JP3806186B2 - Method for producing ferritic stainless steel with excellent anti-roping properties - Google Patents

Method for producing ferritic stainless steel with excellent anti-roping properties Download PDF

Info

Publication number
JP3806186B2
JP3806186B2 JP19375996A JP19375996A JP3806186B2 JP 3806186 B2 JP3806186 B2 JP 3806186B2 JP 19375996 A JP19375996 A JP 19375996A JP 19375996 A JP19375996 A JP 19375996A JP 3806186 B2 JP3806186 B2 JP 3806186B2
Authority
JP
Japan
Prior art keywords
less
rolling
stainless steel
ferritic stainless
roping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19375996A
Other languages
Japanese (ja)
Other versions
JPH1036911A (en
Inventor
阿部  雅之
謙 木村
武秀 瀬沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19375996A priority Critical patent/JP3806186B2/en
Publication of JPH1036911A publication Critical patent/JPH1036911A/en
Application granted granted Critical
Publication of JP3806186B2 publication Critical patent/JP3806186B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、フェライト系ステンレス鋼の製造プロセスにおいて、冷延時に発生する微小うねり(ロ−ピング)が小さく表面特性に優れたフェライト系ステンレス鋼薄板の製造方法に関する。
【0002】
【従来の技術】
フェライト系ステンレス鋼はオ−ステナイト系ステンレス鋼に比べてNi含有量が少なく低価格であるため、厨房器具等をはじめ広く使用されている。この場合、表面の美麗さが必要となるため、表面特性を向上させることがフェライト系ステンレス鋼に要求される。
【0003】
しかし、フェライト系ステンレス鋼は、製品として成形加工時にリジングと言われる表面凹凸が発生しやすいことが知られている。このリジングは加工時に発生する5〜50μm高さの凹凸である。
フェライト系ステンレス鋼のリジングを改善する方法は従来より種々検討されており、例えば、鉄と鋼76(1990)P.1520に述べられているように発生メカニズムについても検討されている。
【0004】
これまで表面欠陥としては、上記のリジングが問題視されてきた。しかしながら、最近では製品の成形加工時ではなく、フェライト系ステンレス鋼熱延板を冷延したときに冷延板の表面に発生する微小なうねりが最終製品まで消えずに残り、近年厳しく求められている表面品位を満足することができず、製品としての価値を損なうことが問題となっている。この微小なうねりは冷延板の表面に高さ0.2μm〜0.5μm程度で圧延方向に伸びたうねりであり、このうねりは製品の成形加工時に発生するリジングと区別してロ−ピングと呼ばれている。
【0005】
またフェライト系ステンレス鋼の代表的な鋼種であるSUS430鋼は、熱延後に数十時間を必要とする箱焼鈍を必要とするなど製造性の点でオ−ステナイト系ステンレス鋼の代表鋼種であるSUS304より劣っているのが実状である。このような観点からSUS430の製造プロセスを簡略化するために熱延板焼鈍の連続焼鈍化技術や熱延板焼鈍省略プロセスについても多く検討されているが、どちらの場合も通常のSUS430鋼の成分系よりは低C、低N化、高Ti化の高純フライト系や高Alを特徴とするような成分系であって、通常の低Ti、低Alを基本とする成分系では確立されていない。
【0006】
【発明が解決しようとする課題】
これまではロ−ピングはリジングと同一現象として考えられていたが、成形加工時のリジング発生と冷間圧延時のロ−ピングの発生には必ずしも良い対応があるとも言えず、特にリジングは加工率が高くなるとその高さは大きくなるのに対し、ロ−ピング高さは冷延圧下率が高くなるほど小さくなり、リジングと発生挙動が異なるなどロ−ピングの発生メカニズムも明らかになっていないため、ロ−ピングを低減できる製造方法を確立することが必要となった。
【0007】
ロ−ピング低減のために従来工程に新工程を付加することは、安価なフェライト系ステンレス鋼のメリットを失う可能性が大きく、最も省工程が進んだ熱延板焼鈍省略プロセスでロ−ピング発生を低減できれば、表面特性が優れたフェライト系ステンレス鋼をさらに安価に提供できることとなる。従って、本発明の目的は工程を増加させることなく、ロ−ピングの発生が少ない表面特性に優れたフェライト系ステンレス鋼を製造する方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者等は、フェライト系ステンレス鋼の熱延板焼鈍を省略した製造プロセスにおいてロ−ピングを低減する方法を種々検討した。その結果、成分、加熱条件、熱延条件、捲取条件の一連のプロセス条件を一貫して制御することで、熱延板焼鈍を省略したプロセスでもロ−ピングを低減できることを知見した。
【0009】
本発明は、成分や熱延条件の単独な制御によるものではなく、以下の一連のプロセス条件を制御する構成を必要とする。
【0010】
すなわち、本発明は、
量%で、C:0.025〜0.055%、N:0.001〜0.015%、Cr:15.0〜18.0%、S:0.010%以下、P:0.04%以下、Ti:0.005〜0.10%、Mn:0.01〜1.0%、Si:0.01〜1.0%、Ni:0.5%以下、Cu:0.5%以下、Mo:0.2%以下、Al:0.015〜0.025%、O:0.010%以下、
さらに必要に応じて、
B:0.005%以下、V:0.05%以下の1種以上を含有し、
残部がFe及び不可避的不純物からなり、下式で示されるγpが20〜35%であるフェライト系ステンレス鋼を、熱間圧延に際し加熱温度を1150℃以上1300℃以下にし、粗圧延において1100℃以上での累積圧下率を40%以上とし、引き続き仕上げ圧延を実施して捲取温度を450℃超600℃以下とし、以後熱延板焼鈍を実施することなく酸洗し冷延、最終焼鈍を実施することを特徴とする、耐ローピング特性に優れたフェライト系ステンレス鋼の製造方法である。
γp=420×C+470×N+23×Ni+12×Cu+7×Mn−11.5×Cr−11.5×Si−11×Mo−52×Al−49×Ti+189
【0011】
【実施の形態】
以下、本発明の実施の形態について説明する。
本発明者等はフェライト系ステンレス鋼の冷延時に発生するロ−ピングの低減を目的とした実験を行い、実験結果を詳細に検討した。
その結果、熱延板焼鈍を省略してかつロ−ピングを改善するには、熱延途中のγ相の分散を促進させることが重要であることが判明した。この際のγ相は加熱時に析出させるよりも、熱延途中で析出させることで、より分散化が図れ、またγ相量を15%以上とすることでロ−ピングが改善されることが判明した。
【0012】
従って成分としては熱延途中でγ相が析出または増加するような成分系がよく、粗熱延中にγ相の体積分率が減少するような成分系ではロ−ピングが改善できないことが明かとなった。粗熱延中のγ量としては15%以上で1100℃以上での累積圧下率が40%を超えるとロ−ピングが改善できる。また粗熱延中にγ相が15%以下に減少するような成分系では、熱延中に再結晶が生じやすくなるが、再結晶が生じることによってロ−ピング高さが著しく減少することは認められないことも判明した。
【0013】
上記の観点から、成分としてはγ量が粗熱延中に15%以上となるように調整することが必要であり、このγ量としては下式で示されるγp が20%以上あれば、粗圧延中に必要なγ量が確保できることも明かとなった。

Figure 0003806186
【0014】
またγpに関しては、γpが高いほどロ−ピングは改善されるがγpが35を超えるように成分を規定すると本発明の熱延板焼鈍省略プロセスでは、冷延時の耳割れや、また冷延性が悪化するとともに冷延後の焼鈍のみではγ相が消えずに焼鈍時の粒成長を阻害し、また強度が高くなり加工性が低下するなど表面特性以外の製造性、材質で悪影響がでるためにγpは35%以下とした。
【0015】
加熱条件としては、加熱時にγ相量が最大となるように加熱温度を設定するとγ相活用の点で不利であり、粗圧延中にγ相が析出または増加するように加熱温度を設定することが重要である。γp が20%以上でもγ相が熱延途中で減少しないようにするには、加熱時にはむしろある程度γ相が減少する温度にすることが必要であり、1100℃以上で40%以上の累積圧下を取ることを考慮すると加熱温度として1150℃以上が必要である。しかし、1300℃を超えて加熱すると表層部が脱炭により異常粒成長をおこし疵の原因となるため、加熱温度の上限は1300℃とした。
【0016】
上記の観点で、成分、加熱条件を満足し、γ相と熱延条件の関係は1100℃以上での累積圧下率を40%以上とすることで、冷延時のロ−ピングは低減できることが判明した。1100℃以上での圧下率を40%以上としたのは、γ相を加工後微細に分散させるために必要であるためであり、これ以下では粒界へのγ析出が主体となるためである。また累積圧下率が40%を確保できても、γpが20%未満ではγ相の分散が均一でなくなり粗大粒が熱延板に残存し、ロ−ピングを不良とする
1100℃以上の圧延に関しては、1パスあたりの圧下率が高いほど好ましいが、数パスに分けて実施しても効果があり、また仕上圧延に関しては高速圧延−高温仕上げが望ましい。
【0017】
熱延後の捲取温度は600℃以下で450℃より高温とする。600℃より高温ではγ相がフェライトと炭化物に分解してしまい、ロ−ピングの改善傾向が減少する。また450℃以下の低温ではマルテンサイトに変態してしまい、本発明のようにγ相を微細に分散させ、かつ熱延板焼鈍を省略したプロセスを前提とした場合、冷延後の熱処理時にマルテンサイトが逆変態するまでにフェライト粒の成長を阻害し降伏点が高くなるため、著しい低温捲取はロ−ピング特性は改善するが材質を硬質にするため捲取温度の下限は450℃を超える温度とした。
【0018】
そして、成分範囲について検討した結果、上記のロ−ピング低減方法は、
量%で、
C:0.025〜0.055%、N:0.001〜0.015%、Cr:15.0〜18.0%、S:0.010%以下、P:0.04%以下、Ti:0.005〜0.10%、Mn:0.01〜1.0%、Si:0.01〜1.0%、Ni:0.5%以下、Cu:0.5%以下、Mo:0.2%以下、Al:0.015〜0.025%、O:0.010%以下、
さらに必要に応じて、
B:0.005%以下、V:0.05%以下の1種以上を含有し、
残部がFe及び不可避的不純物からなるフェライト系ステンレス鋼において成り立つことが判明した
【0019】
以下に成分の限定理由を述べる。
C:Cは耐食性の点では有害であり特に溶接部の耐食性に悪影響を与えるが、強度およびγ相量を適正に確保するためにはある程度は必要である。γ相の観点からは0.025%未満ではγ量が不足しフェライト粒が粗大化する、また0.055%を超えて添加すると加工性、延性が劣化するためにCは0.025〜0.055%とした。
【0020】
N:NはCと同様に含有量が少ないほど耐食性、加工性が好ましいが0.001%未満にることは工業的には困難であり、また0.015%を超えて添加すると高強度となり加工性が劣化するためにNは0.001〜0.015%の範囲で添加する。
【0021】
Cr:Crは本発明のフェライト系ステンレス鋼の主要元素であり、耐食性を確保するためには15%以上添加する必要がある。しかし、18%を超えて添加しても食性は向上するが、γ量を確保するためのC、N、Mn量が増加し加工性や靭性が化するのでCrの上限は18%とした。
【0022】
S:Sは延性、靭性等を劣化させ、また耐食性の観点からも有害であるため、0.010%以下とする。
P:Pは加工性や靭性また耐食性の点でも有害でありその含有量は少ないほど望ましく0.040%以下とする。
【0023】
Ti:本発明においては加工性の観点からNを固定するために必要な元素であり、0.005%以上添加する。しかし、過剰に添加するとNの固定効果は向上するもの価格が高くなることや、Ti自身が強力なフェライト形成元素であるためγ安定化元素を多量に添加する必要性が生じるなど上限は0.1%以下である。ロ−ピングの観点からは0.05%以下、とすることが望ましい。
【0024】
Mn:Mnは脱酸元素として添加するが、0.01%未満では効果が十分ではなく、1%を超えて添加してもその効果が飽和するため0.01〜1.0%で添加する。
【0025】
Si:Siは脱酸剤として使用されるが0.01%未満では十分な効果がなく、また1%を超えて添加すると脆化を著しく促進させ延性、靭性を劣化させるので0.01〜1.0%で添加する。
【0026】
Ni:Niはγ相安定化元素として使用できる。但し多量に添加するとγ相が著しく安定化するため、γ相がその後の熱処理中に分解できず加工性が劣化するため0.5%以下で添加する。
Cu:Cuはγ相安定化元素として使用できる。但し多量に添加するとCuによって強度が著しく上昇するため0.5%以下で添加する。
Mo:Moはフェライト相安定化元素として使用できる。但し、多量に添加すると強度が上昇し、加工性が劣化するため0.2%以下で使用する。
【0027】
Al:Alは脱酸元素として使用され、またNの固定にも使用できる0.015%以上とすることが必要である。またAlは強力なフェライト安定化元素であり、多量に含有させるとγ量を減少させるため0.025%以下とした。
O:Oは熱延板の靭性を劣化させたり鋳造時のノズル詰まりやキズ発生また熱延板の靭性劣化の原因となるため、本発明においては0.01%以下、とした。
【0028】
本発明では必要に応じてB、Vの1種以上を含有させることができる。
B:BはNを固定するため、加工性を改善することができる。しかし過剰に添加してもその効果は飽和するため、0.005%以下とした。
V:VはCやNを固定し、加工性を改善できるため選択元素として0.05%以下で添加できる。
【0029】
【実施例】
表1に示す成分のフェライト系ステンレス鋼をラボの真空溶解で溶製し、厚み100mmの50kg鋼塊を製造した。この後、表2に示す条件で加熱後、粗圧延を5パスで20mmまで実施し、仕上熱延を20mmから5〜3mmまで6パスで実施し、そのま熱延板を750〜350℃の炉に挿入し1時間保後炉冷して捲取をシミュレ−トした。表中の捲取温度はこのシミュレ−トの保温度である。この後、硫酸で酸洗後、厚み2.0〜0.4mmまで冷間圧延率を変えて冷延し、ロ−ピング高さを評価した。
【0030】
ロ−ピングは、上記熱延板を酸洗後、0.4mmまで冷延を行い、冷延方向に対して直角方向に10mm長さについて粗度計で測定し、うねり高さの最大値を持ってロ−ピング高さとした。この測定を3箇所実施し、その平均値でロ−ピングを評価した。評価は、3箇所のロ−ピング最大高さの平均が0.15μm未満をAランク、0.15μm以上0.25μm未満をBランク、0.25μm以上〜0.35μm未満をCランク、0.35μm以上をDランクとして評価した。表面品位の点からはA,Bランクであれば問題となることはない。
表2に示すように、本発明材はいずれもロ−ピング高さが0.25μm未満と小さく、優れた表面特性を示した。
【0031】
【表1】
Figure 0003806186
【0032】
【表2】
Figure 0003806186
【0033】
【発明の効果】
上記のように、本発明はフェライト系ステンレス鋼の表面特性の問題点である冷延時のロ−ピングを熱延板焼鈍省略プロセスにて低減でき、低コストで表面特性の改善に寄与する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a ferritic stainless steel thin plate that has small surface undulation (loping) that occurs during cold rolling in a ferritic stainless steel production process and is excellent in surface properties.
[0002]
[Prior art]
Ferritic stainless steel is widely used including kitchen appliances because it has a lower Ni content and is less expensive than austenitic stainless steel. In this case, since the surface needs to be beautiful, it is required for the ferritic stainless steel to improve the surface characteristics.
[0003]
However, it is known that ferritic stainless steel is prone to surface irregularities called ridging during molding as a product. This ridging is unevenness having a height of 5 to 50 μm generated during processing.
Various methods for improving the ridging of ferritic stainless steel have been studied conventionally. For example, iron and steel 76 (1990) p. As described in 1520, the generation mechanism is also examined.
[0004]
Until now, the above-mentioned ridging has been regarded as a problem as a surface defect. However, recently, when the hot rolled sheet of ferritic stainless steel is cold-rolled, not at the time of product forming, the minute undulations that occur on the surface of the cold-rolled sheet remain until the final product has been sought after. It is a problem that the surface quality cannot be satisfied and the value as a product is impaired. This minute undulation is a undulation extending in the rolling direction at a height of about 0.2 μm to 0.5 μm on the surface of the cold-rolled sheet, and this undulation is called roping to distinguish it from ridging that occurs during the molding process of the product. It is.
[0005]
In addition, SUS430 steel, which is a typical steel type of ferritic stainless steel, requires SUS304, which is a typical steel type of austenitic stainless steel in terms of manufacturability, such as requiring box annealing that requires several tens of hours after hot rolling. The reality is that it is inferior. In order to simplify the manufacturing process of SUS430 from this point of view, many studies have been made on continuous annealing technology for hot-rolled sheet annealing and a process for omitting hot-rolled sheet annealing. In either case, the components of normal SUS430 steel are used. It is a component system characterized by a high pure flight system with a low C, low N and high Ti and high Al, and is established in a normal component system based on low Ti and low Al. Absent.
[0006]
[Problems to be solved by the invention]
Until now, roping was considered to be the same phenomenon as ridging, but it cannot be said that there is always a good response to ridging during forming and roping during cold rolling. The higher the rate, the higher the height, while the lower the rolling height, the lower the cold rolling reduction rate, and the rupture generation mechanism is not clear. Therefore, it has become necessary to establish a manufacturing method that can reduce roping.
[0007]
Adding a new process to the conventional process to reduce the roping is likely to lose the merit of inexpensive ferritic stainless steel, and the roping occurs in the process of omitting hot-rolled sheet annealing, which is the most advanced process Can be reduced, ferritic stainless steel having excellent surface characteristics can be provided at a lower cost. Accordingly, an object of the present invention, without increasing the process, b - is to provide a method of manufacturing a ferritic stainless steel occurs and excellent low surface characteristics of the ping.
[0008]
[Means for Solving the Problems]
The present inventors have studied various methods for reducing the roping in the manufacturing process in which the hot rolled sheet annealing of ferritic stainless steel is omitted. As a result, it was found that by controlling a series of process conditions of components, heating conditions, hot rolling conditions, and cutting conditions consistently, the roping can be reduced even in a process in which hot-rolled sheet annealing is omitted.
[0009]
The present invention is not based on independent control of components and hot rolling conditions, but requires a configuration for controlling the following series of process conditions.
[0010]
That is, the present invention
In mass%, C: 0.025~0.055%, N : 0.001~0.015%, Cr: 15.0~18.0%, S: 0.010% or less, P: 0. 04% or less, Ti: 0.005 to 0.10%, Mn: 0.01 to 1.0%, Si: 0.01 to 1.0%, Ni: 0.5% or less, Cu: 0.5 %: Mo: 0.2% or less, Al: 0.015-0.025%, O: 0.010% or less,
If necessary,
B: containing at least one of 0.005% or less, V: 0.05% or less,
The ferritic stainless steel whose balance is made of Fe and inevitable impurities and γp expressed by the following formula is 20 to 35% is hot-rolled at a heating temperature of 1150 ° C. or higher and 1300 ° C. or lower, and rough rolling is 1100 ° C. the cumulative rolling reduction of at least a 40%, continuing the coiling temperature by carrying out finish rolling and 450 ° C. ultra 600 ° C. or less, pickled without performing the subsequent hot rolled sheet annealing, cold rolling, final annealing This is a method for producing a ferritic stainless steel having excellent anti-roping characteristics.
γp = 420 × C + 470 × N + 23 × Ni + 12 × Cu + 7 × Mn-11.5 × Cr-11.5 × Si-11 × Mo-52 × Al-49 × Ti + 189
[0011]
Embodiment
Embodiments of the present invention will be described below.
The present inventors conducted an experiment for the purpose of reducing the roping generated during cold rolling of ferritic stainless steel, and examined the experimental result in detail.
As a result, it was found that it is important to promote the dispersion of the γ phase during hot rolling in order to omit hot-rolled sheet annealing and improve the rolling. In this case, it was found that the γ phase can be further dispersed by precipitating in the middle of hot rolling rather than precipitating during heating, and the roping can be improved by increasing the amount of γ phase to 15% or more. did.
[0012]
Therefore, as the component, a component system in which the γ phase precipitates or increases during hot rolling is good, and it is clear that the roping cannot be improved by a component system in which the volume fraction of the γ phase decreases during rough hot rolling. It became. When the amount of γ during rough hot rolling is 15% or more and the cumulative rolling reduction at 1100 ° C. or more exceeds 40%, the roping can be improved. In addition, in a component system in which the γ phase is reduced to 15% or less during rough hot rolling, recrystallization is likely to occur during hot rolling. It was also found that it was not allowed.
[0013]
From the above viewpoint, the component needs to be adjusted so that the amount of γ is 15% or more during rough hot rolling, and the amount of γ can be coarse if γp represented by the following formula is 20% or more. It was also revealed that the necessary amount of γ can be secured during rolling.
Figure 0003806186
[0014]
Regarding γp, the higher the γp, the better the roping, but if the component is specified so that the γp exceeds 35, the process of omitting the hot-rolled sheet annealing of the present invention will prevent the ear cracking during cold rolling and the cold rolling property. As it deteriorates and only after annealing after cold rolling, the γ phase does not disappear and hinders grain growth during annealing, and the strength increases and the workability deteriorates. γp was set to 35% or less.
[0015]
As heating conditions, setting the heating temperature so that the amount of γ phase is maximized during heating is disadvantageous in terms of utilization of the γ phase, and setting the heating temperature so that the γ phase precipitates or increases during rough rolling. is important. In order to prevent the γ phase from decreasing during hot rolling even if γp is 20% or more, it is necessary to set the temperature so that the γ phase is reduced to some extent during heating, and a cumulative reduction of 40% or more at 1100 ° C. or higher is required. Considering taking it, 1150 degreeC or more is required as heating temperature. However, if the heating exceeds 1300 ° C., the surface layer part grows abnormally due to decarburization and causes wrinkles, so the upper limit of the heating temperature is 1300 ° C.
[0016]
From the above viewpoints, the components and heating conditions are satisfied, and the relationship between the γ phase and the hot rolling conditions is found to be able to reduce the rolling during cold rolling by setting the cumulative rolling reduction at 1100 ° C. or higher to 40% or higher. did. The reason why the rolling reduction at 1100 ° C. or higher is 40% or higher is that it is necessary for finely dispersing the γ phase after processing, and below this, γ precipitation at the grain boundaries is the main component. . Even if the cumulative rolling reduction is 40%, if γp is less than 20%, the dispersion of the γ phase is not uniform and coarse grains remain in the hot-rolled sheet, resulting in poor rolling .
For rolling at 1100 ° C. or higher, the higher the rolling reduction per pass, the better. However, it is also effective to divide into several passes, and for finish rolling, high speed rolling-high temperature finishing is desirable.
[0017]
The coiling temperature after hot rolling is 600 ° C. or lower and higher than 450 ° C. When the temperature is higher than 600 ° C., the γ phase is decomposed into ferrite and carbide, and the tendency to improve the roping is reduced. Further, when the temperature is lower than 450 ° C., it transforms into martensite, and assuming a process in which the γ phase is finely dispersed and the hot-rolled sheet annealing is omitted as in the present invention , the martensite is subjected to heat treatment after cold rolling. Since the ferrite grain growth is inhibited before the site undergoes reverse transformation and the yield point becomes high, the low temperature cutting improves the rolling characteristics but makes the material hard, so the lower limit of the cutting temperature exceeds 450 ° C. It was temperature.
[0018]
And as a result of examining the component range, the above-mentioned roping reduction method is
In mass%,
C: 0.025 to 0.055%, N: 0.001 to 0.015%, Cr: 15.0 to 18.0%, S: 0.010% or less, P: 0.04% or less, Ti : 0.005-0.10%, Mn: 0.01-1.0%, Si: 0.01-1.0%, Ni: 0.5% or less, Cu: 0.5% or less, Mo: 0.2% or less, Al: 0.015-0.025%, O: 0.010% or less,
If necessary,
B: containing at least one of 0.005% or less, V: 0.05% or less,
It has been found that the balance is established in ferritic stainless steel composed of Fe and inevitable impurities .
[0019]
The reasons for limiting the components are described below.
C: C is harmful in terms of corrosion resistance and adversely affects the corrosion resistance of the welded portion. However, it is necessary to some extent to ensure the strength and the amount of γ phase. From the viewpoint of the γ phase, if less than 0.025%, the amount of γ is insufficient and the ferrite grains become coarse, and if added over 0.055%, the workability and ductility deteriorate, so C is 0.025-0. 0.055%.
[0020]
N: N is the corrosion resistance smaller the content as with C, and preferably workability but be Rukoto below 0.001% is difficult for industrial and high when added in excess of 0.015% strength N is added in the range of 0.001 to 0.015% because processability is deteriorated.
[0021]
Cr: Cr is a main element of the ferritic stainless steel of the present invention , and it is necessary to add 15% or more in order to ensure corrosion resistance. However, even if added over 18%, the food property is improved, but the amount of C, N, and Mn for securing the amount of γ is increased and the workability and toughness are improved, so the upper limit of Cr was made 18%.
[0022]
S: Since S deteriorates ductility, toughness and the like and is also harmful from the viewpoint of corrosion resistance, it is set to 0.010% or less.
P: P is also harmful in terms of workability, toughness, and corrosion resistance. The smaller the content thereof, the more desirable it is to be 0.040% or less.
[0023]
Ti: In the present invention, it is an element necessary for fixing N from the viewpoint of workability, and 0.005% or more is added. However, if added excessively, the fixing effect of N is improved, but the price is increased, and since Ti itself is a strong ferrite-forming element, it is necessary to add a large amount of γ-stabilizing element. 1% or less. From the viewpoint of loping, it is desirable to be 0.05% or less.
[0024]
Mn: Mn is added as a deoxidizing element, but if less than 0.01%, the effect is not sufficient, and even if added over 1%, the effect is saturated, so 0.01 to 1.0% is added. .
[0025]
Si: Si is used as a deoxidizer, but if it is less than 0.01%, there is no sufficient effect, and if added over 1%, embrittlement is remarkably promoted and ductility and toughness are deteriorated. Add at 0.0%.
[0026]
Ni: Ni can be used as a γ-phase stabilizing element. However, since the γ phase is remarkably stabilized when added in a large amount, the γ phase cannot be decomposed during the subsequent heat treatment and the workability is deteriorated.
Cu: Cu can be used as a γ-phase stabilizing element. However, if added in a large amount, the strength is remarkably increased by Cu, so 0.5% or less is added.
Mo: Mo can be used as a ferrite phase stabilizing element. However, if added in a large amount, the strength increases and the workability deteriorates.
[0027]
Al: Al is used as a deoxidizing element and needs to be 0.015% or more, which can also be used for fixing N. Moreover, Al is a strong ferrite stabilizing element, and if it is contained in a large amount, the amount of γ is reduced, so that the content was made 0.025% or less.
O: O is to become a cause of deterioration of toughness of hot-rolled sheet toughness nozzle clogging and scratches occur also hot-rolled sheet at the time of casting or deteriorate, and 0.01% or less in the present invention, and the.
[0028]
In this invention, 1 or more types of B and V can be contained as needed.
B: Since B fixes N, workability can be improved. However, even if added excessively, the effect is saturated, so the content was made 0.005% or less.
V: V fixes C and N and improves workability, so it can be added as a selective element at 0.05% or less.
[0029]
【Example】
Ferritic stainless steel having the components shown in Table 1 was melted by vacuum melting in a laboratory to produce a 50 kg steel ingot having a thickness of 100 mm. Thereafter, after heating under the conditions shown in Table 2, a rough rolling was carried out in five passes to 20mm, a final hot rolling was carried out in six passes from 20mm to 5~3Mm, the or or hot rolled sheet seven hundred fifty to three hundred fifty ° C. the furnace insert and cooled 1 hour hold after furnace coiling simulator - was collected. Coiling temperature in the table is the simulator - a capital of hold temperature. Then, after pickling with sulfuric acid, the cold rolling ratio was changed to a thickness of 2.0 to 0.4 mm and cold rolled to evaluate the rolling height.
[0030]
For the rolling, the hot-rolled sheet is pickled, cold-rolled to 0.4 mm, measured with a roughness meter for a length of 10 mm in a direction perpendicular to the cold-rolling direction, and the maximum waviness height is determined. I took it as a roping height. This measurement was performed at three places, and the roping was evaluated by the average value. In the evaluation, the average of the three maximum rolling heights is less than 0.15 μm, A rank, 0.15 μm or more and less than 0.25 μm is B rank, 0.25 μm or more to less than 0.35 μm is C rank, 35 μm or more was evaluated as D rank. From the viewpoint of surface quality, there is no problem if it is A or B rank.
As shown in Table 2, all of the materials of the present invention had a low roping height of less than 0.25 μm and exhibited excellent surface characteristics.
[0031]
[Table 1]
Figure 0003806186
[0032]
[Table 2]
Figure 0003806186
[0033]
【The invention's effect】
As described above, the present invention can reduce the rolling during cold rolling, which is a problem of the surface characteristics of ferritic stainless steel, by a process of omitting hot-rolled sheet annealing, and contributes to the improvement of the surface characteristics at a low cost.

Claims (2)

質量%で、
C :0.025〜0.055%、
N :0.001〜0.015%、
Cr:15.0〜18.0%、
S :0.010%以下、
P :0.04%以下、
Ti:0.005〜0.10%、
Mn:0.01〜1.0%、
Si:0.01〜1.0%、
Ni:0.5%以下、
Cu:0.5%以下、
Mo:0.2%以下、
Al:0.015〜0.025%、
O :0.010%以下
を含有し、残部がFe及び不可避的不純物からなり、下式で示されるγpが20〜35%であるフェライト系ステンレス鋼を、熱間圧延に際し、加熱温度を1150℃以上1300℃以下にし、粗圧延において1100℃以上での累積圧下率を40%以上とし、引き続き仕上げ圧延を実施して捲取温度を450℃超600℃以下とし、以後熱延板焼鈍を実施することなく酸洗し、冷延、最終焼鈍を実施することを特徴とする、耐ローピング特性に優れたフェライト系ステンレス鋼の製造方法。
γp =420×C+470×N+23×Ni+12×Cu+7×Mn−11.5×Cr−11.5×Si−11×Mo−52×Al−49×Ti+189
% By mass
C: 0.025 to 0.055%,
N: 0.001 to 0.015%,
Cr: 15.0 to 18.0%,
S: 0.010% or less,
P: 0.04% or less,
Ti: 0.005 to 0.10%,
Mn: 0.01 to 1.0%
Si: 0.01 to 1.0%,
Ni: 0.5% or less,
Cu: 0.5% or less,
Mo: 0.2% or less,
Al: 0.015-0.025%,
O: containing 0.010% or less, the balance being Fe and unavoidable impurities, the ferritic stainless steel γp of the following formula is 20 to 35% and when the hot rolling, pressing heat temperature Is 1150 ° C. or higher and 1300 ° C. or lower, the cumulative rolling reduction at 1100 ° C. or higher in rough rolling is 40% or higher, and finish rolling is performed to set the milling temperature above 450 ° C. to 600 ° C. or lower. pickled without performing, cold rolling, which comprises carrying out the final annealing method for producing a superior ferritic stainless steel resistant roping characteristics.
γp = 420 × C + 470 × N + 23 × Ni + 12 × Cu + 7 × Mn-11.5 × Cr-11.5 × Si-11 × Mo-52 × Al-49 × Ti + 189
さらに、質量%で、
:0.005%以下、
V :0.05%以
1種以上を含有することを特徴とする、請求項1記載の耐ローピング特性に優れたフェライト系ステンレス鋼の製造方法。
Furthermore, in mass%,
B : 0.005% or less,
V: 0.05% or less under
1 you characterized by containing on or more kinds,請 Motomeko 1 method for producing superior ferritic stainless steel resistant roping properties described in.
JP19375996A 1996-07-23 1996-07-23 Method for producing ferritic stainless steel with excellent anti-roping properties Expired - Fee Related JP3806186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19375996A JP3806186B2 (en) 1996-07-23 1996-07-23 Method for producing ferritic stainless steel with excellent anti-roping properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19375996A JP3806186B2 (en) 1996-07-23 1996-07-23 Method for producing ferritic stainless steel with excellent anti-roping properties

Publications (2)

Publication Number Publication Date
JPH1036911A JPH1036911A (en) 1998-02-10
JP3806186B2 true JP3806186B2 (en) 2006-08-09

Family

ID=16313343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19375996A Expired - Fee Related JP3806186B2 (en) 1996-07-23 1996-07-23 Method for producing ferritic stainless steel with excellent anti-roping properties

Country Status (1)

Country Link
JP (1) JP3806186B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100741993B1 (en) * 2003-08-06 2007-07-23 닛신 세이코 가부시키가이샤 Work-hardened material from stainless steel
KR20070067325A (en) * 2005-12-23 2007-06-28 주식회사 포스코 A method of manufacturing a ferritic stainless steel for improving ridging resistance
KR101279052B1 (en) * 2009-12-23 2013-07-02 주식회사 포스코 Ferritic stainless steel sheet with excellent ridging resistance and manufacturing method thereof
KR101316907B1 (en) * 2009-12-28 2013-10-11 주식회사 포스코 Ferritic stainless steel and method for manufacturing the same
KR101279051B1 (en) * 2009-12-28 2013-07-02 주식회사 포스코 Ferritic stainless steel and method for manufacturing the same
ES2750684T3 (en) 2015-07-02 2020-03-26 Jfe Steel Corp Cold rolled stainless steel sheet material and manufacturing method for it
JP7241545B2 (en) * 2019-01-11 2023-03-17 日鉄ステンレス株式会社 Ferritic stainless steel sheet and manufacturing method thereof
JP7278079B2 (en) * 2019-01-15 2023-05-19 日鉄ステンレス株式会社 Cold-rolled stainless steel sheet, hot-rolled stainless steel sheet, and method for manufacturing hot-rolled stainless steel sheet
CN115341147B (en) * 2022-08-19 2023-09-26 山西太钢不锈钢股份有限公司 Medium chromium ferrite stainless steel for elevator panel and preparation method thereof

Also Published As

Publication number Publication date
JPH1036911A (en) 1998-02-10

Similar Documents

Publication Publication Date Title
JP5687624B2 (en) Stainless steel, cold-rolled strip made from this steel, and method for producing steel plate products from this steel
EP1099773B1 (en) Ferritic stainless steel plate
US6413332B1 (en) Method of producing ferritic Cr-containing steel sheet having excellent ductility, formability, and anti-ridging properties
JP5362582B2 (en) Ferritic stainless steel with excellent corrosion resistance and stretch formability and method for producing the same
JP4390961B2 (en) Ferritic stainless steel with excellent surface properties and corrosion resistance
JP3904683B2 (en) Ferritic stainless steel with excellent surface properties and method for producing the same
JP4390962B2 (en) High purity ferritic stainless steel with excellent surface properties and corrosion resistance
JP4065579B2 (en) Ferritic stainless steel sheet with small in-plane anisotropy and excellent ridging resistance and method for producing the same
JP3806186B2 (en) Method for producing ferritic stainless steel with excellent anti-roping properties
JP4214671B2 (en) Ferritic Cr-containing cold-rolled steel sheet excellent in ductility, workability and ridging resistance and method for producing the same
JP3241114B2 (en) Method for producing ferritic stainless steel sheet excellent in ridging property and workability
JP3941363B2 (en) Ferritic stainless cold-rolled steel sheet excellent in ductility, workability and ridging resistance, and method for producing the same
JP3779784B2 (en) Method for producing ferritic stainless steel with excellent surface properties
JP3857807B2 (en) Method for producing ferritic stainless steel with excellent surface properties and low anisotropy
JP3455047B2 (en) Ferritic stainless steel sheet excellent in workability and roping properties and method for producing the same
JP3477098B2 (en) Ferritic stainless steel sheet excellent in surface properties and ridging properties and method for producing the same
JPH07126758A (en) Manufacture of ferritic stainless steel sheet excellent in bendability
KR0146798B1 (en) Method for manufacturing ferritic stainless steel
JP3466298B2 (en) Manufacturing method of cold rolled steel sheet with excellent workability
JPH09256064A (en) Production of ferritic stainless steel thin sheet excellent in roping characteristic
JPH09256065A (en) Production of ferritic stainless steel thin sheet excellent in surface property
JP3026232B2 (en) Manufacturing method of thin stainless steel slab with excellent corrosion resistance and workability
JPH0137454B2 (en)
JP4258039B2 (en) Ferritic stainless steel hot-rolled sheet, cold-rolled sheet excellent in ridging resistance, and manufacturing method thereof
JP2001107149A (en) Method for producing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060512

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140519

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees