JP4237183B2 - Stainless steel work hardener - Google Patents

Stainless steel work hardener Download PDF

Info

Publication number
JP4237183B2
JP4237183B2 JP2005512982A JP2005512982A JP4237183B2 JP 4237183 B2 JP4237183 B2 JP 4237183B2 JP 2005512982 A JP2005512982 A JP 2005512982A JP 2005512982 A JP2005512982 A JP 2005512982A JP 4237183 B2 JP4237183 B2 JP 4237183B2
Authority
JP
Japan
Prior art keywords
mass
stainless steel
less
inclusions
bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005512982A
Other languages
Japanese (ja)
Other versions
JPWO2005014873A1 (en
Inventor
広 森川
淳一 香月
孝浩 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Publication of JPWO2005014873A1 publication Critical patent/JPWO2005014873A1/en
Application granted granted Critical
Publication of JP4237183B2 publication Critical patent/JP4237183B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Description

本発明は、強度,曲げ加工性に優れ、加工硬化でフェライト組織を高強度化したステンレス鋼加工硬化材に関する。   The present invention relates to a stainless steel work-hardening material that is excellent in strength and bending workability and has a ferrite structure made stronger by work hardening.

ポータブル型のノートパソコンにみられるように、テレビ,パソコンに代表される家電製品やOA機器用では軽量部材が要求されており、部材の薄肉化によって軽量化の要求に応えている。軽量化しても必要強度を確保する上で、圧延方向の0.2%耐力≧約500N/mm又はビッカース硬度HV≧約200が目安とされている。 As seen in portable notebook personal computers, light-weight members are required for household appliances and office automation equipment such as televisions and personal computers, and the demand for weight reduction is met by reducing the thickness of the members. In order to secure the required strength even if the weight is reduced, 0.2% proof stress in the rolling direction ≧ about 500 N / mm 2 or Vickers hardness HV ≧ about 200 is a standard.

金属部材をフレーム,保護ケース等として家電製品,OA機器に組み込む際、プレス加工,曲げ加工等によって金属切板を所定形状に加工している。そのため、家電製品,OA機器用の金属部材としては、強度に加えて曲げ加工性に優れていることも重要である。   When a metal member is incorporated into a home appliance or OA device as a frame, a protective case or the like, the metal cut plate is processed into a predetermined shape by pressing, bending, or the like. Therefore, as a metal member for home appliances and OA equipment, it is also important that the material has excellent bending workability in addition to strength.

しかも、環境保全やリサイクル性を重視し、めっき不要の無垢金属素材のニーズが高いことが最近の傾向である。耐食性に優れた無垢金属素材には、SUS410,SUS420J2に代表されるマルテンサイト系,SUS631に代表される析出硬化型,SUS304,SUS301に代表される加工硬化型オーステナイト系等の高強度ステンレス鋼がある。   Moreover, the recent trend is that the need for solid metal materials that do not require plating is high, with an emphasis on environmental conservation and recyclability. Solid metal materials excellent in corrosion resistance include high-strength stainless steels such as martensite type typified by SUS410 and SUS420J2, precipitation hardening type typified by SUS631, and work hardening type austenite type typified by SUS304 and SUS301. .

マルテンサイト系,析出硬化型のステンレス鋼は、製品形状に加工した後でそれぞれ焼入れ・焼戻し処理,時効処理を施すことにより高強度化される。しかし、ユーザ側で焼入れ・焼戻し処理,時効処理を必要とするため、そのための設備負担を強いられる。しかも、熱処理された製品表面に生じた酸化スケールを除去する酸洗又は研磨工程や、熱変形を矯正する手直し加工が必要になる。   Martensitic and precipitation hardened stainless steels are strengthened by processing them into product shapes, followed by quenching, tempering and aging treatments, respectively. However, since the user side needs quenching / tempering treatment and aging treatment, the equipment burden for that is forced. In addition, a pickling or polishing process for removing oxide scale generated on the surface of the heat-treated product and a reworking process for correcting thermal deformation are required.

加工硬化型オーステナイト系ステンレス鋼は、素材段階で強化しており曲げ加工性も良好なためユーザ側での熱処理を省略できる材料であるが、高価なNiを多量に含むため鋼材コストが高くなる。そこで、加工硬化型オーステナイト系ステンレス鋼の長所を活かしながらNi含有量を低減した安価なステンレス鋼が開発されている。たとえば、マルテンサイト相で強度を、フェライト相で加工性をもたせた(フェライト+マルテンサイト)複相型ステンレス鋼(特開昭63−169330号公報),(フェライト+マルテンサイト)複相組織又はマルテンサイト単層組織に分散しているMnS系介在物粒子のサイズや形態制御により曲げ加工性を改善したステンレス鋼(特開平11−302791号公報),冷間圧延でフェライト組織を加工硬化させ熱処理を省略したステンレス鋼(特開2001−262282号公報)等がある。   Work-hardening austenitic stainless steel is a material that can be tempered at the raw material stage and has good bending workability, so that the heat treatment on the user side can be omitted. However, since it contains a large amount of expensive Ni, the steel material cost increases. Therefore, inexpensive stainless steels having a reduced Ni content have been developed while taking advantage of the work-hardening austenitic stainless steel. For example, (ferrite + martensite) double phase stainless steel (Japanese Unexamined Patent Publication No. 63-169330), (ferrite + martensite) double phase structure or martensite having strength in the martensite phase and workability in the ferrite phase Stainless steel (Japanese Patent Laid-Open No. 11-302791) with improved bending workability by controlling the size and morphology of MnS inclusion particles dispersed in the site single layer structure, and ferritic structure is work-hardened by cold rolling and heat treatment There are omitted stainless steel (Japanese Patent Laid-Open No. 2001-262282) and the like.

特開昭63−169330号公報の(フェライト+マルテンサイト)複相型ステンレス鋼は、マルテンサイト量の増加に従って強度が高くなるが、50質量%を超えるマルテンサイト量では曲げ加工性が著しく低下する。   The strength of the (ferrite + martensite) duplex stainless steel disclosed in JP-A-63-169330 increases as the amount of martensite increases. However, when the amount of martensite exceeds 50% by mass, the bending workability decreases remarkably. .

特開平11−302791号公報のステンレス鋼は、比較的曲げ半径の大きな建築構造物に使用される角型鋼管を主たる対象にしている。しかし、曲げ加工後に高い寸法精度が要求される家電製品のフレーム,保護ケース,筐体等では、建築構造物用途の角型鋼管に比較して曲げ半径が大幅に小さい。小さな曲げ半径のため、MnS系介在物粒子のサイズや形態を制御しても、マトリックスが複相型又はマルテンサイト単層組織ではフレーム,保護ケース,筐体等に要求されるレベルの曲げ加工を施すと割れが発生しやすい。   The stainless steel disclosed in Japanese Patent Laid-Open No. 11-302791 is mainly intended for square steel pipes used for building structures having a relatively large bending radius. However, in home appliance frames, protective cases, casings, and the like that require high dimensional accuracy after bending, the bending radius is significantly smaller than that of square steel pipes for use in building structures. Because of the small bend radius, even if the size and shape of MnS inclusion particles are controlled, the bending process at the level required for the frame, protective case, case, etc. is possible in the case of a multi-phase matrix or a martensite single layer structure. When applied, cracks are likely to occur.

しかも、特開平11−302791号公報では、MnS系介在物粒子のサイズや形態を制御する具体的方法を開示されていない。圧延方向に伸ばされた紐状のMnSが曲げ加工性に有害なことは知られているが、冷間圧延率の上昇に伴ってMnSは更に伸ばされ、最終的には微細に分散する。その結果、薄板鋼板のMnSは微細分散により無害化されるが、十分な微細分散が期待できない比較的厚い鋼板ではMnSを無害化できない。更に、要求される耐力レベルは用途に応じて異なるが、ユーザ側の熱処理を省略したマルテンサイト系,(フェライト+マルテンサイト)複相組織系ステンレス鋼板の耐力がほぼ成分で決まるため、成分の異なる材料で各種レベルの要求耐力に応えざるを得なかった。   Moreover, JP-A-11-302791 does not disclose a specific method for controlling the size and form of MnS inclusion particles. Although it is known that the string-like MnS stretched in the rolling direction is harmful to the bending workability, the MnS is further stretched as the cold rolling rate increases, and finally finely dispersed. As a result, MnS of the thin steel plate is rendered harmless by fine dispersion, but MnS cannot be harmed by a relatively thick steel plate that cannot be expected to have sufficient fine dispersion. Furthermore, the required proof strength level varies depending on the application, but the proof strength of martensitic and (ferrite + martensite) multi-phase stainless steel plate without heat treatment on the user side is almost determined by the components, so the components differ. The materials had to meet various levels of required strength.

冷間圧延でフェライト組織を加工硬化させる方法はマルテンサイト相による高強度化に比較して曲げ加工性の点で優れているものの、特開2001−262282号公報のステンレス鋼は曲げ加工のない二輪車ディスクブレーキ用途を対象としている。そのため、当該方法をそのまま適用した材料に曲げ先端半径Rの小さな加工を施すと割れが発生しやすく、フレーム,保護ケース等の素材として使用できない。   Although the method of work hardening the ferrite structure by cold rolling is superior in terms of bending workability compared to increasing the strength by the martensite phase, the stainless steel disclosed in Japanese Patent Laid-Open No. 2001-262282 is a two-wheeled vehicle without bending work. Targeted for disc brake applications. For this reason, if the material to which the method is applied as it is is processed with a small bending tip radius R, cracks are likely to occur and it cannot be used as a material for a frame, a protective case, or the like.

本発明は、このような問題を解消すべく案出されたものであり、精錬工程でAl脱酸,低硫化を併用して介在物を微細なAl系又はAl・MgO系に制御すると共に、冷間加工でフェライト組織を加工硬化させることにより、ユーザ側での熱処理を不要とし、厳しい曲げ加工を施しても割れの発生がなく高強度化されたステンレス鋼板を提供することを目的とする。 The present invention has been devised to solve such a problem. In the refining process, Al deoxidation and low sulfidation are used in combination to make inclusions fine Al 2 O 3 or Al 2 O 3 .MgO. By controlling the system and work hardening the ferrite structure by cold working, there is no need for heat treatment on the user side, and there is no need for cracking even when severe bending work is performed, and a high strength stainless steel sheet is provided. For the purpose.

本発明の加工硬化材は、成分・組成と金属組織で特徴付けられる。
成分的には、C:0.15質量%以下,Si:1.0質量%以下,Mn:1.0質量%以下,S:0.005質量%以下,Cr:10〜20質量%,Ni:0.5質量%以下,Al:0.001〜0.05質量%,残部がFe及び不可避的不純物からなる基本組成としている。必要に応じ、Mo:0.5〜2.0質量%,Cu:0.5〜3.0質量%,Nb:0.05〜1.0質量%の1種又は2種以上を含ませても良い。
The work hardening material of the present invention is characterized by its component / composition and metal structure.
In terms of components, C: 0.15% by mass or less, Si: 1.0% by mass or less, Mn: 1.0% by mass or less, S: 0.005% by mass or less, Cr: 10-20% by mass, Ni : 0.5% by mass or less, Al: 0.001 to 0.05% by mass, the balance being Fe and inevitable impurities . As needed, Mo: 0.5-2.0 mass%, Cu: 0.5-3.0 mass%, Nb: 0.05-1.0 mass% 1 type or 2 types or more are included. Also good.

金属組織は、サイズ:10μm以下のAl系及び/又はAl・MgO系介在物が清浄度:0.06以下で分散した加工フェライト組織であり、冷間加工率によって0.2%耐力を500〜900N/mmの範囲に調整している。 The metal structure is a processed ferrite structure in which Al 2 O 3 and / or Al 2 O 3 .MgO inclusions having a size of 10 μm or less are dispersed with a cleanliness of 0.06 or less. The 2% proof stress is adjusted in the range of 500 to 900 N / mm 2 .

曲げ加工性に有害なMnSは、比較的軟質であって熱延,冷延で圧延方向に伸ばされ、紐状介在物としてマトリックスに分散する。この状態では、ステンレス鋼板を曲げ加工したときMnSに応力が集中し割れの起点となる。紐状MnS系介在物に起因する割れの防止は、低硫化だけでは不十分であり、介在物の組成,サイズ,形態を制御する必要がある。   MnS, which is harmful to bending workability, is relatively soft, is stretched in the rolling direction by hot rolling and cold rolling, and is dispersed in the matrix as string-like inclusions. In this state, when the stainless steel plate is bent, stress concentrates on MnS and becomes a starting point of cracking. Prevention of cracking due to string-like MnS inclusions is not sufficient only by low sulfidation, and it is necessary to control the composition, size, and form of the inclusions.

介在物の組成,サイズ,形態は、精錬工程で使用する脱酸剤によって変わる。シリコンを脱酸剤に使用すると、MnSの他にMnO・SiO系又はMnO・SiO・MnS系介在物が生じる。Tiを脱酸剤に使用すると、紐状介在物の生成を抑制できるが、脱酸生成物としてTiOの他にTiNも生成し、個々の介在物が相互に凝集して粗大な集合体(クラスター)になり、ステンレス鋼板に表面疵が発生しやすくなる。Ti脱酸は、タンディッシュのノズルが閉塞しやすいことも欠点であり、N含有量の低減を必要とする。 The composition, size and form of inclusions vary depending on the deoxidizer used in the refining process. When silicon is used as a deoxidizer, MnO.SiO 2 -based or MnO.SiO 2 .MnS-based inclusions are generated in addition to MnS. When Ti is used as a deoxidizing agent, the formation of string inclusions can be suppressed. However, TiN is also generated in addition to TiO 2 as a deoxidation product, and individual inclusions aggregate to each other to form a coarse aggregate ( Cluster) and surface flaws are likely to occur on the stainless steel plate. Ti deoxidation is also disadvantageous in that the tundish nozzle tends to be clogged, and requires a reduction in the N content.

表面疵の発生がなく、曲げ加工性に有害なMnS,MnO・SiO系,MnO・SiO・MnS(オキシサルファイド)系等の介在物の生成を抑制する方法を調査・検討した結果、Al脱酸で介在物をAl系又はAl・MgO系に制御すると加工フェライト組織の曲げ加工性が著しく改善されることを見出した。具体的には、後述の実施例でもみられるように、低硫化,Al脱酸の組合せにより清浄度:0.06%以下でサイズ:10μm以下のAl系又はAl・MgO系を分散させるとき、曲げ加工性への悪影響が抑制される。 As a result of investigating and investigating methods for suppressing the formation of inclusions such as MnS, MnO · SiO 2 and MnO · SiO 2 · MnS (oxysulfide) that are free from surface flaws and are harmful to bending workability It has been found that when the inclusions are controlled to Al 2 O 3 or Al 2 O 3 .MgO by deoxidation, the bending workability of the processed ferrite structure is remarkably improved. Specifically, as will be seen in the examples described later, cleanness: 0.06% or less and size: 10 μm or less Al 2 O 3 or Al 2 O 3 .MgO by combination of low sulfidation and Al deoxidation When dispersing the system, adverse effects on bending workability are suppressed.

ステンレス鋼板の強度は、冷間加工によってフェライト組織を加工硬化することにより付与され、要求レベルの0.2%耐力を達成するための特別な成分設計を必要としない。代表的な冷間加工は冷間圧延であり、冷間圧延率の変更によって0.2%耐力を500〜900N/mmの範囲(ビッカース硬さHVでは200〜300の範囲)に調整できる。因みに、通常の焼きなまし状態にあるフェライト系ステンレス鋼の0.2%耐力レベルは250〜300N/mm程度(ビッカース硬さHVでは130〜150程度)であり、要求レベルを大きく下回る。 The strength of the stainless steel sheet is imparted by work hardening of the ferrite structure by cold working and does not require a special component design to achieve the required level of 0.2% proof stress. A typical cold working is cold rolling, and the 0.2% proof stress can be adjusted to a range of 500 to 900 N / mm 2 (a range of 200 to 300 in the case of Vickers hardness HV) by changing the cold rolling rate. Incidentally, the 0.2% proof stress level of the ferritic stainless steel in the normal annealing state is about 250 to 300 N / mm 2 (about 130 to 150 in the case of Vickers hardness HV), which is much lower than the required level.

本発明では、低硫化及びAl脱酸により介在物の組成,サイズ,形態を制御したフェライト系ステンレス鋼を使用するが、該ステンレス鋼は次のように成分設計されている。   In the present invention, ferritic stainless steel in which the composition, size, and form of inclusions are controlled by low sulfidation and Al deoxidation is used. The stainless steel is designed as follows.

〔合金成分〕
C:0.15質量%以下
マトリックスの強化に有効な合金成分であるが、過剰量のC含有はCr系炭化物の生成を促進させ耐食性を劣化させる。そのため、C含有量の上限を0.15質量%(好ましくは、0.08質量%)に設定した。
Si:1.0質量%以下
フェライト形成元素として働き、マトリックス強化に有効な合金成分である。しかし、1.0質量%を超える過剰量のSiが含まれると、曲げ加工性に有害なSiO系又はMnO・SiO系介在物が生成しやすくなる。
Mn:1.0質量%以下
オーステナイト形成元素であり、MnO・SiO系介在物となって曲げ加工性を劣化させる。そのため、Mn含有量の上限を1.0質量%(好ましくは、0.5質量%)に設定した。
S:0.005質量%以下
曲げ加工性を劣化させるMnS,MnO・SiO系介在物に固溶し、粗大なオキシサルファイド介在物を形成する。S起因の悪影響を抑制するため、S含有量の上限を0.005質量%(好ましくは、0.003質量%)に設定した。
Cr:10〜20質量%
耐食性改善に有効な合金成分であり、ステンレス鋼として要求される耐食性を確保する上で10質量%以上のCrが必要である。しかし、過剰添加は靭性を劣化させるので、Cr含有量の上限を20質量%に設定した。Cr含有量の好ましい範囲は、11〜18質量%である。
Ni:0.5質量%以下
オーステナイト形成元素であり、過剰量のNiが含まれるとAc1点が下がり、焼鈍時の冷却過程でマルテンサイト相が生成しやすくなる。そのため、Ni含有量を0.5質量%以下に規制し、マルテンサイトの生成を防止した。
Al:0.001〜0.05質量%
脱酸剤として添加される成分であり、十分な脱酸効果を得る上で0.001質量%のAl含有量が必要である。しかし、過剰量のAlを添加すると、多量のAl系介在物が生じ、介在物が相互に凝集したクラスターになり表面疵等の欠陥を発生させる。そこで、介在物のサイズを10μm以下,清浄度を0.06%以下として表面疵等の欠陥発生を防止するため、Al含有量の上限を0.05質量%に規定した。好ましくは、0.003〜0.03質量%の範囲にAl含有量を選定する。
[Alloy components]
C: 0.15% by mass or less Although it is an alloy component effective for strengthening the matrix, excessive C content promotes the formation of Cr-based carbides and deteriorates the corrosion resistance. Therefore, the upper limit of the C content is set to 0.15% by mass (preferably 0.08% by mass).
Si: 1.0% by mass or less Si is an alloy component that works as a ferrite forming element and is effective for matrix strengthening. However, when an excessive amount of Si exceeding 1.0% by mass is contained, SiO 2 -based or MnO.SiO 2 -based inclusions that are harmful to bending workability are likely to be generated.
Mn: 1.0% by mass or less An austenite forming element that becomes a MnO.SiO 2 inclusion and deteriorates bending workability. Therefore, the upper limit of the Mn content is set to 1.0% by mass (preferably 0.5% by mass).
S: 0.005% by mass or less Solid solution is formed in MnS, MnO.SiO 2 inclusions which deteriorate bending workability, and coarse oxysulfide inclusions are formed. In order to suppress the adverse effects caused by S, the upper limit of the S content was set to 0.005% by mass (preferably 0.003% by mass).
Cr: 10 to 20% by mass
It is an alloy component effective for improving corrosion resistance, and 10% by mass or more of Cr is necessary to ensure the corrosion resistance required for stainless steel. However, excessive addition deteriorates toughness, so the upper limit of Cr content was set to 20% by mass. A preferable range of the Cr content is 11 to 18% by mass.
Ni: 0.5% by mass or less Ni is an austenite forming element. When an excessive amount of Ni is contained, the Ac1 point is lowered, and a martensite phase is easily generated during the cooling process during annealing. Therefore, the Ni content is regulated to 0.5% by mass or less to prevent the formation of martensite.
Al: 0.001 to 0.05 mass%
It is a component added as a deoxidizer, and an Al content of 0.001% by mass is necessary for obtaining a sufficient deoxidation effect. However, when an excessive amount of Al is added, a large amount of Al 2 O 3 inclusions are generated, and the inclusions are clustered together to generate defects such as surface defects. Therefore, in order to prevent the occurrence of defects such as surface defects by setting the size of inclusions to 10 μm or less and the cleanliness to 0.06% or less, the upper limit of Al content is specified to 0.05 mass%. Preferably, the Al content is selected in the range of 0.003 to 0.03 mass%.

Mo:0.5〜2.0質量%,Cu:0.5〜3.0質量%,Nb:0.05〜1.0質量%
必要に応じて添加される合金成分であり、何れも耐食性の向上に寄与する。耐食性改善効果は、Mo:0.5質量%以上,Cu:0.5質量%以上,Nb:0.05質量%以上でみられる。しかし、2.0質量%を超えるMo含有量では固溶強化による冷間加工性の低下を招くと共に素材コストが高くなり、3.0質量%を超えるCu含有量では熱間加工性が低下して製造性が損なわれ、1.0質量%を超えるNb含有量では耐食性向上効果が飽和し素材コストが高くなる。
Mo: 0.5-2.0 mass%, Cu: 0.5-3.0 mass%, Nb: 0.05-1.0 mass%
These are alloy components added as necessary, and all contribute to the improvement of corrosion resistance. The effect of improving corrosion resistance is seen when Mo: 0.5% by mass or more, Cu: 0.5% by mass or more, and Nb: 0.05% by mass or more. However, if the Mo content exceeds 2.0% by mass, the cold workability decreases due to solid solution strengthening and the material cost increases. If the Cu content exceeds 3.0% by mass, the hot workability decreases. Thus, manufacturability is impaired, and if the Nb content exceeds 1.0% by mass, the effect of improving corrosion resistance is saturated and the material cost is increased.

〔加工フェライト組織〕
低硫化,Al脱酸によってマトリックスに分散した介在物がAl系又はAl・MgO系に形態制御され、介在物を冷間加工でサイズ:10μm以下(好ましくは、5μm以下)に分断するとき、割れの起点となる介在物への応力集中が緩和される。そのため、小さな曲げ先端半径Rで目標形状に曲げ加工しても、割れが大幅に軽減された加工品が得られる。
[Processed ferrite structure]
Low sulphide inclusions dispersed in a matrix of Al deoxidation is shape control to Al 2 O 3 system or Al 2 O 3 · MgO-based, size inclusions in cold working: 10 [mu] m or less (preferably, 5 [mu] m or less) When dividing into two, the stress concentration on the inclusions that become the starting point of cracking is alleviated. Therefore, even if it is bent into a target shape with a small bending tip radius R, a processed product with greatly reduced cracks can be obtained.

冷間加工は、介在物の微細分断に加え、加工硬化による高強度化にも有効である。すなわち、通常の焼きなまし状態にあるフェライト系ステンレス鋼の0.2%耐力レベルは250〜300N/mm程度(ビッカース硬さHVでは130〜150程度)であるが、加工硬化によって高強度化が図られる。しかも、加工率に応じ0.2%耐力を500〜900N/mmの範囲,ビッカース硬さをHV:200〜300の範囲で自在に調整できるため、成分設計を変更する必要なく要求レベルに応じて高強度化された素材が提供される。冷間圧延で加工硬化させる場合、曲げ加工性を損なうことなく強度向上を図る上で15〜50%(好ましくは、20〜35%)の範囲で仕上げ圧延時の圧延率が選定される。 Cold working is effective not only for finely dividing inclusions but also for increasing strength by work hardening. That is, the 0.2% proof stress level of ferritic stainless steel in a normal annealing state is about 250 to 300 N / mm 2 (about 130 to 150 in the case of Vickers hardness HV). It is done. Moreover, 0.2% proof stress can be freely adjusted in the range of 500 to 900 N / mm 2 and Vickers hardness can be adjusted in the range of HV: 200 to 300 according to the processing rate, so that it is possible to meet the required level without changing the component design. And a material with high strength is provided. When work hardening is performed by cold rolling, the rolling ratio during finish rolling is selected in the range of 15 to 50% (preferably 20 to 35%) in order to improve the strength without impairing the bending workability.

次いで、実施例によって本発明を具体的に説明する。   Next, the present invention will be described specifically by way of examples.

[実施例1]
ステンレス溶鋼をSi脱酸し、表1の組成をもつステンレス鋼を用意した。表中、サンプルS−1は、熱延後の焼鈍でフェライト単層組織に再結晶させた後、圧延率25%で冷間圧延した板厚1.8mmのステンレス鋼板であり、加工フェライト組織をもつ。サンプルS−2,S−3は、同じく1.8mmに冷間圧延したステンレス鋼板をオーステナイト+フェライト二相領域の温度に短時間保持した後で空冷することにより(フェライト+マルテンサイト)の複相組織にしたステンレス鋼板である。サンプルS−2は、サンプルS−3に比較してマルテンサイト量が多くなっている。
[Example 1]
A stainless steel having the composition shown in Table 1 was prepared by deoxidizing the molten stainless steel. In the table, sample S-1 is a stainless steel plate having a thickness of 1.8 mm that has been recrystallized into a ferrite single layer structure by annealing after hot rolling and then cold rolled at a rolling rate of 25%. Have. Samples S-2 and S-3 were (phases of ferrite and martensite) by holding a stainless steel sheet cold-rolled to 1.8 mm for a short time at a temperature in the austenite + ferrite two-phase region and then air-cooling. It is a stainless steel plate made into a structure. Sample S-2 has a larger amount of martensite than sample S-3.

Figure 0004237183
Figure 0004237183

金属組織が異なる各サンプルから圧延方向(L方向),圧延方向に直交する方向(C方向)の二方向に沿ってJIS 13B号試験片を切り出し、引張試験で0.2%耐力,伸びを測定した。各サンプルの0.2%耐力,伸びを表2に対比する。加工フェライト組織をもつサンプルS−1は、マルテンサイト量が80体積%のサンプルS−2とほぼ同じ0.2%耐力であるが、伸びが小さくなっている。   JIS 13B test piece was cut out from each sample with different metallographic structure along the rolling direction (L direction) and the direction orthogonal to the rolling direction (C direction), and 0.2% proof stress and elongation were measured by tensile test. did. Table 2 compares the 0.2% yield strength and elongation of each sample. Sample S-1 having a processed ferrite structure has a 0.2% proof stress almost the same as that of sample S-2 having a martensite content of 80% by volume, but the elongation is small.

Figure 0004237183
Figure 0004237183

曲げ加工性の評価には、Vブロック法(JIS Z2248に準じた90度V曲げ試験)を使用した。ポンチの先端Rを変え、圧延方向と平行な曲げ軸(C方向曲げ),圧延方向に直交する曲げ軸(L方向曲げ)の二方向で試験片を90度曲げし、割れが発生するポンチ先端半径Rにより曲げ加工性を評価した。   For evaluation of bending workability, the V block method (90 degree V bending test according to JIS Z2248) was used. The tip of the punch where the tip R of the punch is changed and the specimen is bent 90 degrees in two directions: a bending axis parallel to the rolling direction (C direction bending) and a bending axis perpendicular to the rolling direction (L direction bending). The bending workability was evaluated by the radius R.

表3の試験結果にみられるように、L方向曲げではVブロック曲げの最小先端R=0.1mmでも各サンプルに割れが発生しなかったが、C方向曲げでは各サンプルの間に相違がみられた。すなわち、割れが発生した最小先端Rは、0.2%耐力がほぼ同等のサンプルS−2が1.5mmであったのに対し、サンプルS−1では0.6mmとなっており、サンプルS−2,S−3に比較して伸びが小さいにも拘らずサンプルS−1が優れた曲げ加工性を呈していた。この結果は、マルテンサイト相で強化した組織よりも加工フェライト組織が曲げ加工性の点で有利なことを意味する。   As can be seen from the test results in Table 3, in the L direction bending, no cracks occurred in each sample even at the minimum tip R = 0.1 mm of V block bending, but in the C direction bending, there was a difference between the samples. It was. That is, the minimum tip R at which cracking occurred was 1.5 mm for sample S-2 with approximately 0.2% proof stress, whereas it was 0.6 mm for sample S-1. Although the elongation was small compared to −2 and S-3, the sample S-1 exhibited excellent bending workability. This result means that the work ferrite structure is more advantageous in bending workability than the structure strengthened by the martensite phase.

Figure 0004237183
Figure 0004237183

曲げ加工性に及ぼす介在物の影響を調査するため、Si脱酸したサンプルS−1と同様な組成に調製したステンレス溶鋼をAl脱酸した後、同じ製造条件下でサンプルA−1を製造した。サンプルA−1は、脱酸剤に由来するAl含有量が0.006質量%であった(表4)。 In order to investigate the influence of inclusions on the bending workability, sample A-1 was manufactured under the same manufacturing conditions after Al deoxidation of molten stainless steel prepared in the same composition as Si-deoxidized sample S-1. . In Sample A-1, the Al content derived from the deoxidizer was 0.006 % by mass (Table 4).

EPMAを用いた成分分析によりサンプルA−1の介在物を同定したところ、Al系,Al・MgO系が混在しており、サンプルS−1の介在物MnO・SiO系又はMnO・SiO・MnS系と大きく異なっていた。以降、サンプルS−1で観察されたSiO主体の介在物をシリケート系,サンプルA−1で観察されたAl主体の介在物をアルミナ系という。 When inclusions of sample A-1 were identified by component analysis using EPMA, Al 2 O 3 system and Al 2 O 3 .MgO system were mixed, and inclusion MnO.SiO 2 system of sample S-1 Or it was very different from the MnO.SiO 2 .MnS system. Hereinafter, the inclusion mainly composed of SiO 2 observed in the sample S-1 is referred to as a silicate system, and the inclusion mainly composed of Al 2 O 3 observed in the sample A-1 is referred to as an alumina system.

Figure 0004237183
Figure 0004237183

サンプルA−1,S−1からL,Cの二方向に沿ってJIS 13B号試験片を切り出し、引張試験で0.2%耐力,伸びを測定した。サンプルA−1,S−1は、ほぼ同等の機械的性質をもっていた(表5)。しかし、曲げ加工試験では、サンプルA−1,S−1共にほぼ同じ耐力レベルでありながら、C方向の曲げ加工性に関してサンプルS−1に比較してサンプルA−1が明らかに優れていた(表6)。   JIS 13B test pieces were cut out from Samples A-1 and S-1 along the two directions L and C, and 0.2% yield strength and elongation were measured by a tensile test. Samples A-1 and S-1 had almost the same mechanical properties (Table 5). However, in the bending test, the samples A-1 and S-1 were substantially the same proof stress level, but the sample A-1 was clearly superior to the sample S-1 in terms of the bending workability in the C direction ( Table 6).

以上の結果は、低硫化,Al脱酸で介在物を形態制御し、冷間加工によって加工フェライト組織に調整するとき、高強度化に拘らず優れた曲げ加工性が確保されることを意味している。   The above results mean that excellent bending workability can be ensured regardless of high strength when the inclusions are controlled by low sulfidation and Al deoxidation and adjusted to the processed ferrite structure by cold working. ing.

Figure 0004237183
Figure 0004237183

Figure 0004237183
Figure 0004237183

[実施例2]
表7に成分・組成を示した各種ステンレス鋼を30kg真空溶解炉で溶製し、Al脱酸又はSi脱酸した。
[Example 2]
Various stainless steels whose components and compositions are shown in Table 7 were melted in a 30 kg vacuum melting furnace and Al deoxidized or Si deoxidized.

Figure 0004237183
Figure 0004237183

各ステンレス鋼鋳塊を厚み55mm,幅100mmに鍛造し、表面研削で50mmの厚みに調整した。次いで、板厚5mmまで熱間圧延し、熱延でマルテンサイト相が生成した鋼種は850℃×7時間の軟化焼鈍後に酸洗し、マルテンサイト相が生じない鋼種は1040℃×均熱0分の焼鈍後に酸洗した。   Each stainless steel ingot was forged to a thickness of 55 mm and a width of 100 mm, and adjusted to a thickness of 50 mm by surface grinding. Next, the steel type that was hot-rolled to a thickness of 5 mm and the martensite phase formed by hot rolling was pickled after soft annealing at 850 ° C. for 7 hours. Pickling was performed after annealing.

加工硬化によって強度を向上させる鋼種については、最終板厚1.8mmでの圧延率が20〜35%となるように中間板厚2.3〜2.8mmの範囲まで冷間圧延した。中間圧延したステンレス鋼板を850℃×均熱0分で焼鈍し、酸洗後に最終板厚1.8mmに仕上げ冷延した。   About the steel grade which improves strength by work hardening, it cold-rolled to the range of intermediate plate thickness 2.3-2.8mm so that the rolling rate in final plate thickness 1.8mm might be 20-35%. The intermediate rolled stainless steel plate was annealed at 850 ° C. × soaking for 0 minutes, and after pickling, was finished and cold-rolled to a final plate thickness of 1.8 mm.

マルテンサイト単相又は(フェライト+マルテンサイト)複相組織で強度を向上させる鋼種については、軟化焼鈍後に中間板厚3.0mmまで冷間圧延し、焼鈍・酸洗を経て最終板厚1.8mmに仕上げ冷延した。次いで、1000℃×均熱1分→空冷の熱処理により、マルテンサイト単相又は(フェライト+マルテンサイト)複相組織に調整した。   For steel grades that improve strength with a martensite single phase or (ferrite + martensite) multiphase structure, cold-roll to an intermediate plate thickness of 3.0 mm after softening annealing, and after annealing and pickling, a final plate thickness of 1.8 mm Finished cold rolled. Subsequently, it was adjusted to a martensite single phase or (ferrite + martensite) multiphase structure by heat treatment of 1000 ° C. × soaking for 1 minute → air cooling.

製造された各ステンレス鋼板から試験片を切り出し、金属組織,介在物,表面疵を観察した。介在物に関しては、EPMAで介在物の成分を同定し、JIS 0555規定の方法で清浄度を測定し、清浄度を測定した視野で観察された最大介在物の長径を介在物のサイズと評価した。0.2%耐力,伸び,曲げ加工性は、実施例1と同様に調査した。 A specimen was cut out from each manufactured stainless steel plate, and the metal structure, inclusions, and surface defects were observed. Regarding inclusions, the inclusion components are identified by EPMA, the cleanliness is measured by the method defined in JIS G 0555, and the longest diameter of the maximum inclusion observed in the field of view of the cleanliness is evaluated as the size of the inclusion. did. The 0.2% proof stress, elongation, and bending workability were investigated in the same manner as in Example 1.

表8の調査結果にみられるように、Al脱酸で介在物を形態制御し且つ加工フェライトで高強度化した試験No.1〜8は、700N/mm以上と高レベルの0.2%耐力を示しているにも拘らず、最小曲げ先端半径Rが0.1mm未満となっており曲げ加工性に優れていることが判る。 As can be seen from the results of the investigation in Table 8, test Nos. In which inclusions were controlled in form by Al deoxidation and strengthened with processed ferrite. Nos. 1 to 8 have excellent bending workability because the minimum bending tip radius R is less than 0.1 mm in spite of the high 0.2% proof stress of 700 N / mm 2 or more. I understand.

他方、試験No.9は、マルテンサイト相で高強度化していることから0.2%耐力が高いものの、最小曲げ先端半径R:2.5mmと曲げ加工性に著しく劣っていた。マルテンサイト量を減じて強度を犠牲にした試験No.10でも、最小曲げ先端半径Rが0.6mmに過ぎず、マルテンサイト相により高強度化した鋼種では、曲げ加工性の改善に限界があることが理解される。   On the other hand, test no. Although No. 9 had a 0.2% proof stress because it was strengthened in the martensite phase, the minimum bending tip radius R was 2.5 mm, which was extremely inferior in bending workability. Test No. in which the amount of martensite was reduced and the strength was sacrificed. Even in the case of steel No. 10, the minimum bending tip radius R is only 0.6 mm, and it is understood that there is a limit to the improvement of bending workability in the steel type that is strengthened by the martensite phase.

Al脱酸した場合でも、Al含有量が不足する試験No.11は、脱酸不足のためにシリケート系介在物が残存し、十分な曲げ加工性を呈さなかった。逆に過度にAl脱酸した試験No.12では、鋼中のAl濃度が0.09質量%と高くなりすぎ、曲げ加工性は改善されたものの製品表面に介在物起因の疵が発生した。   Test No. in which Al content is insufficient even when Al is deoxidized. No. 11 did not exhibit sufficient bending workability because silicate inclusions remained due to insufficient deoxidation. Conversely, test No. 1 in which Al was deoxidized excessively. In No. 12, the Al concentration in the steel was too high at 0.09% by mass, and although bending workability was improved, wrinkles due to inclusions occurred on the product surface.

Si脱酸した試験No.13〜15は、介在物がシリケート系となり、試験No.1〜8に比較して何れも曲げ加工性に劣っていた。   Si deoxidized test no. In Nos. 13 to 15, the inclusions became silicate, and the test No. All were inferior in bending workability compared with 1-8.

Figure 0004237183
Figure 0004237183

比較例9,10,13以外の試験材は、仕上げ圧延率20〜30%での冷間加工により得られた加工フェライト組織になっている。そのため、0.2%耐力が700N/mm以上と高い。伸びが4%以下となっていることから延性に乏しいように受け取られがちであるが、曲げ加工性に優れている。優れた曲げ加工性は、全伸びよりも局部的な伸びの影響を受けた結果と考えられる。この結果は、加工フェライト組織とすることにより、曲げ部外面で局部的な延性が向上していることを示唆する。更に、介在物形態を適正に制御しているので、介在物/マトリックスの界面で応力集中が緩和された結果が割れ発生の抑制効果となって現れている。 The test materials other than Comparative Examples 9, 10, and 13 have a processed ferrite structure obtained by cold working at a finish rolling rate of 20 to 30%. Therefore, the 0.2% proof stress is as high as 700 N / mm 2 or more. Since the elongation is 4% or less, it tends to be perceived as having poor ductility, but it has excellent bending workability. The excellent bendability is considered to be the result of being affected by local elongation rather than total elongation. This result suggests that the local ductility is improved on the outer surface of the bent portion by using the processed ferrite structure. Furthermore, since the inclusion form is appropriately controlled, the result of the relaxation of stress concentration at the inclusion / matrix interface appears as an effect of suppressing the occurrence of cracks.

以上に説明したように、Al脱酸で介在物を形態制御し加工フェライト組織で高強度化したステンレス鋼板は、0.2%耐力≧700N/mmでも曲げ加工性が優れており、環境負荷が小さいめっき不要の無垢材として使用できる。そのため、ユーザ側での熱処理を省略でき、多量のNiを含まないので鋼材コストが低廉なことと相俟って、家電製品,OA機器等のフレーム,筐体等に使用される。 As explained above, the stainless steel sheet whose form is controlled by Al deoxidation and strengthened with the processed ferrite structure has excellent bending workability even at 0.2% proof stress ≧ 700 N / mm 2 , and environmental load Can be used as a solid material that does not require plating. Therefore, heat treatment on the user side can be omitted, and since it does not contain a large amount of Ni, it is used for frames, housings, etc. of home appliances, OA equipment, etc., coupled with low steel material costs.

Claims (3)

C:0.15質量%以下,Si:1.0質量%以下,Mn:1.0質量%以下,S:0.005質量%以下,Cr:10〜20質量%,Ni:0.5質量%以下,Al:0.001〜0.05質量%,残部がFe及び不可避的不純物からなる組成で、
サイズ:10μm以下のAl系及び/又はAl・MgO系介在物が清浄度:0.06以下で分散した加工フェライト組織をもつことを特徴とするステンレス鋼板の加工硬化材。
C: 0.15 mass% or less, Si: 1.0 mass% or less, Mn: 1.0 mass% or less, S: 0.005 mass% or less, Cr: 10-20 mass%, Ni: 0.5 mass % Or less, Al: 0.001 to 0.05% by mass, the balance being composed of Fe and inevitable impurities ,
A work hardening material for a stainless steel sheet, characterized by having a processed ferrite structure in which Al 2 O 3 and / or Al 2 O 3 .MgO inclusions having a size of 10 μm or less are dispersed with a cleanliness of 0.06 or less.
更にMo:0.5〜2.0質量%,Cu:0.5〜3.0質量%,Nb:0.05〜1.0質量%の1種又は2種以上を含む請求項1記載の加工硬化材。  Furthermore, Mo: 0.5-2.0 mass%, Cu: 0.5-3.0 mass%, Nb: 0.05-1.0 mass% 1 type or 2 types or more are included. Work hardening material. 0.2%耐力が500〜900N/mmの範囲にある請求項1又は2記載の加工硬化材。Claim 1 or 2 work hardening material according the 0.2% yield strength is in the range of 500~900N / mm 2.
JP2005512982A 2003-08-06 2004-08-03 Stainless steel work hardener Active JP4237183B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003287774 2003-08-06
JP2003287774 2003-08-06
PCT/JP2004/011410 WO2005014873A1 (en) 2003-08-06 2004-08-03 Work-hardened material from stainless steel

Publications (2)

Publication Number Publication Date
JPWO2005014873A1 JPWO2005014873A1 (en) 2006-10-05
JP4237183B2 true JP4237183B2 (en) 2009-03-11

Family

ID=34131490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005512982A Active JP4237183B2 (en) 2003-08-06 2004-08-03 Stainless steel work hardener

Country Status (5)

Country Link
US (1) US20060118208A1 (en)
JP (1) JP4237183B2 (en)
KR (1) KR100741993B1 (en)
CN (1) CN100383273C (en)
WO (1) WO2005014873A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3753248B2 (en) * 2003-09-01 2006-03-08 核燃料サイクル開発機構 Method for producing martensitic oxide dispersion strengthened steel with residual α grains and excellent high temperature strength
US10351922B2 (en) * 2008-04-11 2019-07-16 Questek Innovations Llc Surface hardenable stainless steels
WO2009126954A2 (en) 2008-04-11 2009-10-15 Questek Innovations Llc Martensitic stainless steel strengthened by copper-nucleated nitride precipitates
CN101748339B (en) * 2008-12-11 2012-03-28 宝山钢铁股份有限公司 High-strength ferritic stainless steel band and manufacturing method thereof
JP5467673B2 (en) * 2009-04-23 2014-04-09 日新製鋼株式会社 Ferritic stainless steel for corrugated tubes
CN101649418B (en) * 2009-09-10 2011-06-01 山西太钢不锈钢股份有限公司 Ferrite stainless steel cold-rolled steel band and manufacturing method thereof
US20110062805A1 (en) * 2009-09-17 2011-03-17 Caterpillar Inc. Switched reluctance machine with eddy current loss dampener
CN103276299B (en) * 2013-04-16 2017-09-05 宝钢不锈钢有限公司 The ferritic stainless steel steel plate and its manufacture method of a kind of great surface quality
JP6405613B2 (en) * 2013-10-16 2018-10-17 Tdk株式会社 Electrochemical devices
JP6295155B2 (en) * 2014-07-22 2018-03-14 新日鐵住金ステンレス株式会社 Ferritic stainless steel, manufacturing method thereof, and heat exchanger using ferritic stainless steel as a member
JP6786418B2 (en) * 2016-03-17 2020-11-18 日鉄ステンレス株式会社 Martensitic stainless steel for brake discs and brake discs
CN106756503B (en) * 2016-12-27 2018-05-22 北京首钢吉泰安新材料有限公司 Free cutting alloy, B alloy wire, its preparation method, nib, pen core and pen
JP2019044255A (en) * 2017-09-07 2019-03-22 Jfeスチール株式会社 Ferritic stainless steel sheet
CN113767181B (en) 2019-05-29 2023-05-09 杰富意钢铁株式会社 Ferritic stainless steel sheet and method for producing same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59166655A (en) * 1983-03-08 1984-09-20 Nippon Steel Corp High purity and high cleanliness stainless steel excellent in gap corrosion resistance and anti-rust property and preparation thereof
JPH02270942A (en) * 1983-03-08 1990-11-06 Nippon Steel Corp High-purity and high-cleanliness stainless steel excellent in crevice corrosion resistance and rust resistance and its production
FR2589482B1 (en) * 1985-11-05 1987-11-27 Ugine Gueugnon Sa STAINLESS STEEL FERRITIC STEEL SHEET OR STRIP, ESPECIALLY FOR EXHAUST SYSTEMS
JPH05255816A (en) * 1992-03-12 1993-10-05 Nkk Corp Manufacture of ferritic stainless steel excellent in workability and thin steel sheet thereof
JP2978038B2 (en) * 1993-08-16 1999-11-15 新日本製鐵株式会社 Oxide inclusion ultrafine dispersion steel
JP3439866B2 (en) * 1995-03-08 2003-08-25 日本冶金工業株式会社 Ferritic stainless steel with excellent corrosion resistance and weldability
JP3806186B2 (en) * 1996-07-23 2006-08-09 新日本製鐵株式会社 Method for producing ferritic stainless steel with excellent anti-roping properties
JP2002194505A (en) * 2000-12-22 2002-07-10 Sumitomo Metal Ind Ltd Ferrite stainless steel and its production method of the same
JP2002206148A (en) * 2001-01-09 2002-07-26 Nisshin Steel Co Ltd Austenitic stainless steel sheet having low work cracking sensitivity and production method therefor
JP4065141B2 (en) * 2002-05-24 2008-03-19 株式会社福田組 Purification method for contaminated soil

Also Published As

Publication number Publication date
WO2005014873A1 (en) 2005-02-17
JPWO2005014873A1 (en) 2006-10-05
CN1823177A (en) 2006-08-23
US20060118208A1 (en) 2006-06-08
CN100383273C (en) 2008-04-23
KR20060026844A (en) 2006-03-24
KR100741993B1 (en) 2007-07-23

Similar Documents

Publication Publication Date Title
JP5744678B2 (en) Precipitation hardening type metastable austenitic stainless steel wire excellent in fatigue resistance and method for producing the same
JPH07138704A (en) High strength and high ductility dual-phase stainless steel and its production
JP4237183B2 (en) Stainless steel work hardener
JPH0647694B2 (en) Method for producing high-strength stainless steel with excellent workability and no welding softening
TWI758184B (en) Vostian iron-based stainless steel material, method for producing the same, and leaf spring
JP6222040B2 (en) High formability and high strength cold-rolled steel sheet excellent in chemical conversion treatment and production method thereof
JP5376927B2 (en) Manufacturing method of high proportional limit steel plate with excellent bending workability
JP2001323342A (en) Austenitic stainless steel excellent in fine blanking property
CN110062814A (en) Low alloy steel plate with excellent intensity and ductility
JP2001288512A (en) Method of producing high tensile strength steel excellent in toughness and ductility
JP3606200B2 (en) Chromium-based stainless steel foil and method for producing the same
JP2001140041A (en) Chromium stainless steel with double layer structure for spring and producing method therefor
KR101940427B1 (en) Ferritic stainless steel sheet
WO2015133433A1 (en) Ferritic/austenitic two-phase stainless-steel sheet with excellent polishability and process for producing same
JP4606337B2 (en) Austenitic stainless steel for coins and coins manufactured with the steel
JP6279118B1 (en) High-strength duplex stainless steel with excellent corrosion resistance and bending workability
JP2000129400A (en) Annealed martensitic stainless steel excellent in strength, toughness, and spring characteristic
TWI773346B (en) Vostian iron-based stainless steel material, method for producing the same, and leaf spring
JP3343505B2 (en) High strength bolt steel with excellent cold workability and delayed fracture resistance and its manufacturing method
JP2001234284A (en) Steel excellent in crystal grain size characteristic and its producing method
JP2001003144A (en) High purity ferritic stainless steel sheet excellent in secondary working brittleness after deep drawing
JP2002069608A (en) PRODUCTION METHOD FOR Cr-BASED STAINLESS STEEL HAVING MULTI-LAYER STRUCTURE
JP3068677B2 (en) Enamelled steel sheet having good deep drawability and aging resistance and method for producing the same
JP2003253403A (en) Martensitic stainless steel sheet
JP2000282147A (en) Manufacture of high strength dual-phase stainless steel strip excellent in resistance to stress corrosion crack sensitivity, and steel strip

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070417

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081217

R150 Certificate of patent or registration of utility model

Ref document number: 4237183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250