KR0146798B1 - Method for manufacturing ferritic stainless steel - Google Patents

Method for manufacturing ferritic stainless steel

Info

Publication number
KR0146798B1
KR0146798B1 KR1019950019658A KR19950019658A KR0146798B1 KR 0146798 B1 KR0146798 B1 KR 0146798B1 KR 1019950019658 A KR1019950019658 A KR 1019950019658A KR 19950019658 A KR19950019658 A KR 19950019658A KR 0146798 B1 KR0146798 B1 KR 0146798B1
Authority
KR
South Korea
Prior art keywords
less
stainless steel
ferritic stainless
present
temperature range
Prior art date
Application number
KR1019950019658A
Other languages
Korean (ko)
Other versions
KR970006518A (en
Inventor
박미남
박수호
유도열
Original Assignee
김종진
포항종합제철주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김종진, 포항종합제철주식회사 filed Critical 김종진
Priority to KR1019950019658A priority Critical patent/KR0146798B1/en
Publication of KR970006518A publication Critical patent/KR970006518A/en
Application granted granted Critical
Publication of KR0146798B1 publication Critical patent/KR0146798B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

본 발명은 주방기기, 세탁조, 자동차 배기계 부품등으로 사용되는 페라이트계 스테인레스 강의 제조방법에 관한 것으로, Mo의 함량을 낮추고 (Ti+Nb)/(C+N) 및 Nb/Ti를 최적화하므로서 성형성 및 리찡 저항성이 우수한 페라이트계 스테인레스강을 제조하는 방법을 제공하고자 하는데, 그 목적이 있다.The present invention relates to a method for manufacturing ferritic stainless steel used for kitchen appliances, washing tanks, automobile exhaust systems, etc., and is capable of reducing moldability by optimizing (Ti + Nb) / (C + N) and Nb / Ti. And to provide a method for producing a ferritic stainless steel excellent in Risping resistance, the object is.

상기한 목적을 달성하기 위한 본 발명은 페라이트계 스테인레스강의 제조방법에 있어서, 중량%로, C:0.02% 이하, Si:0.6% 이하, Mn:0.5% 이하, P:0.02% 이하, S:0.003% 이하, Cr:15-20%, Mo:0.6% 이하, N:0.02% 이하, Ti:0.6% 이하, Nb:0.6% 이하, 나머지 Fe 및 불가피하게 첨가되는 불순물로 조성되고, 상기 C+N : 0.03% 이하, (Ti+Nb)/(C+N) : 12-20, 및 Nb/Ti : 2 이상을 만족하는 스테인레스강을 1170-1250℃ 온도범위로 가열하여 열간압연후, 750-900℃ 온도범위에서 사상압연하고 900-970℃ 온도범위에서 열연 및 냉연소둔한 다음 급냉하는 것을 포함하여 이루어지는 성형성 및 리찡 저항성이 우수한 페라이트계 스테인레스강 제조방법을 제공함을 그 요지로 한다.In the present invention for achieving the above object, in the manufacturing method of ferritic stainless steel, in weight%, C: 0.02% or less, Si: 0.6% or less, Mn: 0.5% or less, P: 0.02% or less, S: 0.003 % Or less, Cr: 15-20%, Mo: 0.6% or less, N: 0.02% or less, Ti: 0.6% or less, Nb: 0.6% or less, remaining Fe and inevitably added impurities, and the C + N : Stainless steel satisfying 0.03% or less, (Ti + Nb) / (C + N): 12-20, and Nb / Ti: 2 or more in a temperature range of 1170-1250 ° C. after hot rolling, and then 750-900 It is an object of the present invention to provide a method for producing ferritic stainless steel having excellent formability and gritty resistance, including finishing rolling in a temperature range of C, hot rolling and cold annealing in a temperature range of 900 to 970 ° C, and quenching.

Description

성형성 및 리찡 저항성이 우수한 페라이트계 스테인레스강 제조방법Ferritic stainless steel manufacturing method with excellent formability and stiffness resistance

제1도 내지 제5도는 페라이트계 스테인레스강에서 Ti 및 Nb를 단독 또는 복합첨가했을 경우 Mo 함량에 따른 경도, 항복강도, 인장강도, 항복비([YS x Ts] x 100), 연신율,, 및 에릭센 값의 변화를 나타낸 그래프.1 to 5 show the hardness, yield strength, tensile strength, yield ratio ([YS x Ts] x 100), elongation, according to Mo content when Ti and Nb are added alone or in combination in ferritic stainless steel. Graph showing changes in, and Ericsen values.

제6도는 본 발명의 방법이 적용된 발명재와 이를 벗어나는 비교재의 Ti+Nb 함량 변화에 따른의 변화를 나타낸 그래프.6 shows the change of Ti + Nb content of the invention and the comparative material to which the method of the present invention is applied Graph showing the change in.

제7도는 본 발명의 방법이 적용된 발명재와 이를 벗어나는 비교재의 (Ti + Nb)/(C + N) 변화에 따른의 변화를 나타낸 그래프.7 shows the change according to the change of (Ti + Nb) / (C + N) of the invention and the comparative material to which the method of the present invention is applied Graph showing the change in.

제8도 내지 제11도는 본 발명의 방법이 적용된 발명재와 이를 벗어나는 비교재의 Ti+Nb 함량 변화에 따른 에릭센값, CCV, 가공경화지수, 및 리찡높이의 변화를 나타낸 그래프.8 to 11 are graphs showing changes in the Ericsen value, CCV, work hardening index, and Rishik height according to the Ti + Nb content change of the inventive material to which the method of the present invention is applied and the comparative material.

본 발명은 주방기기, 세탁조 및 자동차 배기계 부품용으로 사용되는 페라이트계 스테인레스강 제조방법에 관한 것으로, 보다 상세하게는, 성형성 및 리찡저항성(Ridging resistance)이 우수한 페라이트계 스테인레스강 제조방법에 관한 것이다.The present invention relates to a method for manufacturing ferritic stainless steel used for kitchen appliances, laundry tubs and automobile exhaust systems, and more particularly, to a method for producing ferritic stainless steel excellent in formability and rigid resistance. .

일반적으로 페라이트계 스테인레스강은 Ni을 첨가하지 않기 때문에 STS 304 오스테나이트계 스테인레스강 보다 가격면에서는 유리하지만 내식성 및 연신율이 저하하고 성형성이 나빠 심가공용으로 사용되는 경우 용도가 제한받는 문제점이 있다.In general, ferritic stainless steel is advantageous in terms of cost than STS 304 austenitic stainless steel because Ni is not added. However, when the ferritic stainless steel is used for deep processing, the corrosion resistance and elongation are lowered and the moldability is poor.

그러나 최근 제강정련 기술이 발달하여 침입형 원소인 C 및 N를 극저로 관리하고 안정화 원소인 Ti, Nb, Al, 및 Zr 등을 첨가하여 내식성 및 가공성을 높이고 동시에 Mo를 첨가하여 STS 304와 동등한 내식성 및 가공성을 얻고자 하는 연구가 활발하게 시도되고 있다. 이와같은 추세에 따라 주방기기, 세탁조 및 자동차 배기계 부품용으로 사용되는 페라이트계 스테인레스강의 수요와 용도는 날로 증가하는 경향을 보인다.However, recently, steelmaking and refining technology has been developed to manage the invasive elements C and N extremely low, and the addition of stabilizing elements, such as Ti, Nb, Al, and Zr, improves the corrosion resistance and workability, and at the same time, the addition of Mo is equivalent to STS 304. And research to obtain workability is actively attempted. With this trend, the demand and use of ferritic stainless steels used for kitchen appliances, washing tanks and automobile exhaust system parts tend to increase day by day.

상기와 같은 안정화 원소를 첨가하여 페라이트계 스테인레스강을 제조하는 것에 관한 종래 제안즐중 일본특개소 51-149116호, 및 일본특개소 56-158850호가 대표적이다.Japanese Patent Laid-Open No. 51-149116 and Japanese Patent Laid-Open No. 56-158850 are typical among the conventional proposals for producing ferritic stainless steel by adding the stabilizing element as described above.

일본 특개소 51-149116호는 C:0.03% 이하, Si:1% 이하, Mn:1% 이하, Cr:14-20%, Mo:1-3%, Ti:0.1-1.2%, Nb:0.1-1.2%, N:0.02% 이하, 나머지 Fe 및 기타 불순물로 조성되고, 상기 C+N:0.04% 이하이고 (Ti+Nb)/(C+N):8-30 범위로 유지되는 강을 970-1170℃ 온도범위로 소둔하여 페라이트계 스테인레스강을 제조하는 방법에 관한 것으로, 리찡성 개선의 효과가 있다.Japanese Patent Application Laid-Open No. 51-149116 discloses C: 0.03% or less, Si: 1% or less, Mn: 1% or less, Cr: 14-20%, Mo: 1-3%, Ti: 0.1-1.2%, and Nb: 0.1 970 steel, composed of -1.2%, N: 0.02% or less, remaining Fe and other impurities, wherein C + N: 0.04% or less and maintained in the range (Ti + Nb) / (C + N): 8-30 The present invention relates to a method for producing ferritic stainless steel by annealing at a temperature range of -1170 ° C, and has an effect of improving the refrigerability.

일본특개소 56-158850호는 C:0.0015% 이하, Si:0.6% 이하, Mn:0.5% 이하, S:0.005% 이하, Cr:15-20%, Ni:1.0% 이하, Mo:0.5% 이하, Cu:0.1-1.0%, Ti:0.1-0.5%, Nb:0.1-0.5%, N:0.02% 이하, Al:0.1% 이하, W 또는 V을 단독 또는 복합으로 0.3% 이하, 나머지 : Fe 및 기타 불가피한 불순물로 조성되고, 상기 C+N : 0.03% 이하이고 (Ti+Nb)/(C+N) : 10 이상으로 유지되는 페라이트계 스테인레스강에 관한 것으로, 내식성 개선의 효과가 있다.Japanese Patent Application Laid-Open No. 56-158850 is C: 0.0015% or less, Si: 0.6% or less, Mn: 0.5% or less, S: 0.005% or less, Cr: 15-20%, Ni: 1.0% or less, Mo: 0.5% or less , Cu: 0.1-1.0%, Ti: 0.1-0.5%, Nb: 0.1-0.5%, N: 0.02% or less, Al: 0.1% or less, W or V alone or in combination, 0.3% or less, the rest: Fe and The present invention relates to a ferritic stainless steel, which is composed of other unavoidable impurities, and is maintained at C + N: 0.03% or less and (Ti + Nb) / (C + N): 10 or more, and has an effect of improving corrosion resistance.

그러나 상기와 같은 페라이트계 스테인레스 강에서는 Mo 및 Cr 함량이 증가하면 내식성은 향상되나 Mo, Cr, W 및 V 합금철의 투입량이 많아지므로 제조원가가 상승하고, 성형성이 저하하며, 페라이트계 스테인레스강의 가장 큰 문제점인 리찡성 개선에도 만족스럽지 못하는 등 문제점이 있다.However, in the ferritic stainless steel as described above, the corrosion resistance is improved when the Mo and Cr content is increased, but the input cost of the iron, Cr, W and V alloy is increased, the manufacturing cost increases, the formability is lowered, and the most of the ferritic stainless steel There is a problem such as being unsatisfactory in the improvement of the riching which is a big problem.

특히, 안정화 원소중 Ti를 첨가한 강은 연속주조시 노즐막힘 현상과 Ti 산화물에 의한 표면 결함 및 광휘소둔시 템퍼드 칼라(Tempered Coler)가 발생한다. 그리고 연신율이 높아 성형성은 양호하나 성형후 표면에 오렌지 필(Orange peel) 현상이 발생하고, 특히 압연방향과 35° 방향으로 인장하면 새로운 리찡이 발생하는데, Ti 첨가강은 결정입도가 조대하여 오렌지 필 현상과 리찡이 합쳐져 성형후 표면의 굴곡 높이가 더욱 높게 나타나는 문제점이 있다.In particular, steel containing Ti as a stabilizing element generates nozzle clogging during surface casting, surface defects caused by Ti oxide, and tempered color during bright annealing. In addition, the elongation is good, the moldability is good, but the orange peel phenomenon occurs on the surface after molding, and in particular, when it is stretched in the rolling direction and in the 35 ° direction, a new rhythm is generated. There is a problem in that the bending height of the surface after molding is higher due to the combination of the phenomenon and the rhythm.

이에, 본 발명자는 상기한 문제점들을 해결하여 페라이트계 스테인레스강의 성형성 및 리찡 저항성을 향상시키기 위하여 연구와 실험을 행하고 그 결과에 근거하여 본 발명을 제안하게 된 것으로서, 본 발명은 Mo의 함량을 낮추고 (Ti+Nb)/(C+N) 및 Nb/Ti를 최적화하므로서 성형성 및 리찡 저항성이 우수한 페라이트계 스테인레스강을 제조하는 방법을 제공하고자 하는데, 그 목적이 있다.Accordingly, the present inventors have conducted studies and experiments to solve the above problems and improve the formability and stiffness resistance of ferritic stainless steel, and based on the results, the present invention lowers the Mo content. An object of the present invention is to provide a method of manufacturing ferritic stainless steel having excellent moldability and rhythm resistance by optimizing (Ti + Nb) / (C + N) and Nb / Ti.

이하, 본 발명은 설명한다.Hereinafter, the present invention will be described.

본 발명은 페라이트계 스테인레스강의 제조방법에 있어서, 중량%로, C:0.02% 이하, Si:0.6% 이하, Mn:0.5% 이하, P:0.02% 이하, S:0.003% 이하, Cr:15-20%, Mo:0.6% 이하, N:0.02% 이하, Ti:0.6% 이하, Nb:0.6% 이하, 나머지 Fe 및 불가피하게 함유되는 불순물로 조성되고, 상기 C+N : 0.03% 이하, (Ti+Nb)/(C+N) : 12-20, 및 Nb/Ti : 2 이상을 만족하는 스테인레스강을 1170-1250℃ 온도범위로 가열하고 750-900℃의 마무리압연 온도조건으로 열간압연한 후, 900-970℃ 온도범위에서 열연소둔하고 급냉한 다음, 냉간압연하고, 이어 900-970℃ 온도범위에서 냉연소둔하고 급냉하는 것을 포함하여 이루어지는 성형성 및 리찡 저항성이 우수한 페라이트계 스테인레스강의 제조방법에 관한 것이다.In the manufacturing method of the ferritic stainless steel, the present invention is, in weight%, C: 0.02% or less, Si: 0.6% or less, Mn: 0.5% or less, P: 0.02% or less, S: 0.003% or less, Cr: 15- 20%, Mo: 0.6% or less, N: 0.02% or less, Ti: 0.6% or less, Nb: 0.6% or less, remaining Fe and inevitably contained impurities, and C + N: 0.03% or less, (Ti After stainless steels satisfying + Nb) / (C + N): 12-20 and Nb / Ti: 2 or more are heated to a temperature range of 1170-1250 ° C and hot rolled to a finish rolling temperature of 750-900 ° C In the manufacturing method of ferritic stainless steel having excellent moldability and rhythm resistance, comprising hot-rolled annealing and quenching at a temperature range of 900-970 ℃, followed by cold rolling, followed by cold-rolling and quenching at a temperature range of 900-970 ℃. It is about.

이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

상기한 목적을 달성하기 위하여 본 발명에서는 강을 상기와 같이 조성함이 바람직하며, 그 이유는 다음과 같다.In order to achieve the above object, in the present invention, it is preferable to form the steel as described above, and the reason thereof is as follows.

상기 C 및 N는 탄질화물 형성원소로 침입형으로 존재하면 강도를 높이고, 충격인성, 내식성 및 성형성을 저하시키기 때문에 낮게 유지할수록 바람직하므로 그 함량은 각각 0.02% 이하, 그리고 C+N:0.03% 이하로 한정한다.When the C and N are in the intrusion type as the carbonitride-forming element, the strength is increased, and the lower the impact strength, the lower the impact resistance, the lower the moldability and the lower the moldability, so the content is preferably 0.02% or less, and C + N: 0.03%, respectively. It limits to the following.

Si는 페라이트 형성원소로 함량 증가와 함께 페라이트 상의 안전성이 높아지게 되고 내산화성이 향상되나 0.6% 이상 첨가하면 경도, 항복강도, 인장강도를 높이고 연신율을 저하시키기 때문에 성형성에 불리하여 0.6% 이하로 한정한다.Si is a ferrite forming element which increases the content and increases the safety of ferrite phase and improves the oxidation resistance. However, when it is added more than 0.6%, Si is disadvantageous to formability because it increases hardness, yield strength, tensile strength and decreases elongation. .

Mn은 함량이 높아지면 MnS를 용출하여 내공식성을 저하시키기 때문에 0.5% 이하로 한정한다.Mn is limited to 0.5% or less because the content of Mn elutes MnS and lowers pitting resistance.

P 및 S는 MnS를 형성하여 내식성 및 열간가공성을 저해하므로 가능한 한 낮게 관리하는 것이 좋기 때문에 P:0.02% 이하, S:0.003% 이하로 한정한다.Since P and S form MnS and inhibit corrosion resistance and hot workability, P and S are preferably managed as low as possible, so they are limited to P: 0.02% or less and S: 0.003% or less.

Cr은 함량이 15% 이하로 너무 낮으면 내식성이 저하하고 함량이 너무 높아지면 내식성은 향상이 되나 20% 이상이면 강도가 높아지고 연신율이 낮아져서 성형성이 저하하고, 특히 시그마상을 석출할 우려가 높기 때문에 그 함량은 15-20%로 한정한다.If Cr is too low (15% or less), the corrosion resistance is lowered. If the content is too high, the corrosion resistance is improved, but if it is 20% or more, the strength is high and the elongation is low, thus the moldability is lowered. In particular, there is a high possibility of precipitating sigma phase. Therefore, the content is limited to 15-20%.

Mo는 내식성을 현저하게 향상시킬 뿐만 아니라 판두께 중심부의 결정립을 미세화시켜 리찡성을 개선시키는 원소이나 제1도 - 제5도에 나타난 바와 같이, 그 함량이 증가하면 안정화원소의 변화와 관계없이 경도, 인장강도, 항복강도 및 항복비를 증가하고 연신율,값 및 에릭센 값이 저하하여 성형성이 나빠진다. 따라서 내식성 및 성형성을 고려하여 Mo 함량을 0.6% 이하로 한정한다.Mo not only improves the corrosion resistance significantly but also reduces the grain size at the center of the plate thickness and improves the rhythm. As shown in FIGS. , Tensile strength, yield strength and yield ratio, Value and Ericsen value fall, and moldability worsens. Therefore, considering the corrosion resistance and moldability, Mo content is limited to 0.6% or less.

Ti은 C, N과 결합하여 탄질화물을 형성하여 리징성을 향상시킬 뿐만 아니라 Cr 탄화물의 석출을 억제하여 내식성을 향상시킨다. 한편, Ti을 0.6% 이상으로 과잉 첨가하면 상기한 Ti 첨가강에서와 같은 문제점이 발생하여 표면품질을 나쁘게 하기 때문에 그 함량을 0.6% 이하로 한정한다.Ti combines with C and N to form carbonitrides to improve leasing properties and to inhibit the precipitation of Cr carbides to improve corrosion resistance. On the other hand, when Ti is added in excess of 0.6%, the same problem as in the above-described Ti-added steel occurs and the surface quality is worsened, so the content is limited to 0.6% or less.

Nb는 탄질화물 석출에 의한 소둔재결정 집합조직 제어효과에 의한 리징성 개선을 위해 첨가한다. 또한 Nb는 C, N과 결합하여 탄질화물을 형성하므로서 Cr 석출물의 석출을 억제하여 내식성을 향상시킨다. 그러나, Nb를 0.6% 이상으로 과잉 첨가하면 가공성이 저하하기 때문에 Nb는 그 함량을 0.6% 이하로 한정한다.Nb is added to improve the ridging property by controlling the annealing material crystal texture by carbonitride precipitation. In addition, Nb combines with C and N to form carbonitrides, thereby inhibiting the precipitation of Cr precipitates, thereby improving corrosion resistance. However, since excessively adding Nb to 0.6% or more reduces workability, Nb limits its content to 0.6% or less.

그리고 (Ti+Nb)/(C+N)는 그 비가 10 이상이면 입계부식성이 방지되고, 12-20범위에서 딥드로잉성을 나타내는값이 가장 높기 때문에 입계 부식성 및 성형성을 동시에 만족하는 12-20 범위로 한정하는 것이 바람직하며, Ti 및 Nb을 복합 첨가한 효과를 최대로 얻기 위해서는 Nb/Ti 비를 2이상으로 하여 Nb 함량을 높이는 것이 성형성 및 리찡성 개선에 유효하므로 Nb/Ti는 2 이상으로 한정한다.And (Ti + Nb) / (C + N) is the ratio of 10 or more to prevent the intergranular corrosion, showing a deep drawing property in the range of 12-20 Since the value is the highest, it is preferable to limit the range to 12-20 which satisfies the grain boundary corrosion and formability at the same time. Nb / Ti is limited to two or more because the height is effective for improving moldability and stiffness.

또한, 본 발명에서는 강을 상기와 같이 조성한 후, 다음과 같은 조건으로 가열, 열간압연, 열연소둔, 냉간압연, 냉연소둔 및 냉각하여 본 발명의 페라이트계 스테인레스강을 제조함이 바람직하다.In addition, in the present invention, after forming the steel as described above, it is preferable to produce the ferritic stainless steel of the present invention by heating, hot rolling, hot rolling, cold rolling, cold rolling and cooling under the following conditions.

열간압연을 위한 주편과 주괴의 가열온도, 마무리압연온도 및 권취온도는 낮을수록 성형성 및 리찡저항성이 개선된다. 그러나, 열간압연 온도가 낮아지면 스라브 표층부가 압연롤에 묻어나는 표면 결함인 스티킹(Sticking) 현상이 발생하여 열연코일 표면에 결함이 다발하는 문제와 산업현장에서 열간압연기 설비 능력 및 작업성을 고려하여 주편가열 온도는 1170-1250℃, 마무리압연온도는 750-900℃ 범위가 바람직하다.The lower the heating temperature, finish rolling temperature, and winding temperature of the cast and ingot for hot rolling, the better the formability and the crush resistance. However, when the hot rolling temperature is lowered, there is a problem of sticking, which is a surface defect of the slab surface layer buried in the rolling roll, so that defects occur frequently on the surface of the hot rolled coil, and considering the capability and workability of the hot rolling mill in an industrial site. The cast heating temperature is preferably 1170-1250 ° C., and the finish rolling temperature is 750-900 ° C.

그리고 열연 및 냉연 소둔온도는 900℃ 이하로 너무 낮아지면 재결정을 지연시키는 Nb 첨가강에서는 재결정 및 결정립 성장이 불충분하여 충격특성, 연신율 및 성형성이 저하하고, 970℃ 이상으로 높아지면 결정립이 조대하여 충격특성이 나빠지고 성형후 오렌지 필 발생 및 리찡성이 나빠지므로 열연 및 냉연소둔 처리온도는 900-970℃ 범위가 바람직하다.In addition, in the Nb-added steel which delays recrystallization when the hot rolled and cold rolled annealing temperatures are too low below 900 ° C, recrystallization and grain growth are insufficient, resulting in deterioration of impact characteristics, elongation and formability, and high grains above 970 ° C. The hot rolling and cold annealing treatment temperature is preferably in the range of 900-970 ° C., because the impact characteristics are worse and the orange peel generation and crushing property are poor after molding.

이와같이 열연소둔 및 냉연소둔할 때의 냉각은 고온취화 방지 및 기계적 성질이 양호한 급냉으로 한정한다.Thus, the cooling at the time of hot-rolling annealing and cold-rolling annealing is limited to the prevention of high temperature embrittlement and quenching with good mechanical properties.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예]EXAMPLE

하기표 1과 같이 조성되는 스테인레스강을 진공유도 용해로에서 용해하여 30kg 주괴(Ingot)를 제조하였다. 이와같이 제조된 주괴를 1230℃에서 150분 가열하고 810℃의 마무리압연 온도조건에서 열간압연하여 4mm 두게의 열연판을 제조하고 700℃에서 권취한 다음, Nb 단독 및 Nb+Ti 복합 첨가강은 950℃에서, Ti 단독 첨가강은 900℃에서 5분간 연속 소둔 처리후, 급냉하고 산세처리하였다.The stainless steel composition as shown in Table 1 was dissolved in a vacuum induction melting furnace to prepare a 30 kg ingot. The ingot thus prepared was heated at 1230 ° C. for 150 minutes and hot rolled at 810 ° C. finish rolling temperature to produce a 4 mm thick hot rolled sheet, wound at 700 ° C., and the Nb alone and Nb + Ti composite additive steel were 950 ° C. In, the Ti-added steel was quenched and pickled after 5 minutes of continuous annealing treatment at 900 ° C.

상기 열연판을 70%의 압연율로 냉간압연하여 1,2mm 두께의 냉연판을 제조하고, 이어 상기 열연판 소둔온도와 동일한 온도에서 4분간 냉연소둔하여 급냉하고 산세처리한 다음 2%의 냉간압연율로 조질압연하여 시편을 제조하였다.The hot rolled sheet was cold rolled at a rolling rate of 70% to prepare a cold rolled sheet having a thickness of 1,2 mm, followed by cold rolling for 4 minutes at the same temperature as the hot rolled sheet annealing temperature, followed by quenching and pickling, followed by cold rolling at 2%. The specimen was prepared by rough rolling at a rate.

상기와 같이 제조된 시편의 딥로잉성을 평가하기 위해 JIS 13B로 인장시편을 가공후 15% 인장시험을 하여값을 3개 측정하고, Ti+Nb 복합첨가량 변화에 따른 평균값(r)을 제6도에, (Ti+Nb)/(C+N) 변화에 따른 평균값()을 제7도에 나타내었다.In order to evaluate the deep-rowing properties of the specimens prepared as described above, the tensile specimens were processed by JIS 13B and subjected to a 15% tensile test. Three values were measured, and the average value (r) according to the Ti + Nb complex addition amount change was shown in FIG. 6, and the average value ((+) ) Is shown in FIG.

제6도에 나타난 바와 같이, Nb를 Ti에 비해 많이 첨가하여 본 발명의 Nb/Ti : 2이상의 조건을 만족하는 발명재(A,B)의 경우, Ti와 Nb를 단독으로 첨가한 비교재(4-12) 및 Nb/Ti : 2 이상의 조건을 만족하지 못하는 비교재(2,3)와값에 있어서 동등이상의 특성을 나타냄을 알 수 있다. 그리고 본 발명의 Nb/Ti 조건은 만족하나 (Ti+Nb)/(C+N) 조건을 만족하지 못하는 비교재(1)의 경우 발명재(A,B)에 비하여값이 열등함을 알 수 있다.As shown in FIG. 6, in the case of the invention material (A, B) which satisfies the condition of Nb / Ti: 2 or more of the present invention by adding more Nb than Ti, a comparative material in which Ti and Nb were added alone ( 4-12) and Nb / Ti: comparative materials (2,3) that do not satisfy the condition of 2 or more It can be seen that the characteristic is equal to or higher than the value. In the case of the comparative material (1) which satisfies the Nb / Ti condition of the present invention but does not satisfy the (Ti + Nb) / (C + N) condition, the invention material (A, B) It can be seen that the values are inferior.

제7도에 나타난 바와 같이,값은 (Ti+Nb)/(C+N)비가 12-20 범위내에서 가장 높은 것을 알 수 있다. 따라서, 발명재(A,B)의 경우 딥드로잉성을 개선하기 위해서 (Ti+Nb)/(C+N)비가 12-20 범위내에서 조정되었기 때문에값이 높다.As shown in Figure 7, It can be seen that the value (Ti + Nb) / (C + N) ratio is the highest in the range of 12-20. Therefore, in the case of the inventive materials (A, B), the (Ti + Nb) / (C + N) ratio was adjusted within the range of 12-20 to improve the deep drawing property. The value is high.

시편들의 장출성형성을 평가하기 위해서 JIS Z 2247B 방법으로 에릭센(Erichsen) 시험하고 각 시편별 3회 측정후 그 평균값을 제8도에 나타내었다.In order to evaluate the elongation properties of the specimens, the Erichsen test was conducted by JIS Z 2247B method, and the average value of the three specimens was shown in FIG. 8.

제8도에서 알 수 있는 바와 같이, 본 발명의 범위를 만족하는 발명재(A,B)의 경우 비교재(1-12)에 비하여 에릭센 값이 커 장출성형성이 우수함을 알 수 있다.As can be seen in Figure 8, the invention material (A, B) that satisfies the scope of the present invention it can be seen that the Eriksen value is greater than the comparative material (1-12) is excellent in elongation formation.

시편들의 딥드로잉성 및 장출성형성을 복합으로 평가하는 코니칼 컵 시험을 JIS Z 2249 21형 기준에 준하여 실시하고, 성형후 시편의 최대 및 최소직경의 평균값으로 CCV값을 나타내고 그 결과를 제9도에 나타내었다.Conical cup test to evaluate the deep drawing property and elongation property formation of the specimens was conducted in accordance with JIS Z 2249 type 21 standards, and after forming, the average value of the maximum and minimum diameters of the specimens was expressed as the CCV value, and the result was ninth. It is shown in the figure.

제9도에서 알 수 있는 바와 같이, 본 발명의 범위를 만족하는 발명재(A,B)의 경우, 비교재(1-12)에 비하여 CCV값이 낮아 복합 성형성이 우수함을 알 수 있다.As can be seen from FIG. 9, in the case of the invention materials (A, B) satisfying the scope of the present invention, it can be seen that the composite moldability is excellent because the CCV value is lower than that of the comparative materials (1-12).

발명재(A,B)가 비교재(1-12)에 비하여 성형성이 우수한 이유를 조사하고자 상기 시편들을 8%에서 16% 연신구간에서 구한 가공경화 지수 n값을 측정하고 그 결과를 제10도에 나타내었다.In order to investigate the reason why the inventive material (A, B) is superior in formability to the comparative material (1-12), the work hardening index n value obtained from the 8% to 16% elongation section of the specimens was measured and the result was measured. It is shown in the figure.

제10도에서 알 수 있는 바와 같이, 본 발명의 범위를 만족하는 발명재(A,B)의 경우 비교재(1-12)에 비하여 n값이 높기 때문에 성형시 넥킹이 지연되어 성형성이 우수함을 알 수 있다.As can be seen in Figure 10, the invention material (A, B) that satisfies the scope of the present invention because the n value is higher than that of the comparative material (1-12), the necking is delayed during molding and excellent moldability It can be seen.

냉연소둔판의 리찡성 평가를 위하여 JIS 5호 규격으로 압연방향과 평행하게 인장시편을 가공하여 시편의 평행부를 연마후 20% 인장하여 표면 조도기로 표면의 형상(profile)의 최대 높이인 Rt값으로 리찡의 높이를 측정하고 그 결과를 제11도에 나타내었다.In order to evaluate the cold rolling annealing, the tensile tester was processed according to JIS No. 5 standard in parallel with the rolling direction. After grinding the parallel part of the test specimen, it was stretched by 20% and the surface roughness was used as the maximum height of the surface profile (Rt). The height of the ricin was measured and the result is shown in FIG.

제11도에서 알 수 있는 바와 같이, 본 발명의 범위를 만족하는 발명재(A,B)이 경우 비교재(1-12)에 비하여 리찡 높이가 낮아 리찡성이 개선됨을 알 수 있다.As can be seen in Figure 11, the invention material (A, B) that satisfies the scope of the present invention can be seen that the rimability is improved compared to the comparative material (1-12) lower the rhythm height.

상술한 바와 같이, 본 발명은 강의 성분함량, Nb/Ti, 및 (Nb+Ti)/(C+N), 그리고 제조조건을 적절히 제어하므로서 성형성 및 리찡 저항성이 우수한 페라이트계 스테인레스강의 제조가 가능한 효과가 있다.As described above, the present invention enables the production of ferritic stainless steel having excellent moldability and stiffness resistance by appropriately controlling the steel content, Nb / Ti, and (Nb + Ti) / (C + N), and manufacturing conditions. It works.

Claims (1)

페라이트계 스테인레스강의 제조방법에 있어서, 중량%로, C:0.02% 이하, Si:0.6% 이하, Mn:0.5% 이하, P:0.02% 이하, S:0.003% 이하, Cr:15-20%, Mo:0.6% 이하, N:0.02% 이하, Ti:0.6% 이하, Nb:0.6% 이하, 나머지 Fe 및 불가피하게 함유되는 불순물로 조성되고, 상기 C+N : 0.03% 이하, (Ti+Nb)/(C+N) : 12-20, 및 Nb/Ti : 2 이상을 만족하는 스테인레스강을 1170-1250℃ 온도범위로 가열하고 750-900℃의 마무리압연 온도조건으로 열간압연한 후, 900-970℃ 온도범위에서 열연소둔하고 급냉한 다음, 냉간압연하고, 이어 900-970℃ 온도범위에서 냉연소둔하고 급냉하는 것을 포함하여 이루어짐을 특징으로 하는 성형성 및 리찡 저항성이 우수한 페라이트계 스테인레스강 제조방법.In the manufacturing method of ferritic stainless steel, in weight%, C: 0.02% or less, Si: 0.6% or less, Mn: 0.5% or less, P: 0.02% or less, S: 0.003% or less, Cr: 15-20%, Mo: 0.6% or less, N: 0.02% or less, Ti: 0.6% or less, Nb: 0.6% or less, remaining Fe and inevitably contained impurities, and C + N: 0.03% or less, (Ti + Nb) / (C + N): 12-20, and Nb / Ti: stainless steel that satisfies 2 or more is heated to a temperature range of 1170-1250 ℃ and hot-rolled to the finish rolling temperature conditions of 750-900 ℃, 900- Hot-annealed and quenched at a temperature range of 970 ° C., followed by cold rolling, followed by cold-annealed and quenched at a temperature range of 900-970 ° C. .
KR1019950019658A 1995-07-05 1995-07-05 Method for manufacturing ferritic stainless steel KR0146798B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950019658A KR0146798B1 (en) 1995-07-05 1995-07-05 Method for manufacturing ferritic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950019658A KR0146798B1 (en) 1995-07-05 1995-07-05 Method for manufacturing ferritic stainless steel

Publications (2)

Publication Number Publication Date
KR970006518A KR970006518A (en) 1997-02-21
KR0146798B1 true KR0146798B1 (en) 1998-11-02

Family

ID=19419846

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950019658A KR0146798B1 (en) 1995-07-05 1995-07-05 Method for manufacturing ferritic stainless steel

Country Status (1)

Country Link
KR (1) KR0146798B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100276319B1 (en) * 1996-03-14 2000-12-15 이구택 The manufacturing method of ferrite stainless steel with excellent corrosion resistance and formability
KR100276304B1 (en) * 1996-12-05 2000-12-15 이구택 The manufacturing method of ferrite stainless steel with excellent corrosion resistance and toughness
KR100868193B1 (en) * 2006-12-28 2008-11-10 주식회사 포스코 A ferritic stainless steel with high corrosion resistance and superior ridging property and the method of manufacturing the same

Also Published As

Publication number Publication date
KR970006518A (en) 1997-02-21

Similar Documents

Publication Publication Date Title
US5624504A (en) Duplex structure stainless steel having high strength and elongation and a process for producing the steel
EP2415893B1 (en) Steel sheet excellent in workability and method for producing the same
US7959747B2 (en) Method of making cold rolled dual phase steel sheet
US7442268B2 (en) Method of manufacturing cold rolled dual-phase steel sheet
KR20110105404A (en) High-strength hot-dip galvanized steel sheet and manufacturing method therefor
US6500280B2 (en) Ferritic Cr-containing steel sheet having excellent ductility, formability, and anti-ridging properties
US20210040577A1 (en) High-strength cold-rolled steel sheet, high-strength coated steel sheet, and method for producing the same
JP4065579B2 (en) Ferritic stainless steel sheet with small in-plane anisotropy and excellent ridging resistance and method for producing the same
KR100259739B1 (en) Ferrite type hot rolled stainless steel sheet having excellent resistance to surface roughening and to high temperature fatigue after working
JP2521553B2 (en) Method for producing cold-rolled steel sheet for deep drawing having bake hardenability
KR0146798B1 (en) Method for manufacturing ferritic stainless steel
KR100435457B1 (en) A method for manufacturing ferritic stainless steel having improvable formability and ridging resistance
JP7267428B2 (en) High-strength cold-rolled steel sheet with excellent burring property, alloyed hot-dip galvanized steel sheet, and manufacturing method thereof
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
KR100276319B1 (en) The manufacturing method of ferrite stainless steel with excellent corrosion resistance and formability
KR100276301B1 (en) The manufacturing method of ferrite stainless steel with high corrosion resistance and high formability
KR100415666B1 (en) A ferritic stainless steel having improved formability, ridging resistance and a method for manufacturing it
KR102497439B1 (en) Ferritic stainless steel with improved ridging resistance and its manufacturing method
JP2001098327A (en) Method of producing ferritic stainless steel excellent in ductility, workability and ridging resistance
JP2001107149A (en) Method for producing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JPH0261033A (en) Cold rolled steel sheet for deep drawing
JPH09316619A (en) Production of high strength hot dip galvanized steel sheet excellent in deep drawability
KR100256357B1 (en) The manufacturing method for high strength steel sheet with cu precipitation hardening type
KR100276304B1 (en) The manufacturing method of ferrite stainless steel with excellent corrosion resistance and toughness
CN116987971A (en) Galvanized low alloy high strength steel and production method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20030506

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee