冷間圧延を施したN3.
PIではΔrが大きく(8) 異方性がほぼ現行プロセス材並になることが判明した。
E2. The grain size increased due to the annealing conditions and the grain size number became less than 6. Regarding F3, orange beer was generated on the surface during stretching and processing, resulting in poor surface quality. In addition, N3 is cold-rolled with a cold-rolling reduction of over 85%.
It was found that Δr is large in PI (8) and the anisotropy is almost on par with current process materials.

以上示したように、薄鋳片から直接冷延プロセスにおい
て18Cr −8Niに代表されるCr −Ni系ステ
ンレス薄鋼板を製造する場合には、機械的特性等の材質
とステンレス鋼の特徴である表面性状の両特性を満足す
るプロセスを構築する必要があり、本発明法のように凝
固後の冷却から最終焼鈍までのプロセス条件を制御する
ことが必要になる。
As shown above, when producing Cr-Ni stainless thin steel sheets, such as 18Cr-8Ni, directly from thin slabs through the cold rolling process, it is necessary to It is necessary to construct a process that satisfies both properties, and it is necessary to control the process conditions from cooling after solidification to final annealing, as in the method of the present invention.

次に本発明法のプロセス条件の限定理由について説明す
る。
Next, the reasons for limiting the process conditions of the method of the present invention will be explained.

鋳造直後から650℃までの平均冷却速度を20℃/s
ec以上と定めたのは、この温度域では冷却が遅いと、
鋳片のオーステナイト(以下、Tと略す)粒の粗大化に
よる冷延時の冷延板の表面の微細なうねり(ロービング
)が生じたり、粒界酸化やCr炭化物の析出が生じるた
めに、冷延前の酸洗時に粒界腐食が生じ製品には粒界腐
食起因の肌荒れや光沢不良が生じることになるからであ
り、これを防止するためにも650℃までの冷却を平均
冷却速(9) 度を20°(:/sec以上とすることが必要となる。
The average cooling rate from immediately after casting to 650°C is 20°C/s.
The reason for setting it above ec is that cooling is slow in this temperature range.
Due to the coarsening of austenite (hereinafter abbreviated as T) grains in the slab, fine undulations (roving) occur on the surface of the cold-rolled sheet during cold rolling, and grain boundary oxidation and precipitation of Cr carbides occur. This is because intergranular corrosion occurs during the previous pickling process, resulting in rough skin and poor gloss in the product due to intergranular corrosion.To prevent this, the average cooling rate is set to 650°C (9). It is necessary to set the degree to 20° (:/sec or more).

また巻取り中のCr炭化物の析出を防止するためにも巻
取り温度は650℃以下が必要となる。
Further, the winding temperature needs to be 650° C. or lower in order to prevent precipitation of Cr carbides during winding.

冷間圧延率を85%以下と定めたのは、これ以上の冷間
圧延率を鋳片に施すと冷延集合組織が発達し、異方性が
大きくなり従来法の厚さ100mm以−1=の厚スラブ
より製造した製品の異方性と同等になるからである。薄
鋳片から製造する場合異方性は冷延圧下率が小さいほど
異方性は小さく、特に異方性の小さい製品を製造する場
合には、冷延圧下率を70%以下とすることが望ましい
The reason why the cold rolling rate was set at 85% or less is that if the slab is subjected to a cold rolling rate higher than this, the cold rolling texture will develop and the anisotropy will increase. This is because the anisotropy is equivalent to that of a product manufactured from a thick slab of =. When manufacturing from thin slabs, the anisotropy decreases as the cold rolling reduction ratio decreases.In particular, when manufacturing products with small anisotropy, the cold rolling reduction ratio should be 70% or less. desirable.

冷延板の焼鈍について、1000〜1300℃の温度範
囲において温度・時間関係を制御することにより粒度番
号で6〜8と規定したのは、本発明法のように薄肉鋳片
から熱間圧延を省略して直接冷延〜焼鈍するプロセスで
は、従来法のような厚スラブの熱延の加熱のような鋳片
に存在するδ−Fe、を消滅させる工程がないため、最
終焼鈍によりδFe、消滅させ機械的性質を満足させる
必要が生じ、δ−Fe、を消滅させるために成分と焼鈍
を組み合(10) わせることが重要な技術となるからである。
Regarding the annealing of cold-rolled sheets, the reason why the grain size number is specified as 6 to 8 by controlling the temperature/time relationship in the temperature range of 1000 to 1300°C is because hot rolling is performed from thin slabs as in the method of the present invention. In the process of omitting direct cold rolling and annealing, there is no step to eliminate δ-Fe present in the slab, such as heating hot-rolled thick slabs as in the conventional method, so δFe is eliminated by final annealing. This is because it becomes necessary to satisfy the mechanical properties of the steel, and the combination of the component and annealing (10) in order to eliminate δ-Fe becomes an important technique.

特にδ−Fe、の消滅の点で、1000℃以下ではδF
e、の消滅に長時間の焼鈍が必要となり、またγ粒の再
結晶も進行しないため、冷延板の焼鈍温度の下限を10
00℃とした。一方1300℃を越えるとγ粒の再結晶
は進行するが、この温度域でばδFe、相も安定になり
、焼鈍時T単相とならずδFe、相が析出し、δ−Fe
、の存在による強度上昇、伸びの低下、加工性劣化が生
じるため、冷延板の焼鈍温度の上限を1300℃とした
。この時、1粒の平均結晶粒径を粒度番号で6〜8の範
囲としたのは、製品板の粒径が粒度番号で6以下の粗大
な結晶粒になると加工時に肌荒れが顕著になるいわゆる
オレンジピールが発生し美観を大きく損ねることになる
ためであり、また粒度番号で8以上の微細な組織にする
と強度上昇により、伸びの低下、加工性の劣化を生じる
ためである。
Especially in terms of the disappearance of δ-Fe, δF below 1000℃
Since long-time annealing is required for the disappearance of e, and the recrystallization of γ grains does not proceed, the lower limit of the annealing temperature for cold-rolled sheets is set to 10
The temperature was 00°C. On the other hand, when the temperature exceeds 1300°C, the recrystallization of γ grains progresses, but in this temperature range, the δFe phase also becomes stable, and the δFe phase precipitates instead of becoming a T single phase during annealing, and the δ-Fe phase becomes stable.
The upper limit of the annealing temperature of the cold-rolled sheet was set to 1300°C because the presence of , causes an increase in strength, a decrease in elongation, and a deterioration in workability. At this time, the average crystal grain size of one grain was set in the range of 6 to 8 in terms of particle size number.This is because if the grain size of the product plate becomes coarse grains with a particle size number of 6 or less, roughness of the surface becomes noticeable during processing. This is because orange peel will occur, which will greatly impair the aesthetic appearance, and if the grain size number is 8 or more, a fine structure will increase the strength, resulting in a decrease in elongation and deterioration in workability.

これを防止するためには、上述の焼鈍温度範囲における
焼鈍時間を粗粒または細粒すぎないようにすることが必
要で焼鈍時間が長時間になるほど(11) 粗粒になるため、1000〜1300℃の温度範囲で温
度・時間関係を変化させる制御を行い、粒度番号で6〜
8に定めた。
In order to prevent this, it is necessary to make the annealing time in the above annealing temperature range so that the grains are not too coarse or too fine. Control is performed to change the temperature/time relationship in the temperature range of ℃, and the particle size number is 6 to 6.
8.

以上のことについて成分範囲を広げて検討した結果衣に
示す成分系に成立することが判明した。
As a result of expanding the range of ingredients and considering the above, it was found that the ingredient system shown in the batter was established.

なお成分は重量%で示した。In addition, the components are shown in weight%.

C: 0.005〜0.1OSi:2%以下Mn:3%
以下    P  :  0.050%以下S  : 
 0.010%以下  Cr  : 15.0〜30.
ONi:5.0〜15.0    Mo : 3.5%
以下Cu:3.0%以下   A1 :0.1%以下0
  :o、o1%以下   N  :0.25%以下T
i:0.6%以下   Nb:1.0%以下Ca  :
 0.01%以下 以下に成分の限定理由を述べる。
C: 0.005-0.1OSi: 2% or less Mn: 3%
Below P: 0.050% or below S:
0.010% or less Cr: 15.0-30.
ONi: 5.0-15.0 Mo: 3.5%
Below Cu: 3.0% or less A1: 0.1% or less 0
: o, o1% or less N : 0.25% or less T
i: 0.6% or less Nb: 1.0% or less Ca:
The reasons for limiting the ingredients to 0.01% or less will be described.

CTCはステンレス鋼の耐食性には有害な元素である。CTC is an element harmful to the corrosion resistance of stainless steel.

0.005%以下では製造コストを増加させ0.10%
を越えると耐食性を大幅に劣化させるので0.005〜
0.10%とした。
If it is less than 0.005%, the manufacturing cost will increase to 0.10%.
If it exceeds 0.005, the corrosion resistance will be significantly deteriorated.
It was set to 0.10%.

Si:Siはステンレス鋼の耐食性を向上させ(12) また耐酸化性にも有効な元素であるが、高温における延
性を低下させるため2.0%以下とした。
Si: Si is an element that improves the corrosion resistance of stainless steel (12) and is also effective for oxidation resistance, but it is set to 2.0% or less because it reduces ductility at high temperatures.

Mn:Mnは高価なNi の代替として添加でき同時に
Nの固溶度を増すが3.0%を越すと鋳造時の割れが顕
著となるため3.0%以下とした一FDPは耐食性、鋳
造性の点で少ない方が良好であり0.050%以下とし
た。これを越えると耐食性、鋳造性が劣化する。
Mn: Mn can be added as a substitute for the expensive Ni, and at the same time increases the solid solubility of N, but if it exceeds 3.0%, cracking during casting becomes noticeable, so it is kept below 3.0%. In terms of properties, the smaller the content, the better, so the content was set to 0.050% or less. If it exceeds this value, corrosion resistance and castability will deteriorate.

SO3は耐食性、鋳造性の点で少ない方が良好であり0
.010%以下とした。これを越えると耐食性、鋳造性
が劣化する。
In terms of corrosion resistance and castability, less SO3 is better.
.. 0.010% or less. If it exceeds this value, corrosion resistance and castability will deteriorate.

Cr:Crはステンレス鋼の基本成分であり、Ni と
のバランスから15.0〜30.0%とした。15.0
%未満では耐食性が不良となり、30.0%を越えると
高価になる。
Cr: Cr is a basic component of stainless steel, and was set at 15.0 to 30.0% in consideration of the balance with Ni. 15.0
If it is less than 30.0%, corrosion resistance will be poor, and if it exceeds 30.0%, it will be expensive.

Ni:NiはCrと共にステンレス鋼の基本成分であり
、γ安定化元素として添加され、Cr量とのバランスか
ら5.0〜15.0%で添加される。
Ni: Ni is a basic component of stainless steel along with Cr, and is added as a gamma stabilizing element, and is added in an amount of 5.0 to 15.0% in balance with the amount of Cr.

Mo:Moはステンレス鋼の耐食性を向上させる元素で
あり、特に局部腐食を抑制するのに効果(13) 的で、必要に応じて3.5%以下で添加できる。
Mo: Mo is an element that improves the corrosion resistance of stainless steel, and is particularly effective in suppressing local corrosion (13), and can be added in an amount of 3.5% or less if necessary.

Cu:Cuはステンレス鋼の耐食性を向上させる元素で
あり、必要に応じて3.0%以下で添加できる。
Cu: Cu is an element that improves the corrosion resistance of stainless steel, and can be added in an amount of 3.0% or less if necessary.

Al:A1は強力な脱酸剤として0.1%以下で添加す
る。これを越えると耐食性、鋳造性を劣化させる。
Al: A1 is added in an amount of 0.1% or less as a strong deoxidizing agent. Exceeding this will deteriorate corrosion resistance and castability.

0:Oは耐食性、鋳造性の点で少ない方が良好であり0
.010%以下とした。これを越えると耐食性、鋳造性
が劣化する。
0: Less O is better in terms of corrosion resistance and castability;
.. 0.010% or less. If it exceeds this value, corrosion resistance and castability will deteriorate.

N:Nは強力なT安定化元素であり、また耐食性も向上
させる元素であり、0.25%以下で添加できる。0.
25%を越えると鋳造時の割れが顕著となる。
N: N is a strong T stabilizing element and also improves corrosion resistance, and can be added in an amount of 0.25% or less. 0.
If it exceeds 25%, cracks during casting become noticeable.

Ti:TiはCを固定し耐食性を向上させまたCaと共
存して0を固定しS L Mnの酸化物を出現させない
元素であり、必要に応じて0.6%以下で添加できる。
Ti: Ti is an element that fixes C, improves corrosion resistance, coexists with Ca, fixes 0, and prevents the appearance of oxides of S L Mn, and can be added in an amount of 0.6% or less, if necessary.

Nb:NbはCを固定し耐食性を向上させる元素であり
、必要に応じて1.0%以下で添加できる。
Nb: Nb is an element that fixes C and improves corrosion resistance, and can be added in an amount of 1.0% or less if necessary.

(14) Ca:Caは強力な脱酸、脱硫剤として効果的で0.0
1%以下で添加できる。これを越えると表面性状を不良
にする。
(14) Ca: Ca is effective as a strong deoxidizing and desulfurizing agent.
It can be added at 1% or less. Exceeding this will result in poor surface quality.

以上の発明は、機械的性質と表面性状の優れたCr−N
i系ステンレス鋼を、薄鋳片から直接冷延−焼鈍という
プロセスで製造することを目的としたものであるが、上
記の発明に鋳片割れ防止対策を織り込むことで、鋳造時
の操業性、また歩留りとい観点からさらに優れたプロセ
スを構築できる。このため発明者等は、急冷載置される
薄鋳片の割れを防止する手段として、成分の点から凝固
直後の材料(鋳片)に延性を付与する方向で研究を進め
た。各種の合金について、丸棒引張試験片を通電加熱し
平行部中央が溶融開始するまで昇温し測温しつつ溶融を
継続しその後20℃/5ecT:急冷して融点直下の温
度で保持し、引張試験を実施し破断までの試験片の絞り
(%)と引張強度を測定した。特に絞りが50x以」二
となる温度に注目し合金組成の研究を実施した。調査し
た合金組成はCr−Ni系ステンレス鋼であり次のよう
な組成(15) を有するものである。組成は重量%で表示している。
The above invention is based on Cr-N which has excellent mechanical properties and surface properties.
The purpose of this invention is to manufacture i-series stainless steel directly from thin slabs through a process of cold rolling and annealing, but by incorporating measures to prevent slab cracking into the above invention, it has improved operability during casting, and It is possible to create a process that is even better in terms of yield. For this reason, the inventors have conducted research in the direction of imparting ductility to the material (slab) immediately after solidification from the viewpoint of the composition as a means of preventing cracking of thin slabs that are placed for rapid cooling. For various alloys, a round bar tensile test piece was electrically heated, the temperature was raised until the center of the parallel part started melting, and the melting was continued while measuring the temperature. Then, it was rapidly cooled at 20 ° C / 5 ecT and held at a temperature just below the melting point. A tensile test was conducted, and the reduction of area (%) and tensile strength of the test piece until breakage were measured. We conducted research on the alloy composition, paying particular attention to the temperature at which the aperture becomes 50x or more. The investigated alloy composition is Cr-Ni stainless steel and has the following composition (15). Compositions are expressed in weight percent.

C:  0.005〜0.10 Mn:0〜3.0 S  : 0.0003〜0.04 Ni:5.0〜15.0 Cu:O〜3.0 0  :  0.002〜0.011 Ti:O〜0.6 Ca  : O〜0.01 これらの検討の結果、合金の凝固直後の延性にきわめて
顕著な作用を及ぼす成分が認められた。
C: 0.005-0.10 Mn: 0-3.0 S: 0.0003-0.04 Ni: 5.0-15.0 Cu: O-3.0 0: 0.002-0.011 Ti: O~0.6 Ca: O~0.01 As a result of these studies, it was found that there are components that have a very significant effect on the ductility of the alloy immediately after solidification.

ステンレス鋼の主要成分であるCr、Ni、Mo等は余
り大きな影響を及ぼさないが、S i、 Mn、 S 
、 N。
The main components of stainless steel, such as Cr, Ni, and Mo, do not have much of an effect, but Si, Mn, and S
,N.

P、O等の影響が顕著である。第3図は特願昭6216
7633号(特開昭64−11925号)で開示したも
のであるが溶融グリ−プル試験において、溶融後融点直
下の各種温度で引張試験を実施し、絞りが50%に達す
る温度を示したものである。図中での大部分の検討は■
に示す18Cr −8Ni −0,6SiSi:0〜4
.0 P   :  0.001〜0.050Cr  : 1
5.(1−30,0 Mono〜3.5 A1 : 0〜0.5 N :  0.005〜0.25 Nb:O〜0.8 (16) 1 、2Mnを基本成分系とする合金で検討した。■に
示す通りこれらの成分系では融点直下で50%に達する
温度が1330℃程度で、■に示すようにSを変えると
大きく変動し低Sでは1340℃1高Sでは1300“
Cに低下する。なおこの温度はグリ−プル試験片の表面
温度である。試験片中心部の割れはデンドライトの境界
面に沿って、残留した液層に沿って伝播しており液膜脆
化と考えられる。ところが■に示した18Cr  8N
iでSiを0.2%、Mnを0.2%にし、Sを0.0
01%の基本成分系にしたものでは、上記の温度が13
50″C以上になり1370〜1380℃に近ずくこと
が判明した。こうして■の合金は融点直下から延性が大
きく、きわめて割れが生じにくい。■に示す通り、Si
、Mn量を変化させた成分系ではこの温度が大きく変動
することを開示した。
The influence of P, O, etc. is significant. Figure 3 is patent application No. 6216.
No. 7633 (Japanese Unexamined Patent Publication No. 11925/1983), tensile tests were carried out at various temperatures just below the melting point after melting in the melt Greeple test, and the temperature at which the reduction of area reached 50% was shown. It is. Most of the considerations in the figure are ■
18Cr-8Ni-0,6SiSi: 0 to 4 shown in
.. 0P: 0.001~0.050Cr: 1
5. (1-30,0 Mono ~ 3.5 A1: 0 ~ 0.5 N: 0.005 ~ 0.25 Nb: O ~ 0.8 (16) An alloy containing 1,2Mn as the basic component was investigated. As shown in ■, in these component systems, the temperature that reaches 50% just below the melting point is around 1330℃, and as shown in ■, it changes greatly when S is changed, and the temperature is 1340℃ for low S and 1300℃ for high S.
It drops to C. Note that this temperature is the surface temperature of the Greeple test piece. The crack in the center of the specimen propagated along the dendrite interface and the remaining liquid layer, and is thought to be caused by liquid film embrittlement. However, 18Cr 8N shown in ■
In i, Si is 0.2%, Mn is 0.2%, and S is 0.0.
In the case of the basic component system of 0.01%, the above temperature is 13%.
It was found that the temperature exceeds 50"C and approaches 1370-1380°C. Thus, the alloy (■) has high ductility just below the melting point and is extremely difficult to crack. As shown in (■), the Si
, disclosed that this temperature fluctuates greatly in a component system in which the amount of Mn is changed.

本発明者等は、更にこのSi、Mnについて検討を進め
たところこの融点直下の延性の変化は第1図に示すよう
にSi量に大きく依存し、Mn量には大きく依存しない
ことが判明した。この第1図(17) よりSiを045%以下にした場合はMnは2%までは
許容される。また第2図に示すようにSとNの関係につ
いて整理したところS、Nが増加するほど高温の延性は
低下する傾向がみられ15×S(%)→−N(%)が0
.18を越えると延性低下が顕著となる。18Cr−8
Ni基本成分系としたものではSi、Mn、 S 、 
N 、○等の影響が大きく、延性に大きく影響する成分
としてSi、Mn、 S 、 Nについて融点直下での
延性不足による割れ等に起因する表面特性の劣化を防ぐ
成分範囲を以下のように定めた。
The inventors further investigated Si and Mn and found that the change in ductility just below the melting point depends largely on the amount of Si, but not on the amount of Mn, as shown in Figure 1. . From FIG. 1 (17), when Si is set to 0.45% or less, Mn is allowed up to 2%. Furthermore, as shown in Figure 2, when we organized the relationship between S and N, we found that as S and N increase, the ductility at high temperatures tends to decrease.
.. When it exceeds 18, the ductility decreases significantly. 18Cr-8
In the Ni basic component system, Si, Mn, S,
For Si, Mn, S, and N, which have a large effect on ductility due to the influence of N, ○, etc., the range of components to prevent deterioration of surface properties due to cracking due to lack of ductility just below the melting point is determined as follows. Ta.

Si:0〜0.5% Mn:O〜2.0% S  : 0〜0.008% N  : 0〜0.18% また10x S + N <0.18 (実施例) 本発明を実施例により更に詳しく説明する。Si: 0-0.5% Mn: O~2.0% S: 0-0.008% N: 0-0.18% Also 10x S + N <0.18 (Example) The present invention will be explained in more detail with reference to Examples.

実験室の1 ton規模の電気炉とVODで第3表(1
8) に示す成分の合金を溶製した。これらの合金を内部水冷
型の双ロール鋳造機において2.4 mm厚、800m
m幅の鋳片に連続鋳造し水冷により1000℃までを1
20℃/sec 、  650℃までの平均冷却速度を
45℃/secとして冷却を行い550℃で巻取りを行
った。その後この鋳片に対して、酸洗〜冷延〜焼鈍を第
4表に示す条件で行い材質を評価したが表4に示すよう
な材質が得られ、機械的性質と表面特性が優れたCr−
Ni系ステンレス鋼が製造できた。
Table 3 (1
8) An alloy having the components shown in the following was melted. These alloys were cast in a twin roll casting machine with internal water cooling to a thickness of 2.4 mm and 800 m.
Continuously cast into m-wide slabs and heated up to 1000℃ by water cooling.
Cooling was carried out at 20°C/sec and an average cooling rate of 45°C/sec up to 650°C, and winding was performed at 550°C. Afterwards, this slab was subjected to pickling, cold rolling, and annealing under the conditions shown in Table 4 to evaluate its material quality, and the material shown in Table 4 was obtained. −
Ni-based stainless steel was successfully manufactured.

きた。came.

(発明の効果) 本発明によれば、製品形状に極力近い形の鋳片を利用し
て熱延工程を省略化することにより経済的にも優れ、な
おかつ材質、表面特性が優れたCrNi系ステンレス鋼
を安定して製造できることになり、本発明はきわめて工
業的価値が大きい製造方法である。
(Effects of the Invention) According to the present invention, the CrNi stainless steel is economically superior by omitting the hot rolling process by using a slab with a shape as close as possible to the product shape, and is also excellent in material and surface properties. Since steel can be manufactured stably, the present invention is a manufacturing method of extremely great industrial value.

(19) 特開平3 107427 (8) 特開平3 107427 (11)(19) Unexamined Publication Hei 3 107427 (8) Unexamined Publication Hei 3 107427 (11)

【図面の簡単な説明】[Brief explanation of drawings]

第1図は18Cr−8Ni  0.003S系に置ける
MnとStの融点直下の延性に対する影響を溶融後の引
張試験で調べた結果を示す図であり、絞りが50%にな
る温度が1350℃以上を011350℃未満を×で示
した。第2図は18Cr −8Ni −0,3Si −
0,4Mn系に置けるSとNの融点直下の延性に対する
影響を溶融後の引張試験で調べた結果を示す図であり、
絞りが50%になる温度が1350℃以上を02135
0℃未満を×で示した。第3図は各種合金の溶融後の引
張試験において、絞りが50%に達する温度を示した図
である。 (25) 手 続 補 正 書(方式) %式% 事件の表示 平成1年特許願第245272号 2゜ 発明の名称 機械的性質と表面性状が優れたCr Ni系 ステンレス鋼板の製造方法 3゜ 補正をする者 事件との関係
Figure 1 shows the results of a post-melting tensile test to investigate the influence of Mn and St on ductility just below the melting point in the 18Cr-8Ni 0.003S system, and the temperature at which the reduction of area becomes 50% is 1350°C or higher. The temperature below 011350°C is indicated by ×. Figure 2 shows 18Cr -8Ni -0,3Si -
It is a figure showing the results of examining the influence of S and N on ductility just below the melting point in the 0,4Mn system by a tensile test after melting.
02135 The temperature at which the aperture becomes 50% is 1350℃ or higher.
Temperatures below 0°C are indicated by x. FIG. 3 is a diagram showing the temperature at which the reduction of area reaches 50% in a tensile test after melting various alloys. (25) Procedural amendment (method) % formula % Display of case 1999 Patent Application No. 245272 2゜ Title of invention Method for manufacturing Cr Ni stainless steel sheet with excellent mechanical properties and surface properties 3゜ Amendment Relationship with the incident

Claims (1)

【特許請求の範囲】 1、重量%で18%Cr−8%Niを基本成分とするC
r−Ni系ステンレス鋼を、鋳型壁面が鋳片と同期して
移動する形式の連続鋳造機を用いて、凝固時の冷却速度
を30℃/sec以上として厚さ6mm以下の鋳片を鋳
造し、20℃/sec以上の平均冷却速度を確保して6
50℃まで冷却し650℃以下の温度で捲き取った後、
酸洗を施し、ついで85%以下の圧下率を適用する冷間
圧延を行い、さらに1000℃〜1300℃の温度域で
温度・時間関係を変化させる制御を行い、材料の平均結
晶粒径を粒度番号で6〜8にする焼鈍を施すことを特徴
とする機械的性質と表面性状が優れたCr−Ni系ステ
ンレス鋼板の製造方法。 2、重量%で18%Cr−8%Niを基本成分とする前
記Cr−Ni系ステンレス鋼が、さらにSi≦0.5%
、Mn≦2.0%、S≦0.008%、N≦0.18%
であって、15×S(%)+N(%)<0.18なる関
係を満足するものであることを特徴とする請求項1記載
の方法。
[Claims] 1. C whose basic components are 18% Cr-8% Ni by weight%
Cast r-Ni stainless steel into slabs with a thickness of 6 mm or less using a continuous casting machine in which the mold wall surface moves in synchronization with the slab, with a cooling rate of 30 ° C / sec or more during solidification. , ensuring an average cooling rate of 20°C/sec or more
After cooling to 50℃ and rolling it up at a temperature of 650℃ or less,
Pickling is performed, followed by cold rolling with a rolling reduction of 85% or less, and the temperature/time relationship is controlled in a temperature range of 1000°C to 1300°C to determine the average grain size of the material. A method for manufacturing a Cr-Ni stainless steel sheet with excellent mechanical properties and surface properties, which comprises annealing to a number of 6 to 8. 2. The Cr-Ni stainless steel whose basic components are 18% Cr-8% Ni by weight, further contains Si≦0.5%
, Mn≦2.0%, S≦0.008%, N≦0.18%
2. The method according to claim 1, wherein the method satisfies the following relationship: 15×S(%)+N(%)<0.18.
JP1245272A 1989-09-22 1989-09-22 Method for producing Cr-Ni-based stainless steel sheet having excellent mechanical properties and surface properties Expired - Fee Related JPH07100819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1245272A JPH07100819B2 (en) 1989-09-22 1989-09-22 Method for producing Cr-Ni-based stainless steel sheet having excellent mechanical properties and surface properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1245272A JPH07100819B2 (en) 1989-09-22 1989-09-22 Method for producing Cr-Ni-based stainless steel sheet having excellent mechanical properties and surface properties

Publications (2)

Publication Number Publication Date
JPH03107427A true JPH03107427A (en) 1991-05-07
JPH07100819B2 JPH07100819B2 (en) 1995-11-01

Family

ID=17131213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1245272A Expired - Fee Related JPH07100819B2 (en) 1989-09-22 1989-09-22 Method for producing Cr-Ni-based stainless steel sheet having excellent mechanical properties and surface properties

Country Status (1)

Country Link
JP (1) JPH07100819B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993021355A1 (en) * 1992-04-16 1993-10-28 Nippon Steel Corporation Austenitic stainless steel sheet with excellent surface quality and production thereof
KR20160078107A (en) * 2014-12-24 2016-07-04 주식회사 포스코 Austenite stainless steel and the manufacture method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197247A (en) * 1986-02-21 1987-08-31 Nippon Yakin Kogyo Co Ltd Production of thin autstenitic stainless steel strip
JPS63421A (en) * 1986-06-19 1988-01-05 Nippon Steel Corp Novel production of thin austenitic stainless steel sheet having excellent surface characteristic and material quality
JPS63216924A (en) * 1987-03-03 1988-09-09 Nippon Steel Corp Manufacture of cr-ni stainless steel having high resistance to rust formation and excellent in polishability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62197247A (en) * 1986-02-21 1987-08-31 Nippon Yakin Kogyo Co Ltd Production of thin autstenitic stainless steel strip
JPS63421A (en) * 1986-06-19 1988-01-05 Nippon Steel Corp Novel production of thin austenitic stainless steel sheet having excellent surface characteristic and material quality
JPS63216924A (en) * 1987-03-03 1988-09-09 Nippon Steel Corp Manufacture of cr-ni stainless steel having high resistance to rust formation and excellent in polishability

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993021355A1 (en) * 1992-04-16 1993-10-28 Nippon Steel Corporation Austenitic stainless steel sheet with excellent surface quality and production thereof
US5376195A (en) * 1992-04-16 1994-12-27 Nippon Steel Corporation Austenitic stainless steel sheet having excellent surface quality and method of producing the same
KR20160078107A (en) * 2014-12-24 2016-07-04 주식회사 포스코 Austenite stainless steel and the manufacture method

Also Published As

Publication number Publication date
JPH07100819B2 (en) 1995-11-01

Similar Documents

Publication Publication Date Title
JP5728547B2 (en) Low density steel with good stamping performance
US6500280B2 (en) Ferritic Cr-containing steel sheet having excellent ductility, formability, and anti-ridging properties
JP4214671B2 (en) Ferritic Cr-containing cold-rolled steel sheet excellent in ductility, workability and ridging resistance and method for producing the same
JP3806186B2 (en) Method for producing ferritic stainless steel with excellent anti-roping properties
JP3941363B2 (en) Ferritic stainless cold-rolled steel sheet excellent in ductility, workability and ridging resistance, and method for producing the same
JPH0681036A (en) Production of ferritic stainless steel sheet excellent in ridging characteristic and workability
JPH0730406B2 (en) Method for producing Cr-Ni stainless steel sheet with excellent surface quality and material
JPS62199721A (en) Production of steel sheet or strip of ferritic stainless steel having good workability
JPS5943824A (en) Manufacture of cold rolled steel plate for press forming
JPH03107427A (en) Production of cr-ni stainless steel sheet excellent in mechanical property and surface characteristic
JPH06240355A (en) Production of high toughness thick tmcp steel plate
JPS6325055B2 (en)
JPS61272321A (en) Manufacture of ultra high-strength cold rolled steel sheet
EP0378705A1 (en) PROCESS FOR PRODUCING THIN Cr-Ni STAINLESS STEEL SHEET EXCELLENT IN BOTH SURFACE QUALITY AND QUALITY OF MATERIAL
JP2512650B2 (en) Method for producing Cr-Ni type stainless steel thin plate excellent in material and surface quality
JPS6337166B2 (en)
JPS6234803B2 (en)
JPH0730407B2 (en) Method for producing Cr-Ni type stainless steel thin plate with excellent surface quality
JPH01240618A (en) Production of cr-ni stainless steel sheet having small anisotropy and excellent surface characteristic
KR100363420B1 (en) Manufacturing method of hot annealed cold rolled steel sheet for processing using mini mill process
JPH04333347A (en) Production of stainless steel cast strip having excellent corrosion resistance and machinability
JPH0670253B2 (en) Method for producing Cr-Ni type stainless steel thin plate having excellent surface quality and material
JPH04341521A (en) Production of hot rolled strip of ferrite single phase stainless steel excellent in ridging resistance
JPH0339420A (en) Production of gamma-alpha duplex stainless steel sheet having coarse graining-prevented weld zone
JPH0250978B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees