JPH0250978B2 - - Google Patents

Info

Publication number
JPH0250978B2
JPH0250978B2 JP59274459A JP27445984A JPH0250978B2 JP H0250978 B2 JPH0250978 B2 JP H0250978B2 JP 59274459 A JP59274459 A JP 59274459A JP 27445984 A JP27445984 A JP 27445984A JP H0250978 B2 JPH0250978 B2 JP H0250978B2
Authority
JP
Japan
Prior art keywords
amount
less
effective
steel
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59274459A
Other languages
Japanese (ja)
Other versions
JPS61157660A (en
Inventor
Yasushi Tanaka
Hisao Kawase
Tooru Fujita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP27445984A priority Critical patent/JPS61157660A/en
Publication of JPS61157660A publication Critical patent/JPS61157660A/en
Publication of JPH0250978B2 publication Critical patent/JPH0250978B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、高延性並びに超深絞り性を具備した
非時効性冷延鋼板およびその製造法に関する。 〔従来の技術〕 例えば、自動車のクオーターパネル、フエンダ
ー、オイルパンなどは、非常に苛酷なプレス加工
によつて成形されねばならない。従つて、このよ
うな成形品に使用される冷延鋼板には、高い延性
と超深絞り性を具備することが要求される。そし
て非時効性であることも必要である。このような
要求に対する対応として、従来より、バツチ式オ
ープンコイル焼鈍によつて脱炭焼鈍した冷延鋼板
を適用するか、或いは、炭窒化物形成元素である
Ti,Nb,Crなどを単独或いは複合添加すること
によつて鋼中のCやNを固定して延性を高め且つ
非時効性を確保すると共に、TiやNbの炭窒化物
の作用によつて深絞り性の向上に有効な{111}
方位の再結晶集合組織を発達させた深絞り用非時
効性冷延鋼板を適用することが提案されている。 後者の炭窒化物形成元素添加鋼に関して、例え
ば特公昭44―18066号公報、特開昭59―67322号公
報および特開昭59―89727号公報などにはTi添加
鋼が開示され、特公昭54―1245号公報、特公昭59
―34778号公報および特開昭58―81952号公報など
にはNb添加鋼が開示され、特公昭50―30572号公
報および特開昭58―185752号公報などにはTi,
Cr添加鋼が開示され、特開昭59―67319号公報に
はTi,Nb添加鋼が開示され、そして、特開昭59
―123720号公報にはTi,Nb,Cr添加鋼が開示さ
れている。 〔発明が解決しようとする問題点〕 前述のような要求を満たそうとしても、脱炭焼
鈍鋼では、罫晶粒径が大きくなり易くてプレス成
形時にオレンジピール等の肌荒れが発生しやすい
という問題がある。Ti添加鋼およびTi,Cr鋼で
は、TiはO,Sとの結合力が強くて酸化物、硫
化物を形成するので、CやNを固定することによ
つて非時効性を確保するには、C,Nをに対する
化学量論的当量の数倍以上のTi量を添加する必
要がある。製造原価を低くすること並びに延性を
より高くするには、Ti含有量は非時効性を確保
する範囲内で可能な限り低くすることが望まし
く、このためにはC量および固溶Ti量(有効Ti
量からTiCとしてのTi量を差し引いた量)を低減
することが考えられるが、C量および固溶Ti量
をあまり低減しすぎると、γ値の面内異方性
〔Δγ=(γ0゜+γ90゜−2γ45゜)/2〕が大きくな
り、
γminであるγ45゜が低下してプレス加工性に問題が
残る。Nb添加鋼においては、最近の鋼の脱ガス
処理技術の進展に伴つてC<50ppmの範囲にCが
比較的容易に低減できるようになつたこと等から
前述の特開昭59―123720号公報などのようにCお
よびNb量の非常に少ないNb添加鋼の製造法が提
案されているが、Nb添加鋼は700℃以上の高温巻
き取りをしないと、通常の巻取温度では再結晶温
度が高くなり、焼鈍時とくに連続焼鈍時の焼鈍温
度をTi添加鋼よりもさらに高くする必要がある。
また、高温巻取をしても、熱延コイルの長手方向
の端部は、冷却速度が速いために均質な材質のも
のが得られないという問題がある。 またTi量を減少して延性を高めると共ににTi
に加えてNb,Crを複合添加することによつてγ
値の面内異方性等が改善されることが前述の特開
昭59―67319号公報や特開昭59―123720号公報に
述べられているが、実際に調査研究して見ると、
かような製造法では、Nb含有量が少なすぎるた
めであるとも考えられるが、70〜80%の高冷延率
を採用してもγ値の面内異方性が大きく現れ、
γminであるγ45゜が小さくなりすぎて、プレス成形
性にやはり問題がある。なお、冷延率を80%以上
にすることによつてγminを高めてγ値の面内異
方性を改善することも考えられるが、板厚の大き
な冷延鋼板成品に対しては、熱延板の板厚をルー
チンな板厚以上に大きく採ることが必要となつて
実操業上に問題が生ずると共に冷延機の能力上の
問題も生ずる。 〔問題点を解決するための手段〕 本発明は、上述のような問題点を解決すること
を目的として、Ti,Nb,Cr添加鋼において、C
およびTi量を所定の値以下に低減しながら、Nb
を所定量以上で且つ〔有効Ti量〕との関連量で
添加するという処法を採用するものである。すな
わち、本発明は、重量%において、 C;0.001〜0.01%未満、 Si;0.1%以下、 Mn;0.5%以下、 Sol.Al;0.01〜0.10%、 Cr;0.06〜0.20%、 P;0.03%以下、 S;0.015%以下、 N;0.007%以下、 O;0.01%以下、 Ti;下式(1)に従う〔有効Ti量〕が4×C%以
上で且つこの〔有効Ti量〕が0.15%以下、 Nb;0.05%以上で且つ〔有効Ti量〕との関連
で〔有効Ti量〕+Nb≦0.20%を満足する範
囲、 残部;Feおよび不可避的不純物、 〔有効Ti量〕=全Ti量−〔N%×(48/14)+S%
×(48/32)+O%×(48/12)×1/2〕
…(1) からなる深絞り用非時効性冷延鋼板を提供するも
のであり、そして、 重量%において、 C;0.001〜0.01%未満、 Si;0.1%以下、 Mn;0.5%以下、 Sol.Al;0.01〜0.10%、 Cr;0.06〜0.20%、 P;0.03%以下、 S;0.015%以下、 N;0.007%以下、 O;0.01%以下、 Ti;下式(1)に従う〔有効Ti量〕が4×C%以
上で且つこの〔有効Ti量〕が0.15%以下、 Nb;0.05%以上で且つ〔有効Ti量〕との関連
で〔有効Ti量〕+Nb≦0.20%を満足する範
囲、 残部;Feおよび不可避的不純物、 〔有効Ti量〕=全Ti量−〔N%×(48/14)+S%
×(48/32)+O%×(48/12)×1/2〕
…(1) からなる鋼のスラブを熱間圧延したあと、圧下率
が40%以上90%以下で冷間圧延し、次いで、再結
晶温度以上900℃以下の温度で焼鈍することから
なる深絞り用非時効性冷延鋼板の製造法、を提供
するものである。 本発明載の優れた特性については後記実施例に
おいて具体的に示すが、化学成分値の限定理由の
概要を説明すると次のとおりである。 Cは、その含有量が少ないほど冷延鋼板の延性
を高めるうえで好ましく、また、0.01%以上にな
ると、炭窒化物形成元素を多く必要とし且つ炭窒
化物の析出量の増大によりプレス成形性を劣化さ
せるようになる。他方、実用規模の製鋼炉におい
てC含有量を0.001%未満にまで低減することは
困難である。このような理由によりC;0.001〜
0.01%未満とする。 Siは溶鋼の脱酸、Mnは熱間脆性の防止を主目
的として添加されるが、SiおよびMnはいずれも
多量に添加しすぎると延性を低下させる。本発明
鋼においては、通常の冷延鋼板に含まれる量のSi
≦0.1%、Mn≦0.5%までは許容され、この量の
範囲であれば既述の目的は十分に達成される。 Alは、溶鋼の脱酸を目的に添加されるが、そ
の量が鋼中のSol.Al(酸可溶Al)で0.01%未満と
なるような量ではその目的が十分に達成できな
い。またSol.Alが0.10%を越えるような量となる
とその効果が飽和すると共に、かえつて非金属介
在物を増加させて表面疵の原因となるのでSol.Al
の量として0.01〜0.10%とする。 Crは、これ単独では本発明が目的とする好ま
しい結果が得られないが、TiおよびNbと複合添
加することによつて、深絞り性および張り出し性
を向上させる作用を発揮するようになる。しか
し、Cr含有量が0.06%未満ではこのような効果が
なく、また、0.20%を越えるような量ではこの効
果が飽和し、製造原価を高めるだけになる。従つ
て、0.06〜0.20%の範囲でCrを含有させるが、こ
のCrは本発明鋼において重要な働きをもつ。 Pは、余り多く添加すると、降状強度および引
張強度を高めるようになるし、また極低C鋼にお
いては、粒界への偏析を起こして二次加工割れの
原因となるので、その含有量の上限を0.03%とす
る。 Nは、少なければ少ないほど、Ti添加量が少
なくてすむので望ましく、またNが多くなり過ぎ
ると〔有効Ti量〕を減少させ且つ最終製品のプ
レス成形性を劣化させるので、その許容限度とし
てN≦0.007%とする。 S,Oは、いずれも〔有効Ti量〕を減少させ、
これらが多くなると〔有効Ti量〕を確保するた
めの全Ti量が増加するようになり、且つ表面性
状を劣化させることから、S,Oの許容限度をそ
れぞれS≦0.015%、O≦0.01%とする。 Tiは、CおよびNを固定することによつて冷
延鋼板の非時効性を確保させると共に、生成した
TiCが、深絞り性の向上に有効な〔111〕方位の
再結晶集合組織にする作用を供する。このために
は、前述の(1)式で示される〔有効Ti量〕が、4
×C%以上必要である。しかし、Ti量が0.15%を
越えるようになると、フエライト中に固溶する
Ti量が多くなつて降伏強度の上昇および延性の
低下をもたらす。そして、製造原価を高めること
にもなる。従つて、Tiは、〔有効Ti量〕が4×C
%以上で且つ0.15%以下とする。なお、本発明鋼
においては、Tiに加えてNbを複合添加すること
によつて、少ないTi添加量でもγ値の面内異方
性を改善するものであり、Nbとの関連した〔有
効Ti量〕の上限が存在し、〔有効Ti量〕+Nbの合
計量が、後述のように0.20%までとする。 Nbは、Tiと複合添加することによつて、C含
有量およびTi含有量を本発明のように低下させ
ても、著しく改善させることができる。このよう
な効果は、Nb量が(0.2%―〔有効Ti量〕)以下
の量で達成され、これ以上のNb量を添加すると
再結晶温度の上昇および延性の低下をもたらす。
従つて、〔有効Ti量〕+Nb≦0.2%以下とする。し
かし、Nb量が0.05%未満ではγ値の面内異方性
改善効果が得られない。 このようにして、本発明はTi,Nb,Cr添加鋼
において、CおよびTi量を所定の値以下に低減
しながら、Nbを所定量以上で且つ〔有効Ti量〕
との関連量で複合添加することによつて、延性を
低下させることなく且つ非時効性を確保し、そし
て面内異方性の少ない高いγ値を持つた深絞り用
非時効性冷延鋼板とするものであるが、この冷延
鋼板の製造にあたつては、次のような条件で行う
のがよい。 先ず、製鋼炉で鋼を溶製し、造塊或いは連続鋳
造前において、真空脱ガス処理を行うのが望まし
い。これによつて、鋼中のC,Oを前述の如く低
下させ且つ既述のような成分範囲に高い歩留りを
もつて調整することが有利に実施できる。この真
空脱ガス処理を行うに当たつては、脱酸処理のた
めにAlを添加することもできる。C,Oを調整
し且つ合金鉄添加によつて前記の成分範囲に調整
したあと、造塊、分塊圧延或いは連続鋳造によつ
てスラブを製造し、必要に応じてスラブ手入れを
行つたあと、熱間圧延を行う。 この熱間圧延の実施に際しては、深絞り性向上
の観点から熱延仕上温度をAr3点以上にするのが
望ましい。また熱延巻取温度は650〜750℃の範囲
とするのがよい。次いで酸洗したあと、冷間圧延
を行うが、この冷間圧延は、深絞り性に有利な
〔111〕方位の集合組織を発達させるうえで、その
冷延率は40%以上を必要とするが、90%を超える
高冷延率としても、深絞り性の向上効果は飽和す
るとともに、非常にコスト高となることから、冷
延率の上限は90%とするのがよい。 次いで焼鈍を行うが、この焼鈍はバツチ式焼鈍
でも連続焼鈍のいずれでもよく、再結晶温度以上
900℃以下の温度範囲で行うことによつて、優れ
たプレス成形性が得られる。より具体的には、バ
ツチ焼鈍では700℃以上850℃以下の焼鈍温度、ま
た連続焼鈍では750℃以上900℃以下の焼鈍温度と
すればよい。 このようにして、本発明によると、高いγ値を
維持すると同時にγminが高くて面内異方性の少
ない点で、従来、例えば特開昭59―123720号公報
に提案されたようなTi,Nb,Cr鋼に比べて一層
苛酷なプレス成形に耐える経済的な深絞り用非時
効性冷延鋼板が提供される。 〔実施例〕 実施例 1 第1表に示す化学成分の鋼をそれぞれ30Kg真空
溶解炉で溶製し、加熱温度1250℃で熱間鍛造した
あと、仕上温度880〜940℃、巻取温度700〜720℃
で熱間圧延し、板厚5mmの熱延板とした。これを
酸洗したあと、板厚1.2mmまで冷間圧延し、この
各冷延板を800℃に4時間保持するバツチ式焼鈍
を行つた。得られた冷間圧延の機械的特性値を第
2表に示した。 第1表〜第2表に示されるように、No.1〜No.7
の鋼は、いずれも全伸びが52.5%以上と高く、そ
して、値が1.87〜2.20と高いだけでなく、γ値
の面内異方性(Δγ)が著しく改善されており、
γminであるγ45゜が1.70以上となつている。それゆ
え、本発明鋼は高延性と超深絞り性を具備した非
時効性冷延鋼板であることがわかる。 これに対し、比較鋼No.8〜12(Nbが本発明で規
定する0.05%未満である)は、全伸びについては
54.2%以上と高いが、Δγが0.98〜1.29と大きく、
γminであるγ45゜が1.52以下と低い値があり、深絞
り性に問題がある。 また、Ti量が多いNo.13の鋼は、は1.94、
γminは1.86と高くΔγも0.32と小さいので深絞り
性は十分ではあるが、全伸びは50.8と本発明鋼に
比べて低い。 そして、Cr無添加のNo.14と、C量の多いNo.15
の鋼は、いずれも、No.13と同様に全伸びが低い。
[Industrial Application Field] The present invention relates to a non-aging cold rolled steel sheet having high ductility and ultra-deep drawability, and a method for manufacturing the same. [Prior Art] For example, automobile quarter panels, fenders, oil pans, etc. must be formed by extremely severe press working. Therefore, cold-rolled steel sheets used for such molded products are required to have high ductility and ultra-deep drawability. It also needs to be non-prescription. In response to these demands, conventionally, cold-rolled steel sheets that have been decarburized by batch open coil annealing have been applied, or carbonitride-forming elements have been used.
By adding Ti, Nb, Cr, etc. alone or in combination, C and N in the steel are fixed, increasing ductility and ensuring non-aging properties. {111} Effective for improving deep drawability
It has been proposed to use non-aging cold-rolled steel sheets for deep drawing that have developed oriented recrystallized textures. Regarding the latter carbonitride-forming element-added steel, for example, Ti-added steel is disclosed in Japanese Patent Publication No. 44-18066, Japanese Patent Application Laid-Open No. 59-67322, and Japanese Patent Application Laid-Open No. 59-89727, etc. - Publication No. 1245, Special Publication 1987
-34778 and JP-A-58-81952 disclose Nb-added steel, while JP-A-50-30572 and JP-A-58-185752 disclose Nb-added steel.
Cr-added steel was disclosed, and Ti and Nb-added steel was disclosed in JP-A No. 59-67319.
―123720 discloses Ti, Nb, and Cr added steel. [Problems to be Solved by the Invention] Even if the above-mentioned requirements are met, decarburized annealed steel tends to have a large grain size and is prone to rough skin such as orange peel during press forming. There is. In Ti-added steel and Ti, Cr steel, Ti has a strong bonding force with O and S and forms oxides and sulfides, so it is difficult to ensure non-aging properties by fixing C and N. It is necessary to add an amount of Ti that is several times the stoichiometric equivalent of , C, and N. In order to lower manufacturing costs and increase ductility, it is desirable to lower the Ti content as much as possible within the range that ensures non-aging properties. Ti
However, if the amount of C and the amount of solid solute Ti are reduced too much, the in-plane anisotropy of the γ value [Δγ = (γ 0 ° +γ 90゜−2γ 45゜)/2] becomes larger,
γ45 °, which is γmin, decreases, leaving problems with press workability. In Nb-added steel, with the recent progress in steel degassing technology, it has become possible to reduce C relatively easily to a range of C < 50 ppm. A manufacturing method for Nb-added steel with very low amounts of C and Nb has been proposed, such as in Therefore, the annealing temperature during annealing, particularly during continuous annealing, must be made higher than that for Ti-added steel.
Further, even if the hot-rolled coil is coiled at a high temperature, there is a problem that a homogeneous material cannot be obtained at the longitudinal ends of the hot-rolled coil because the cooling rate is fast. In addition, by reducing the amount of Ti and increasing the ductility,
By adding Nb and Cr in addition to γ
It is stated in the above-mentioned Japanese Patent Application Laid-Open Nos. 59-67319 and 1982-123720 that the in-plane anisotropy of the value is improved, but when actually investigated and researched,
In such a manufacturing method, the in-plane anisotropy of the γ value appears significantly even if a high cold rolling rate of 70 to 80% is used, although this may be due to the Nb content being too low.
Since γmin, γ45 °, is too small, there is still a problem with press formability. It is possible to improve the in-plane anisotropy of the γ value by increasing γmin by increasing the cold rolling rate to 80% or more, but for cold rolled steel products with large plate thickness, thermal It becomes necessary to increase the thickness of the rolled sheet beyond the routine thickness, which causes problems in actual operation and also causes problems in the capacity of the cold rolling mill. [Means for Solving the Problems] The present invention aims to solve the above-mentioned problems by adding carbon to Ti, Nb, and Cr-added steel.
While reducing the amount of Ti and Ti below the specified value,
This method adopts a treatment method in which Ti is added in a predetermined amount or more and in an amount related to the [effective amount of Ti]. That is, the present invention has the following properties in weight%: C: 0.001 to less than 0.01%, Si: 0.1% or less, Mn: 0.5% or less, Sol.Al: 0.01 to 0.10%, Cr: 0.06 to 0.20%, P: 0.03% Below, S: 0.015% or less, N: 0.007% or less, O: 0.01% or less, Ti: [effective Ti amount] according to the following formula (1) is 4 × C% or more, and this [effective Ti amount] is 0.15% Hereinafter, Nb: 0.05% or more and in relation to [effective Ti amount], the range that satisfies [effective Ti amount] + Nb≦0.20%, remainder: Fe and unavoidable impurities, [effective Ti amount] = total Ti amount - [N%×(48/14)+S%
× (48/32) + O% × (48/12) × 1/2]
...(1) Provides a non-aging cold-rolled steel sheet for deep drawing, and in weight percent, C: 0.001 to less than 0.01%, Si: 0.1% or less, Mn: 0.5% or less, Sol. Al: 0.01 to 0.10%, Cr: 0.06 to 0.20%, P: 0.03% or less, S: 0.015% or less, N: 0.007% or less, O: 0.01% or less, Ti: according to the following formula (1) [effective Ti amount ] is 4×C% or more and this [effective Ti amount] is 0.15% or less, Nb is 0.05% or more, and in relation to [effective Ti amount], satisfies [effective Ti amount] + Nb ≦ 0.20%, Remaining part: Fe and unavoidable impurities, [effective Ti amount] = total Ti amount - [N% x (48/14) + S%
× (48/32) + O% × (48/12) × 1/2]
...(1) Deep drawing, which consists of hot rolling a steel slab, then cold rolling at a rolling reduction of 40% to 90%, and then annealing at a temperature above the recrystallization temperature and below 900°C. The present invention provides a method for manufacturing a non-aging cold rolled steel sheet for use. The excellent properties of the present invention will be specifically shown in Examples below, but the reasons for limiting the chemical component values will be summarized as follows. The lower the content of C, the more preferable it is for improving the ductility of the cold-rolled steel sheet, and if it exceeds 0.01%, a large amount of carbonitride-forming elements are required and the amount of carbonitride precipitation increases, resulting in poor press formability. begins to deteriorate. On the other hand, it is difficult to reduce the C content to less than 0.001% in a practical-scale steelmaking furnace. For these reasons, C; 0.001~
Less than 0.01%. Si is added primarily to deoxidize molten steel, and Mn is added to prevent hot embrittlement, but if too large amounts of both Si and Mn are added, they reduce ductility. In the steel of the present invention, the amount of Si contained in ordinary cold-rolled steel sheets is
≦0.1% and Mn≦0.5% are permissible, and within this range, the stated purpose can be fully achieved. Al is added for the purpose of deoxidizing molten steel, but this purpose cannot be fully achieved if the amount is less than 0.01% of Sol.Al (acid-soluble Al) in the steel. Furthermore, if the amount of Sol.Al exceeds 0.10%, its effect will be saturated and the non-metallic inclusions will increase, causing surface flaws.
The amount is 0.01-0.10%. When Cr is used alone, it is not possible to obtain the desired results aimed at by the present invention, but by adding it in combination with Ti and Nb, it exhibits the effect of improving deep drawability and stretchability. However, if the Cr content is less than 0.06%, there is no such effect, and if the content exceeds 0.20%, this effect will be saturated and the manufacturing cost will only increase. Therefore, Cr is contained in the range of 0.06 to 0.20%, and this Cr plays an important role in the steel of the present invention. If too much P is added, it will increase the descending strength and tensile strength, and in ultra-low C steel, it will segregate to the grain boundaries and cause secondary work cracking, so the content should be adjusted accordingly. The upper limit is set at 0.03%. The smaller the amount of N, the more desirable it is because the amount of Ti added can be reduced, and if the amount of N is too large, it will reduce the [effective amount of Ti] and deteriorate the press formability of the final product, so the allowable limit is N. ≦0.007%. S and O both reduce [effective Ti amount],
If these amounts increase, the total Ti amount to ensure [effective Ti amount] increases and the surface quality deteriorates, so the allowable limits for S and O are set to S≦0.015% and O≦0.01%, respectively. shall be. By fixing C and N, Ti ensures the non-aging properties of cold-rolled steel sheets, and also
TiC provides the effect of creating a [111]-oriented recrystallized texture, which is effective for improving deep drawability. For this purpose, the [effective Ti amount] shown in the above equation (1) must be 4
×C% or more is required. However, when the amount of Ti exceeds 0.15%, it becomes a solid solution in the ferrite.
As the amount of Ti increases, yield strength increases and ductility decreases. This also increases manufacturing costs. Therefore, for Ti, [effective Ti amount] is 4×C
% or more and 0.15% or less. In addition, in the steel of the present invention, by adding Nb in addition to Ti, the in-plane anisotropy of the γ value can be improved even with a small amount of Ti added. There is an upper limit for the amount of Ti, and the total amount of [effective Ti amount] + Nb is up to 0.20% as described below. By adding Nb in combination with Ti, even if the C content and Ti content are reduced as in the present invention, it can be significantly improved. Such an effect is achieved when the amount of Nb is less than (0.2% - [effective amount of Ti]), and adding more than this amount causes an increase in the recrystallization temperature and a decrease in ductility.
Therefore, [effective Ti amount]+Nb≦0.2% or less. However, if the amount of Nb is less than 0.05%, the effect of improving the in-plane anisotropy of the γ value cannot be obtained. In this way, the present invention can reduce the amount of C and Ti to below a predetermined value while increasing the amount of Nb to a predetermined amount or more in Ti, Nb, and Cr added steel.
A non-aging cold-rolled steel sheet for deep drawing that has a high γ value with little in-plane anisotropy and ensures non-aging properties without reducing ductility by adding a compound in a related amount to However, when manufacturing this cold-rolled steel sheet, it is preferable to carry out the production under the following conditions. First, it is desirable to melt steel in a steel-making furnace and perform vacuum degassing treatment before ingot-forming or continuous casting. As a result, it is possible to advantageously lower the C and O content in the steel as described above and to adjust the content within the composition range as described above with a high yield. When performing this vacuum degassing treatment, Al can also be added for deoxidation treatment. After adjusting C and O and adjusting the composition to the above-mentioned range by adding ferroalloy, a slab is manufactured by ingot-forming, blooming rolling, or continuous casting, and after performing slab maintenance as necessary, Perform hot rolling. When carrying out this hot rolling, it is desirable to set the hot rolling finishing temperature to Ar 3 points or higher from the viewpoint of improving deep drawability. Further, the hot rolling coiling temperature is preferably in the range of 650 to 750°C. Next, after pickling, cold rolling is performed, but this cold rolling requires a cold rolling rate of 40% or more in order to develop a [111] oriented texture that is advantageous for deep drawability. However, even at a high cold rolling rate of over 90%, the effect of improving deep drawability is saturated and the cost becomes extremely high, so it is preferable to set the upper limit of the cold rolling rate to 90%. Next, annealing is performed, but this annealing can be either batch annealing or continuous annealing, and the temperature is higher than the recrystallization temperature.
Excellent press formability can be obtained by carrying out the process at a temperature range of 900°C or lower. More specifically, for batch annealing, the annealing temperature may be 700°C or more and 850°C or less, and for continuous annealing, the annealing temperature may be 750°C or more and 900°C or less. In this way, according to the present invention, it is possible to maintain a high γ value while at the same time having a high γmin and low in-plane anisotropy. Provided is an economical non-aging cold-rolled steel sheet for deep drawing that can withstand even more severe press forming than Nb and Cr steels. [Example] Example 1 Each 30 kg of steel having the chemical composition shown in Table 1 was melted in a vacuum melting furnace, hot forged at a heating temperature of 1250°C, and then finished at a finishing temperature of 880 to 940°C and a coiling temperature of 700 to 700°C. 720℃
The sample was hot-rolled to obtain a hot-rolled plate with a thickness of 5 mm. After pickling, the sheets were cold rolled to a thickness of 1.2 mm, and each cold rolled sheet was batch annealed at 800° C. for 4 hours. Table 2 shows the mechanical property values of the obtained cold rolled product. As shown in Tables 1 to 2, No. 1 to No. 7
Not only do these steels have a high total elongation of 52.5% or more and a high value of 1.87 to 2.20, but also the in-plane anisotropy of the γ value (Δγ) has been significantly improved.
γ45 °, which is γmin, is 1.70 or more. Therefore, it can be seen that the steel of the present invention is a non-aging cold rolled steel sheet having high ductility and ultra-deep drawability. On the other hand, comparative steels No. 8 to 12 (Nb content is less than 0.05% as defined in the present invention) have a total elongation of
Although it is high at 54.2% or more, Δγ is large at 0.98 to 1.29.
The value of γ45 °, which is γmin, is as low as 1.52 or less, and there is a problem in deep drawability. In addition, steel No. 13 with a large amount of Ti has a value of 1.94,
Since γmin is high at 1.86 and Δγ is small at 0.32, the deep drawability is sufficient, but the total elongation is 50.8, which is lower than the steel of the present invention. Then, No. 14 with no Cr added and No. 15 with a high amount of C.
Both steels have low total elongation, similar to No. 13.

【表】【table】

【表】【table】

【表】 実施例 2 180T転炉および脱ガス処理設備によつて第3
表に示す化学成分値の鋼に成分調整し、各溶鋼を
連続鋳造することによつてスラブとし、このスラ
ブから、加熱温度1250〜1280℃、仕上温度900〜
930℃、巻取温度700〜730℃で、板厚5.0mmの熱延
コイルとし、酸洗のあと、板厚1.2mmまで冷間圧
延し、このコイルを800℃に4時間保持するバツ
チ式焼鈍を施して、実ラインで冷延鋼板を製造し
た。得られた冷延鋼板の機械的特性値を第4表に
示した。 第4表の結果に見られるように、本発明鋼のNo.
Aは、全伸びが53.6%と高く、も2.14、さらに
γmin(γ45゜)は1.85と大きく、そしてΔγは0.58と
小さいことから、高延性と超深絞り性を具備した
冷延鋼板であることがわかる。 Nb量が本発明で規定する範囲より少ないNo.B
鋼は、全伸びは54.0%と高いが、γminが1.40と低
くなりすぎ、Δγも0.96と高い。従つて深絞り性
に問題がある。 TiとCrを添加し、Nb無添加のNo.Cの鋼では、
γは2.18、γminは1.96と比較的大きく且つΔγも
0.44と小さいので深絞り性が良好であると言える
が、Ti量が多いために(〔有効Ti量〕が本発明で
規定する量よりも多い)、全伸びが50.2と本発明
鋼に比べて低くなつている。
[Table] Example 2 180T converter and degassing equipment
The composition of the steel is adjusted to have the chemical composition values shown in the table, and each molten steel is continuously cast to form a slab. From this slab, the heating temperature is 1250-1280℃, and the finishing temperature is 900-
A hot-rolled coil with a thickness of 5.0 mm is prepared at 930℃ and a winding temperature of 700 to 730℃. After pickling, the coil is cold-rolled to a thickness of 1.2mm, and the coil is held at 800℃ for 4 hours.Batch type annealing. A cold-rolled steel sheet was manufactured on an actual line. Table 4 shows the mechanical property values of the obtained cold rolled steel sheets. As seen in the results in Table 4, the invention steel No.
A has a high total elongation of 53.6%, a high elongation of 2.14, a large γmin (γ 45 °) of 1.85, and a small Δγ of 0.58, so it is a cold-rolled steel sheet with high ductility and ultra-deep drawability. I understand that. No.B in which the amount of Nb is less than the range specified in the present invention
Steel has a high total elongation of 54.0%, but γmin is too low at 1.40, and Δγ is also high at 0.96. Therefore, there is a problem with deep drawability. In No.C steel with Ti and Cr added and no Nb added,
γ is relatively large, 2.18, γmin is 1.96, and Δγ is also
Although it can be said that the deep drawability is good because it is small at 0.44, the total elongation is 50.2 because the Ti content is large (the [effective Ti content] is greater than the amount specified in the present invention), which is lower than the inventive steel. It's getting lower.

【表】【table】

【表】 実施例 3 冷延コイルの焼鈍を、850℃×均熱時間1分の
連続焼鈍で実施した以外は、実施例2と同様にし
て冷延鋼板を実ラインで製造した。得られた冷延
鋼板の機械的特性値を第5表に示した。 第5表の結果に見られるように、本発明鋼のNo.
Aは、全伸びが52.8%と高く、は1.86、さらに
γmin(γ45゜)は1.60と比較的大きく、連続焼鈍に
よつても、高延性と超深絞り性を具備した冷延鋼
板であることがわかる。 Nb量が本発明で規定する範囲より少ないNo.B
鋼は、全伸びは53.9%と高いが、が1.19と非常
に低く、またΔγも0.85と大きく、深絞り性に問
題がある。 TiとCrを添加し、Nb無添加のNo.Cの鋼では、
全伸びが49.1と低くて延性に問題がある。
[Table] Example 3 A cold rolled steel plate was produced on an actual line in the same manner as in Example 2, except that the cold rolled coil was annealed continuously at 850° C. for 1 minute of soaking time. Table 5 shows the mechanical property values of the obtained cold rolled steel sheets. As seen in the results in Table 5, the invention steel No.
A is a cold-rolled steel sheet with a high total elongation of 52.8%, a relatively large elongation of 1.86, and a relatively large γmin (γ 45 °) of 1.60, and has high ductility and ultra-deep drawability even through continuous annealing. I understand that. No.B where the amount of Nb is less than the range specified in the present invention
Steel has a high total elongation of 53.9%, but is very low at 1.19, and Δγ is also large at 0.85, causing problems in deep drawability. In No.C steel with Ti and Cr added and no Nb added,
The total elongation is low at 49.1 and there is a problem with ductility.

【表】 以上の実施例結果から明らかなように、Ti,
Crを添加したうえ、さらにNbを0.05%以上であ
つて、〔有効Ti量〕+Nb≦2.0%の範囲で適正に複
合添加した本発明鋼は、特にCおよびTi量の低
減に伴う高延性を維持したまま、γ値の面内異方
性を著しく改善すると共にγminを高めることに
成功したものであり、従つて高延性並びに深絞り
性を具備した非時効性冷延鋼板であることがわか
る。
[Table] As is clear from the results of the above examples, Ti,
The steel of the present invention, in which Cr is added and Nb is added in an amount of 0.05% or more, with an appropriate composite addition in the range of [effective Ti amount] + Nb≦2.0%, has particularly high ductility due to the reduction in C and Ti content. While maintaining the same, the in-plane anisotropy of the γ value was significantly improved and γmin was successfully increased, indicating that this is a non-aging cold rolled steel sheet with high ductility and deep drawability. .

Claims (1)

【特許請求の範囲】 1 重量%において、 C;0.001〜0.01%未満、 Si;0.1%以下、 Mn;0.5%以下、 Sol.Al;0.01〜0.10%、 Cr;0.06〜0.20%、 P;0.03%以下、 S;0.015%以下、 N;0.007%以下、 O;0.01%以下、 Ti;下式(1)に従う〔有効Ti量〕が4×C%以
上で且つこの〔有効Ti量〕が0.15%以下、 Nb;0.05%以上で且つ〔有効Ti量〕との関連
で〔有効Ti量〕+Nb≦0.20%を満足する範
囲、 残部;Feおよび不可避的不純物、 〔有効Ti量〕=全Ti量−〔N%×(48/14)+S%
×(48/32)+O%×(48/12)×1/2〕
…(1) からなる深絞り用非時効性冷延鋼板。 2 重量%において、 C;0.001〜0.01%未満、 Si;0.1%以下、 Mn;0.5%以下、 Sol.Al;0.01〜0.10%、 Cr;0.06〜0.20%、 P;0.03%以下、 S;0.015%以下、 N;0.007%以下、 O;0.01%以下、 Ti;下式(1)に従う〔有効Ti量〕が4×C%以
上で且つこの〔有効Ti量〕が0.15%以下、 Nb;0.05%以上で且つ〔有効Ti量〕との関連
で〔有効Ti量〕+Nb≦0.20%を満足する範
囲、 残部;Feおよび不可避的不純物、 〔有効Ti量〕=全Ti量−〔N%×(48/14)+S%
×(48/32)+O%×(48/12)×1/2〕
…(1) からなる鋼のスラブを熱間圧延したあと、圧下率
が40%以上90%以下で冷間圧延し、次いで、再結
晶温度以上900℃以下の温度で焼鈍することから
なる深絞り用非時効性冷延鋼板の製造法。
[Claims] In 1% by weight, C: 0.001 to less than 0.01%, Si: 0.1% or less, Mn: 0.5% or less, Sol.Al: 0.01 to 0.10%, Cr: 0.06 to 0.20%, P: 0.03 % or less, S: 0.015% or less, N: 0.007% or less, O: 0.01% or less, Ti: [effective Ti amount] according to the following formula (1) is 4 × C% or more, and this [effective Ti amount] is 0.15 % or less, Nb: 0.05% or more and within the range that satisfies [effective Ti amount] + Nb≦0.20% in relation to [effective Ti amount], balance: Fe and unavoidable impurities, [effective Ti amount] = total Ti amount −[N%×(48/14)+S%
× (48/32) + O% × (48/12) × 1/2]
...(1) A non-aging cold rolled steel sheet for deep drawing. 2 In weight%, C: 0.001 to less than 0.01%, Si: 0.1% or less, Mn: 0.5% or less, Sol.Al: 0.01 to 0.10%, Cr: 0.06 to 0.20%, P: 0.03% or less, S: 0.015 % or less, N: 0.007% or less, O: 0.01% or less, Ti: [effective Ti amount] according to the following formula (1) is 4 × C% or more and this [effective Ti amount] is 0.15% or less, Nb: 0.05 % or more and satisfies [effective Ti amount] + Nb≦0.20% in relation to [effective Ti amount], remainder: Fe and unavoidable impurities, [effective Ti amount] = total Ti amount - [N% × ( 48/14)+S%
× (48/32) + O% × (48/12) × 1/2]
...(1) Deep drawing, which consists of hot rolling a steel slab, then cold rolling at a rolling reduction of 40% to 90%, and then annealing at a temperature above the recrystallization temperature and below 900°C. Manufacturing method for non-aging cold rolled steel sheets.
JP27445984A 1984-12-28 1984-12-28 Nonageable cold rolled steel sheet for deep drawing and its manufacture Granted JPS61157660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27445984A JPS61157660A (en) 1984-12-28 1984-12-28 Nonageable cold rolled steel sheet for deep drawing and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27445984A JPS61157660A (en) 1984-12-28 1984-12-28 Nonageable cold rolled steel sheet for deep drawing and its manufacture

Publications (2)

Publication Number Publication Date
JPS61157660A JPS61157660A (en) 1986-07-17
JPH0250978B2 true JPH0250978B2 (en) 1990-11-06

Family

ID=17541976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27445984A Granted JPS61157660A (en) 1984-12-28 1984-12-28 Nonageable cold rolled steel sheet for deep drawing and its manufacture

Country Status (1)

Country Link
JP (1) JPS61157660A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61199054A (en) * 1985-03-01 1986-09-03 Nisshin Steel Co Ltd Non-ageing galvanized sheet for deep drawing and its production
JP2808452B2 (en) * 1987-03-31 1998-10-08 日新製鋼 株式会社 Manufacturing method of cold rolled steel sheet with excellent brazing crack resistance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5335616A (en) * 1976-09-16 1978-04-03 Nisshin Steel Co Ltd Producing method of hot dipped steel sheets excellent in workability
JPS5573850A (en) * 1978-11-27 1980-06-03 Kobe Steel Ltd Steel for line pipe with superior hydrogen-induced cracking resistance
JPS58144430A (en) * 1982-02-19 1983-08-27 Kawasaki Steel Corp Manufacture of cold-rolled steel sheet excellent in press-workability
JPS59123720A (en) * 1982-12-29 1984-07-17 Kawasaki Steel Corp Production of cold rolled steel sheet for deep drawing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5335616A (en) * 1976-09-16 1978-04-03 Nisshin Steel Co Ltd Producing method of hot dipped steel sheets excellent in workability
JPS5573850A (en) * 1978-11-27 1980-06-03 Kobe Steel Ltd Steel for line pipe with superior hydrogen-induced cracking resistance
JPS58144430A (en) * 1982-02-19 1983-08-27 Kawasaki Steel Corp Manufacture of cold-rolled steel sheet excellent in press-workability
JPS59123720A (en) * 1982-12-29 1984-07-17 Kawasaki Steel Corp Production of cold rolled steel sheet for deep drawing

Also Published As

Publication number Publication date
JPS61157660A (en) 1986-07-17

Similar Documents

Publication Publication Date Title
CN109136738B (en) High-strength low-temperature-resistant hull structure steel plate and preparation method thereof
US20090272468A1 (en) Method for Manufacturing Bake-Hardenable High-Strength Cold-Rolled Steel Sheet
WO1999053113A1 (en) Steel sheet for can and manufacturing method thereof
JP3610883B2 (en) Method for producing high-tensile steel sheet with excellent bendability
CA2254584C (en) Non-ridging ferritic chromium alloyed steel
JP2933826B2 (en) Chromium steel sheet excellent in deep drawing formability and secondary work brittleness and method for producing the same
US4770719A (en) Method of manufacturing a low yield ratio high-strength steel sheet having good ductility and resistance to secondary cold-work embrittlement
JP2011214063A (en) Ferritic stainless steel sheet and method for manufacturing the same
JP2521553B2 (en) Method for producing cold-rolled steel sheet for deep drawing having bake hardenability
JPS626730B2 (en)
JP2011246813A (en) Ferritic stainless steel sheet and method of manufacturing the same
JP2011214060A (en) Ferritic stainless steel sheet and method for manufacturing the same
JPH02163318A (en) Production of high-tension cold rolled steel sheet having excellent press formability
JP2011246814A (en) Ferritic stainless steel sheet and method of manufacturing the same
JPS61194112A (en) Manufacture of hot rolled steel sheet having superior adhesion to scale
CN112176147A (en) Manufacturing method of normalized thick steel plate suitable for large-wire welding
JPH0250978B2 (en)
JP2830745B2 (en) Manufacturing method of bake hardening type cold rolled steel sheet with excellent surface properties
JP3543200B2 (en) Manufacturing method of steel sheet for metal saw substrate
JP3404798B2 (en) Method for producing high-strength steel sheet having bake hardenability
JPS582248B2 (en) Manufacturing method for hot-dip galvanized steel sheet with excellent workability
JP2653616B2 (en) Manufacturing method of high strength steel for large heat input welding with excellent low temperature toughness
JPS60162751A (en) Semi-process electrical steel sheet having excellent magnetic characteristic and surface characteristic and its production
JPH0321611B2 (en)
JPH04333526A (en) Hot rolled high tensile strength steel plate having high ductility and its production